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Preface

This volume contains the proceedings of the 17th International Conference on
Concurrency Theory (CONCUR) held in Bonn, Germany, August 27–30, 2006.

The purpose of the CONCUR conference series is to bring together researchers,
developers and students in order to advance the theory of concurrency and
promote its applications. Interest in this topic is continuously growing, as a con-
sequence of the importance and ubiquity of concurrent systems and their appli-
cations and the scientific relevance of their foundations. The scope of CONCUR
covers all areas of semantics, logics, and verification techniques for concurrent
systems. Topics include basic models and logics of concurrent and distributed
computation (such as process algebras, Petri nets, domain theoretic or game
theoretic models, modal and temporal logics), specialized models or classes of
systems (such as circuits, synchronous systems, real-time and hybrid systems,
stochastic systems, databases, mobile and migrating systems, parametric proto-
cols, security protocols), related verification techniques and tools (such as state-
space exploration, model-checking, synthesis, abstraction, automated deduction,
testing), and related programming models (such as distributed, constraint- or
object-oriented, graph rewriting, as well as associated type systems, static analy-
ses, abstract machines, and environments).

This volume starts with five invited papers covering the invited lectures and
tutorials of the conference. The remaining 29 papers were selected by the Pro-
gramme Committee out of 101 submissions after a very intensive reviewing and
discussion phase. We would like to thank the members of the Programme Com-
mittee and the external reviewers for their excellent and hard work.

The conference programme contained three invited lectures and two invited
tutorials. The invited talks were given by Edward A. Lee (University of Cal-
ifornia at Berkeley, USA), Jan Willem Klop, (Free University of Amsterdam,
The Netherlands) and Orna Kupferman (Hebrew University, Israel), and the in-
vited tutorials by Uwe Nestmann (Technical University of Berlin, Germany) and
Roberto Segala (University of Verona, Italy).

Eleven workshops are affiliated to CONCUR 2006:

– Formal Methods for Industrial Critical Systems (FMICS) organized by Lubos
Brim and Martin Leucker

– Verification of Infinite-State Systems (INFINITY) organized by Ahmed
Bouajjani

– Expressiveness in Concurrency (EXPRESS) organized by Roberto Amadio
and Iain Phillips

– Structural Operational Semantics (SOS) organized by Rob van Glabbeek
and Peter D. Mosses

– Geometric and Topological Methods in Concurrency (GETCO) organized
by Eric Goubault
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– German Verification Day (GVD), organized by Werner Damm and Wolfgang
Paul

– Foundations of Coordination Languages and Software Architectures (FO-
CLASA) organized by Carlos Canal and Mirko Viroli

– Parallel and Distributed Model Checking (PDMC) organized by Boudewijn
Haverkort and Jaco van de Pol

– Security Issues in Coordination Models, Languages, and Systems (SecCo)
organized by Dieter Gollmann and Peter Ryan

– Control and Observation of Real-Time Open Systems (CORTOS) organized
by Franck Cassez

– Graph Transformation for Verification and Concurrency (GT-VC) organized
by Arend Rensink

We would like to thank the CONCUR Steering Committee, the workshop or-
ganizers, the authors, and all Organizing Committee members for their contri-
butions to the success of the conference. Finally, we gratefully acknowledge the
generous support received from the Deutsche Forschungsgemeinschaft (DFG)
and from the European Research Consortium for Informatics and Mathematics
(ERCIM).

June 2006 Christel Baier and Holger Hermanns
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Oldřich Stražovský
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Modeling Timed Concurrent Systems

Xiaojun Liu1, Eleftherios Matsikoudis2, and Edward A. Lee2

1 Sun Microsystems, Inc.
xiaojun.liu@sun.com

2 University of California, Berkeley
{ematsi, eal}@eecs.berkeley.edu

Abstract. Timed concurrent systems are widely used in concurrent and
distributed real-time software, modeling of hybrid systems, design of
hardware systems (using hardware description languages), discrete-event
simulation, and modeling of communication networks. They consist of
concurrent components that communicate using timed signals, that is,
sets of (semantically) time-stamped events. The denotational semantics
of such systems is traditionally formulated in a metric space, wherein
causal components are modeled as contracting functions. We show that
this formulation excessively restricts the models of time that can be
used. In particular, it cannot handle super-dense time, commonly used
in hardware description languages and hybrid systems modeling, finite
time lines, and time with no origin. Moreover, if we admit continuous-
time and mixed signals (essential for hybrid systems modeling) or certain
Zeno signals, then causality is no longer equivalent to its formalization
in terms of contracting functions. In this paper, we offer an alternative
semantic framework using a generalized ultrametric that overcomes these
limitations.

1 Introduction

This paper focuses on timed concurrent systems modeling. Timed concurrent
systems are collections of concurrent components that communicate by use of
timed signals. We will define this formally, but intuitively timed signals are
functions of a globally defined time. They consist of either continuously evolving
values or discrete events or some combination of the two. Semantically, time is
a globally shared concept, and causality is intrinsically bound to chronological
ordering.

Timed concurrent systems have a wide range of application. They are used
in concurrent and distributed real-time software, modeling of hybrid systems,
design of hardware systems (using hardware description languages), discrete-
event simulation, and modeling of communication networks.

The importance of precise mathematical models for such systems cannot be
overemphasized. In short, they establish canonical denotational definitions of
timed programming languages, thereby providing the means for reasoning about
the correctness of individual implementations, as well as allowing hidden com-
monalities of seemingly different timed systems to emerge.

C. Baier and H. Hermanns (Eds.): CONCUR 2006, LNCS 4137, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Unfortunately, timed systems are not amenable to standard order-theoretic
denotational semantic approaches as they may realize non-monotonic functions
over the sequences of observable actions [25]. Yet interesting results have been
obtained by imposing a fixed lower bound on the reaction time of the involved
components, effectively precluding Zeno behavior, where an infinite number of
actions takes place over a finite interval of time. This has permitted the successful
employment of traditional metric-space theory in the construction of well-defined
mathematical models for these constrained classes of timed concurrent systems
[23,25,11,2,4,6].

In this paper, we expose a number of limitations in the traditional metric-
space approach that hinder generalization to broader classes of timed concurrent
systems. We then proceed to develop the fundamentals of a semantic framework
for timed concurrent systems that is more broadly applicable. The underlying
assumption is that a timed concurrent system can be modeled as a single system
function, and that the behavior of the system corresponds to a fixed point of
that function. In practice, to obtain this function, we have to be concerned about
composition. That is, given the functions for the interconnected components, we
need to be able to compose them to obtain the system function. The techniques
given in this paper facilitate such composition.

This paper begins with a brief review of metric spaces, a definition of timed
signals, and a review of a metric-space semantics for timed concurrent systems.
During this review, we point out several limitations in this traditional approach.
We then develop an alternative based on generalized ultrametric spaces, and
discuss how it overcomes these limitations.

2 Mathematical Preliminaries

A metric space (X, d) is a set X with a metric distance function d : X×X → R0
such that for all x, y, z ∈ X ,

1. d(x, y) = 0 if and only if x = y,
2. d(x, y) = d(y, x), and
3. d(x, z) ≤ d(x, y) + d(y, z).

If the metric distance function d also satisfies

4. d(x, z) ≤ max(d(x, y), d(y, z))

for all x, y, z ∈ X , then (X, d) is an ultrametric space and d an ultrametric
distance function.

The value d(x, y) quantifies how closely x approximates y. An element x ∈ X
is the limit of a sequence {xk}k∈N, where N is the set of all natural numbers
{0, 1, 2, · · · }, iff for all ε > 0, there exists n ∈ N such that for all k ≥ n,
d(xk, x) < ε. The sequence is then said to converge to x, denoted by xk → x.
A sequence {xk}k∈N is Cauchy iff for all ε > 0, there exists n ∈ N such that for
all k, l ≥ n, d(xk, xl) < ε. A metric space (X, d) is complete iff every Cauchy
sequence converges to some x ∈ X .
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If Bδ(x) is the set
{
y ∈ X

∣∣ d(y, x) < δ
}
, then the collection of such sets{

Bδ(x)
∣∣ x ∈ X, δ ∈ R+

}
is a basis of a topology on X . This topology is called

the metric topology induced by d.
Let (X, d) and (X ′, d′) be metric spaces. A function f : X → X ′ is continuous

iff xk → x implies f(xk)→ f(x). It is contracting iff for all x, y ∈ X ,

d′(f(x), f(y)) ≤ d(x, y).

It is strictly contracting iff for all x, y ∈ X ,

x �= y =⇒ d′(f(x), f(y)) < d(x, y).

It is a δ-contraction iff there exists δ ∈ (0, 1) such that for all x, y ∈ X ,

d′(f(x), f(y)) ≤ δ d(x, y).

From the theory of metric spaces, the key result used in programming language
semantics is the Banach fixed-point theorem [7].

Theorem 1 (Banach). Let (X, d) be a complete metric space. If the function
f : (X, d) → (X, d) is a δ-contraction, then f has a unique fixed point in X,
denoted by fix f , and for all x ∈ X, fk(x) → fix f .

3 Timed Signals

In this paper, we are interested in concurrent components that communicate
via timed signals. We model these using the tagged-signal model [12], where
the communication between two components is represented by a set of events.
Formally, let T be a non-empty set of tags, and V a non-empty set of values.
An event is a pair (t, v) in T × V . A signal is a set of events that typically
represents the sum total of the communication between two components along
some communication path. For the systems we are interested in, these sets are
very likely infinite. Most applications of the tagged-signal model impose structure
on the tag set T and study the consequences of that structure. For example, T
might represent causality properties, time, or activation orders.

3.1 Models of Time

In general, in the tagged signal model, T is a partially ordered set. In this paper,
T represents time. Our framework admits several models of time, but in all cases,
T will be totally ordered.

Perhaps the most natural choice for T is the set of non-negative real numbers
R0, reflecting a Newtonian physical view of time. The fact that we include only
the non-negative reals implies that our timed concurrent networks have a starting
point.
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A more interesting model of time is the super dense time (SDT) model
[19], where T = R0 × N equipped with the lexicographic order, that is, for
all (r1, n1), (r2, n2) ∈ R0 × N,

(r1, n1) ≤ (r2, n2) ⇐⇒ r1 < r2 or (r1 = r2 & n1 ≤ n2).

This is a total order. SDT can be similarly defined as T = I × N, with I being
any interval of real numbers. SDT has been used in studying the semantics of
hybrid systems [10,14,18]. Its subset N × N is used as the model of time in the
hardware description languages Verilog and VHDL. SDT is in a sense strictly
richer than R0 as a model of time, in that there is no order-embedding from
R0 × N into R0, as may be easily verified.

3.2 Signals

A signal in the tagged-signal model is a set of events, or equivalently, a relation
with domain some subset of T and range some subset of V . In this paper, we
constrain such relations to be single-valued, and thus commit to the following
definition.

Definition 1 (Signal). A set s is a signal if and only if s ∈ (T ⇀ V).1

We denote the set of all signals with tag set T and value set V by S(T ,V), that
is, S(T ,V) = (T ⇀ V). We adopt common practice in modern set theory and
identify a function with its graph. The events of a signal s then are precisely the
members of s. And the domain of the signal dom s is the set of all tags where
events of the signal s are present. The signal with no events is simply the empty
set ∅.

For notational convenience, we will write s1(t) 
 s2(t) iff the signals s1 and s2
are either both defined, or both undefined at tag t, and if defined s1(t) = s2(t).

The following examples in S(R0, R) are sketched in Fig. 1:

const1
def=
{
(t, 1)

∣∣ t ∈ R0
}
,

clock1
def=
{
(k, 1)

∣∣ k ∈ N
}
, and

zeno def=
{
(1 − 1/2k, 1)

∣∣ k ∈ N
}
.

The zeno example is particularly interesting. It is really the timed systems
version of Zeno’s paradox [1], where an infinite number of events may take place
before some finite instance of time. Although not physically realizable, such sig-
nals may easily crop up in simulation and modeling environments where time is
represented as an actual program variable. In Section 4 we discuss some of the
related subtleties that in the past have compelled researchers to invariably im-
pose certain conditions on their systems that effectively preclude Zeno behavior
[23,25,11].

1 We denote the set of all functions f with dom f ⊆ A and ran f ⊆ B by (A ⇀ B).
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0 1 2 3 t

(a)

0 1 2 3 t

0 1 2 3 t

(c)

(b)

Fig. 1. Examples of timed signals: (a) const1, (b) clock1, (c) zeno

4 The Cantor Metric and Its Limitations

The Cantor metric is a distance function that may be defined on streams or
sequences [5]. The same metric is called the Baire-distance in [6]. The focus here
is on the Cantor metric for timed signals, a typical choice in the metric-space
approach to the denotational semantics of timed concurrent systems [11,15,23].

Under the assumption that T = R0, the Cantor metric for timed signals is a
function dcantor : S(T ,V)× S(T ,V)→ R0 such that for all s1, s2 ∈ S(T ,V),

dcantor(s1, s2)
def= 2− sup

{
t∈T
∣∣(∀τ≤t)(s1(τ)�s2(τ))

}
. (1)

It is understood that since T = R0, 2− sup ∅ = 1, and 2− sup R0 = 0. That is,
two signals that differ at their start have distance one, and two signals that are
everywhere identical have distance zero. It is easy to show that (S(R0,V), dcantor)
is a complete (ultra)metric space [16].

In the remainder of this section we discuss a number of limitations in the use
of the Cantor metric in a semantic framework for timed concurrent systems, thus
demonstrating our motivation for turning to the theory of generalized ultrametric
spaces. This is not to say that the Cantor metric is the only metric applicable
to timed signals. For example, any Hausdorff distance function, such as the
Skorohod J2 metric in [8], may be used to endow the set of timed signals with
the structure of a metric space. In the special case of discrete-event signals, even
the Baire-distance on sequences, or other ad-hoc distance functions, as in [24],
may be viable alternatives. However, all these alternatives seem to more or less
suffer from the same limitations. And for timed concurrent systems modeling,
the Cantor metric seems, at least to the authors, as the most prominent metric
candidate, rendering causal components contracting functions on timed signals,
and yielding a convergence process that closely resembles the actual operation
of timed systems.
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4.1 Convergence in the Cantor Metric Space

A sequence {sk}k∈N of signals is said to converge to a signal s if for any ε > 0,
there is an n ∈ N such that for all k > n,

dcantor(sk, s) < ε.

Such convergence gives us a theory of approximation that enables assigning
semantics to timed systems with infinite executions. If partial executions yield
signals sk, and these signals converge to some signal s, then in an operational
semantics, s is the semantics of the signal. Of course, we would expect that this
s be the same as the signal delivered by our denotational semantics. The main
obstacle to achieving this in timed concurrent systems is the potential for Zeno
conditions.

Consider, for example, finite approximations sk to the signal zeno ∈ S(R0, R).
Let {sk}k∈N be the sequence of signals where sk is the defined by

sk =
{
(1− 1/2n, 1)

∣∣ n ∈ {0, · · · , k}
}
. (2)

That is, sk is the prefix of zeno that contains the first k events. Intuitively, the
sequence {sk}k∈N converges to zeno, but it does not converge in the Cantor
metric. It is easy to see that for all k,

dcantor(sk, zeno) > 1/2.

It is also easy to see that for any k and k′ such that k �= k′,

dcantor(sk, sk′) > 1/2.

So this sequence is not Cauchy. Although we have no mathematical contradic-
tion, the Cantor metric has failed to provide us with a framework where we can
consider the sequence of signals {sk}k∈N to be a sequence of finite approxima-
tions to the signal zeno.

On a related note, systems that give rise to Zeno signals cannot be modeled as
δ-contractions in the Cantor metric space [25]. It is thus impossible to utilize the
Banach fixed-point theorem for reasoning about the behavior of such systems.
The generalized ultrametric space that we construct in Section 5 allows us to
use a variant of the Banach fixed-point theorem that is less restrictive in terms
of how contractive the system functions are.

4.2 Causal Components Versus Contracting Functions

Causality is the relationship between causes and effects. If a component in a
timed concurrent system models a physical or computational process, the time
of an effect cannot be earlier than the time of the corresponding cause. It is
common to relate this intuitive notion of causality with contracting functions in
the Cantor metric space [23,11]. However, this does not quite work with arbitrary
timed signals.
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Consider a deterministic component that accepts as input a timed signal and
produces as output a timed signal. We can model such a component as a function
F : S(T ,V) → S(T ,V). If T = R0, then the domain and range of this function
are complete metric spaces under the Cantor metric. If F is contracting, then
from the definition of the Cantor metric, we can see that if two possible inputs
are identical up to some time, then the corresponding outputs are identical up
to that same time. This motivates some authors to model causal components as
contracting input-output functions.

Consider the following example. Let u1, u2 ∈ S(R0, R) be such that for all
t ∈ R0,

u1(t) = 0,

u2(t) =

{
0 if t ∈ [0, 1],
1 if t > 1.

Suppose a component with one input and one output is modeled by the function
F : S(R0, R)→ S(R0, R), where for any input s ∈ S(R0, R) and any t ∈ R0,

F (s)(t) =

{
limr→t+ s(r) if the right limit exists,
0 otherwise.

(3)

The function F is contracting. However, F (u1) = u1, and

F (u2)(t) =

{
0 if t ∈ [0, 1),
1 if t ≥ 1.

The input signals u1 and u2 are equal over [0, 1], whereas the output signals
F (u1) and F (u2) are equal only over [0, 1). Consequently, the component is not
causal.

The fact that contracting functions in the Cantor metric space are not neces-
sarily causal is certainly disturbing. We can avoid this discrepancy by restricting
our attention to a certain class of signals and components. The following defini-
tion comes from [11].

Definition 2 (DE Signals). A timed signal s ∈ S(T ,V) is a discrete-event
(DE) signal if and only if there exists an order-embedding from dom s into N.

It is not hard to show that when equipped with the Cantor metric, the set of all
DE signals yields a complete ultrametric space [16]. If we consider only DE sig-
nals and components that operate only on DE input signals yielding DE signals
as outputs, then our informal notion of causality actually coincides with its classic
formalization in terms of contracting functions, as the reader is invited to verify.

In Section 5 we define a generalized ultrametric that enables us to accurately
formalize our informal notion of causality in terms of contracting functions in
the respective generalized ultrametric space, and thus have a unified framework
of causal systems that arbitrarily combine discrete (e.g. software) components
with continuous (e.g. physical) processes.
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sclk

-2 0 2

salt

Fig. 2. Timed signals with tag set R

4.3 Tag-Set Choices

When using the Cantor metric, the choice of tag set has a profound impact. We
would like to be able to use any totally ordered set to model time but we cannot
do this with the Cantor metric.

For example, we would like to be able to use super dense time as our model of
time, an indispensable choice when studying hybrid systems. However, the fact
that there is no order-embedding from R0 × N into R0 makes this impossible.

Similarly, it is tempting to restrict the tag set to the interval [0, 1) so as to
have the signal zeno extend over the whole time line. By the definition of Cantor
metric in (1), for all signals s1, s2 ∈ S([0, 1),V),

s1 �= s2 =⇒ dcantor(s1, s2) >
1
2
.

Hence, the metric topology induced by dcantor on S([0, 1),V) is the discrete
topology. In other words, the Cantor metric does not provide any useful structure
on S([0, 1),V).

Another interesting case is to take R as the tag set. The Cantor distance
between two signals in S(R,V) may be infinity. For example, let

sclk
def=
{
(k, 1)

∣∣ k ∈ Z
}
,

salt
def=
{
(2k, 1)

∣∣ k ∈ Z
}
,

where Z is the set of all integers. These signals, illustrated in Fig. 2, have an
empty common prefix, and hence{

t ∈ R
∣∣ (∀τ ≤ t)(s1(τ) 
 s2(τ))

}
= ∅.

With R as the tag set, it is understood that 2− sup ∅ =∞, so the Cantor distance
between these signals is infinite.

(S(R,V), dcantor) is not a metric space2, because a metric space is defined as
a function into R0. We have a function onto R0 ∪{∞}. Consequently, we cannot
immediately use the Banach fixed point theorem, and in fact we can show that
it does not hold in this space.

2 It is erroneously assumed to be one in [20].
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Consider a component Delayd that shifts every event in its input signal by
d ∈ R0 into the future. That is, Delayd : S(R,V) → S(R,V) such that for any
s ∈ S(R,V) and any t ∈ R,

Delayd(s)(t)
def

{

s(t− d) if t− d ∈ dom s,
undefined otherwise.

(4)

It is easy to show that the function Delayd is a δ-contraction for any d > 0. In
S(R,V), this function has more than one fixed point. In particular, note that
with d = 1, both ∅ and sclk are fixed points. Although the Banach fixed point
theorem assures us that a δ-contraction has only one fixed point, there is no
contradiction because S(R,V) is not a metric space.

(S(R,V), dcantor) is an extended metric space [3]. This extended metric space
can be divided into a set of complete metric spaces. Let relation R on S(R,V)
be defined by

(s1, s2) ∈ R ⇐⇒ dcantor(s1, s2) < ∞.

An equivalent definition of relation R is that s1 and s2 have a non-empty common
prefix—going back in time, s1 and s2 are eventually the same.

It is straightforward to show that R is an equivalence relation. For any signal
s ∈ S(R,V), let

Es
def=
{
s′ ∈ S(R,V)

∣∣ dcantor(s′, s) <∞
}

be the equivalence class containing s. (Es, dcantor) is a complete (ultra)metric
space. The extended metric space (S(R,V), dcantor) thus contains an infinite
number of complete (ultra)metric spaces.

Consider Delay1 as a function of the form Delay1 : Esclk → Esclk . This is
legitimate, because given any s ∈ Esclk , Delay1(s) ∈ Esclk . This function has a
unique fixed point in Esclk , namely sclk.

Consider Delay1 as a function of the form Delay1 : E∅ → E∅. This is legiti-
mate, because given any s ∈ E∅, Delay1(s) ∈ E∅. This function has a unique
fixed point in E∅, namely ∅.

Notice that it is not possible to consider Delay1 as a function of the form
Delay1 : Esalt → Esalt , because in fact Delay1(salt) /∈ Esalt .

To borrow an analogy from cosmology, the equivalence classes of R partition
S(R,V) into parallel universes, and all signals in an equivalence class originate
from the same “Big Bang.” If a (contracting) component can take us from one
universe to another, then putting it in a feedback loop can yield multiple parallel
behaviors.

We next develop a framework, based on the theory of generalized ultra-
metric spaces, that is far more admissive with respect to the tag-set choices.
The generalized ultrametric space that we construct renders Delayd not strictly
contracting.
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5 Generalized Ultrametrics and Their Application

We have seen that the traditional approach to metric space semantics has a
number of limitations for timed concurrent systems. Several restrictions have to
be applied in order for it to be useful. It effectively rules out models of time that
are used in practice (such as super dense time) or are interesting in theory (such
as R, which has no least time, or bounded intervals of R). Moreover, even when
time is modeled using R0, Zeno conditions can render the Banach fixed-point
theorem irrelevant. Finally, the equivalence between our informal understanding
of causality and its formalization in terms of contracting functions breaks down
when continuous-time and mixed signals (essential for hybrid systems modeling)
or certain Zeno signals are allowed.

In this section we resort to the theory of generalized ultrametric spaces and
define a generalize ultrametric distance function on timed signals that eliminates
the abovementioned problems.

5.1 Generalized Ultrametric Spaces

While the codomain of a metric distance function is required to be the set of
all non-negative real numbers R0, the codomain of a generalized ultrametric
distance function [21] may be chosen as any partially ordered set with a minimum
element.

Definition 3 (Generalized Ultrametric Space). Let X be a set, Γ a par-
tially ordered set with a minimum element 0Γ . Then (X, d, Γ ) is a generalized
ultrametric space iff d : X ×X → Γ is a function such that for all x, y, z ∈ X
and γ ∈ Γ ,

1. d(x, y) = 0Γ if and only if x = y,
2. d(x, y) = d(y, x), and
3. if d(x, y) ≤ γ and d(y, z) ≤ γ, then d(x, z) ≤ γ.

A function d : X × X → Γ that adheres to the above definition is called a
generalized ultrametric distance function.

If (X, d, Γ ) is a generalized ultrametric space, then for any γ ∈ Γ \ {0Γ } and
a ∈ X , the set

Bγ(a) = {x ∈ X | d(x, a) ≤Γ γ}
is called the ball with center a and radius γ. It is easy to verify that for all
x, y ∈ X and α, β ∈ Γ , if 0Γ < α ≤ β and x ∈ Bβ(y), then Bα(x) ⊆ Bβ(y);
every point in a ball is also its center.

The usual notion of completeness for metric spaces extends naturally to the
case of generalized ultrametric spaces. However, it is the stronger notion of
spherical completeness that most interesting results in the theory of generalized
ultrametric spaces rely on.

Definition 4 (Spherical Completeness). A generalized ultrametric space is
spherically complete iff every chain of balls (ordered by inclusion) has a non-
empty intersection.
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Let (X, d, Γ ) and (X ′, d′, Γ ) be generalized ultrametric spaces. A function f : X→
X ′ is contracting iff for all x, y ∈ X ,

d′(f(x), f(y)) ≤ d(x, y).

It is strictly contracting iff for all x, y ∈ X ,

x �= y =⇒ d′(f(x), f(y)) < d(x, y).

The above definitions are evidently identical to those introduced in the case
of metric spaces. The notion of δ-contraction, however, has no immediate coun-
terpart in the context of generalized ultrametric spaces. There is nevertheless an
analogue, in some sense, to the Banach fixed-point theorem, namely the Priess-
Crampe & Ribenboim fixed-point theorem. There are several variants of this
theorem [21,22]. The following is from section 5.2 of [21].

Theorem 2 (Priess-Crampe & Ribenboim). Let (X, d, Γ ) is a spherically
complete generalized ultrametric space. If the function f : X → X is strictly
contracting, then f has a unique fixed point.

We note that the proof of this theorem relies on the Axiom of Choice and is thus
inherently non-constructive.

5.2 Generalized Ultrametrics on Timed Signals

Let s1 and s2 be signals in S(R0,V). The Cantor metric in essence maps the
set
{
t ∈ R0

∣∣ (∀τ ≤ t)(s(τ) 
 s2(τ))
}
, namely the largest down set3 of R0 on

which the signals s1 and s2 coincide, to an element of R0 such that for all
s′1, s

′
2 ∈ S(R0,V),{
t ∈ R0

∣∣ (∀τ ≤ t)(s1(τ) 
 s2(τ))
}

⊇
{
t ∈ R0

∣∣ (∀τ ≤ t)(s′1(τ) 
 s′2(τ))
}

=⇒
dcantor(s1, s2) ≤ dcantor(s′1, s

′
2).

The inverse implication is not generally true, which is the reason that a con-
tracting process is not necessarily causal.

Let D(R0) denote the set of all down sets of R0. We can define a totally
ordered set (D(R0),⊇) whose order relation is reverse set containment ⊇. It is
easy to show that there is no order-embedding from (D(R0),⊇) into R0. Hence,
it is impossible to define a metric d on S(R0,V) such that for all s1, s2, s

′
1, s

′
2 ∈

S(R0,V),{
t ∈ R0

∣∣ (∀τ ≤ t)(s1(τ) 
 s2(τ))
}

⊇
{
t ∈ R0

∣∣ (∀τ ≤ t)(s′1(τ) 
 s′2(τ))
}

⇐⇒
dcantor(s1, s2) ≤ dcantor(s′1, s

′
2).

3 A subset D of a partially ordered set P, � is a down set of P iff for all p, p′ ∈ P ,
if p′ ∈ D and p � p′, then p ∈ D.
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However, we can easily define a generalized ultrametric that satisfies this equiv-
alence.

For any tag set T , let the set of generalized ultrametric distances, ΓT , be the
partially ordered set

ΓT
def= (D(T ),⊇).

If we use the notation ≤Γ for the order relation of ΓT , then for any two down
sets D, D′ ∈ D(T ), D ≤ΓT D′ if and only if D ⊇ D′. That is, the order is reverse
set containment. T is the minimum element of ΓT . That is, for all D ∈ D(T ),
T ≤ΓT D because T ⊇ D. Similarly, the maximum element is ∅, the empty set.
It is easy to show that for any tag set T , the partially ordered set (D(T ),⊇) is
a complete lattice.

For any tag set T and any value set V , we define the function dds : S(T ,V)×
S(T ,V)→ ΓT such that for all s1, s2 ∈ S(T ,V),

dds(s1, s2)
def=
{
t ∈ T

∣∣ (∀τ ≤ t)(s1(τ) 
 s2(τ))
}
.

The following lemma establishes that dds is in fact a generalized ultrametric
on timed signals [17].

Lemma 1 (Generalized Ultrametric on Timed Signals). For any tag set
T and any value set V, dds is a generalized ultrametric distance function on
S(T ,V).

Stated differently, Lemma 1 shows that for any tag set T and any value set
V , (S(T ,V), dds, ΓT ) is a generalized ultrametric space. In particular, we are no
longer restricted to T = R0. We can choose any totally ordered set to model time,
including super dense time, time lines with no origin, and bounded intervals.

We remark here that if we choose T to be the interval of reals [0, 1), then the
sequence {sk}k∈N as specified in (2) actually converges to zeno in the respective
generalized ultrametric space, whereas it failed to converge in the Cantor metric
space.

On a similar note, observe that while the function Delayd ∈ S(R0,V) as
defined in (4) is a δ-contraction with respect to the Cantor metric, it is not
strictly contracting in the respective generalized ultrametric space (consider any
two s1, s2 ∈ S(R,V) such that for all t ∈ R, s1(t) �
 s2(t)). Hence, and in
accordance with intuition, we cannot apply the Priess-Crampe & Ribenboim
fixed-point theorem to establish the existence of a unique fixed point for the
function Delayd.

Finally, notice that the function F defined in (3) is not contracting in the
respective generalized ultrametric space. It can therefore no longer serve as a
counterexample to the equivalence between the informal notion of causality and
its formalization in terms of contracting functions. In fact, it is no longer possible
to find such a counterexample. Contracting functions with respect to generalized
ultrametrics on timed signals accurately capture the chronological precedence re-
lationship between causes and effects. The following formal definition of causality
is essentially equivalent to the respective definitions in [13] and [20].
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Definition 5 (Causal Function). A function f : S(T ,V)→ S(T ,V) is causal
iff it is contracting in the generalized ultrametric space (S(T ,V), dds, ΓT ).

Causal functions represent system components that are non-anticipative, in the
sense that the output does not anticipate future events of the input. But non-
anticipative components may still react instantaneously to input stimuli. The
concept of strict causality is thus introduced in order to further assert, when
appropriate, the impossibility of instantaneous reaction.

Definition 6 (Strictly Causal Function). A function f : S(T ,V)→ S(T ,V)
is strictly causal iff it is strictly contracting in the generalized ultrametric space
(S(T ,V), dds, ΓT ).

Again, the above formal definition of strict causality is equivalent to the respec-
tive definition in [20]. We remark here that δ-contractions in the Cantor metric
space are strictly contracting functions in the respective generalized ultrametric
space. The converse does not hold in general.

The next lemma ensures the applicability of the Priess-Crampe & Ribenboim
fixed-point theorem in the context of timed concurrent systems [17].

Lemma 2. For any tag set T and any value set V, the generalized ultrametric
space (S(T ,V), dds, ΓT ) is spherically complete.

As a simple demonstration, we can immediately apply the Priess-Crampe &
Ribenboim fixed-point theorem to establish the following result, first obtained
by Naundorf in [20].

Theorem 3. For any tag set T and any value set V, if f : S(T ,V) → S(T ,V)
is a strictly causal function, then f has a unique fixed point in S(T ,V).

We remark that the above results can be specialized to certain classes of timed
signals, including discrete-event signals [16].

The relative advantage of the approach taken here over that in [20] relates to
the general formulation of the problem. The development of a semantic frame-
work based on generalized ultrametric spaces makes it possible to apply off-
the-shelf results from the theory of generalized ultrametric spaces, and share
relevant findings with seemingly irrelevant research communities such as the
programming logic community [9].

We conclude with the observation that the proof of Theorem 3 here (a trivial
application of the Priess-Crampe & Ribenboim fixed-point theorem), as well as
in [20], is non-constructive. At the moment, we can only guarantee the existence
of a unique fixed point for strictly causal functions. This certainly limits our
ability to reason about the behavior of strictly causal systems, a rather broad and
interesting class of timed systems. It may nevertheless prove possible to construct
a denotational semantics that accurately reflects the actual execution of such
systems. In any case, a constructive proof of Theorem 3 is of both practical and
theoretical interest, and is the subject of future work.
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6 Conclusions

Timed concurrent systems are aggregations of components that communicate
by use of timed signals. Such systems have been traditionally modeled in a
semantic framework that leverages the theory of metric spaces, representing
causal components as contracting functions. This approach has a number of
limitations. In particular, it rules out models of time that are used in practice
(such as super dense time) or are interesting in theory (such as finite time lines
and time lines with no origin). Moreover, even when more conventional models
of time are used, Zeno conditions can render key results from the theory of
metric spaces (such as the Banach fixed-point theorem) irrelevant. Finally, the
equivalence between the informal notion of causality and its formalization in
terms of contracting functions breaks down when continuous-time and mixed
signals or certain Zeno signals are allowed.

With these considerations in mind, we have introduced an alternative seman-
tic framework for timed concurrent systems that relies on the theory of gener-
alized ultrametric spaces. We defined an appropriate generalized ultrametric on
timed signals that eliminates the aforementioned limitations, yielding a spheri-
cally complete generalized ultrametric space under any model of time. We also
presented an elegant and formal definition of causality that is exactly equiva-
lent to its informal counterpart. The resultant mathematical structure allows
us to apply off-the-self results from the theory of generalized ultrametric spaces
to reason about the behavior of timed concurrent systems. And as evidence for
this thesis, we applied the Priess-Crampe & Ribenboim fixed-point theorem to
trivially establish the fact that strictly causal functions have unique fixed points.
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Abstract. We propose the notions of “density” and “connectivity” of
infinite process graphs and investigate them in the context of the well-
known process algebras BPA and BPP. For a process graph G, the density
function in a state s maps a natural number n to the number of states of
G with distance less or equal to n from s. The connectivity of a process
graph G in a state s is a measure for how many different ways “of going
from s to infinity” exist in G.

For BPA-graphs we discuss some tentative findings about the notions
density and connectivity, and indicate how they can be used to estab-
lish some non-definability results, stating that certain process graphs
are not BPA-graphs, and stronger, not even BPA-definable. For BPP-
graphs, which are associated with processes from the class of Basic
Parallel Processes (BPP), we prove that their densities are at most poly-
nomial. And we use this fact for showing that the paradigmatic process
Queue is not expressible in BPP.

1 Introduction

An important topic in process theory is the issue of expressiveness or definabil-
ity. There is a family of results, especially in the context of ACP [5,3], to the
effect that a particular process can or cannot be defined by a finite recursive
specification using a certain set of process operations.

A typical example is the process Stack. It can be defined by a finite recur-
sive specification over BPA (for the axioms of BPA see Table 1), but not by a
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Table 1. BPA (Basic Process Algebra), left, and PA (Process Algebra), on the right

x + y = y + x
x + (y + z) = (x + y) + z
x + x = x
(x + y) · z = x · z + y · z
(x · y) · z = x · (y · z)

x + y = y + x
x + (y + z) = (x + y) + z
x + x = x
(x + y) · z = x · z + y · z
(x · y) · z = x · (y · z)
x ‖ y = x ‖ y + y ‖ x
a ‖ x = a · x
a · x ‖ y = a · (x ‖ y)
(x + y) ‖ z = x ‖ z + y ‖ z

Table 2. Stack, an infinite linear and a finite non-linear BPA-specification

Sλ = 0·S0 +1·S1

Sdσ = 0·S0dσ +1·S1dσ +d·Sσ

(for d = 0 or d = 1, and any string σ)

S = T·S
T = 0·T0 +1·T1

T0 = 0+T·T0

T1 = 1+T·T1

finite recursive specification over BCCSP (which has action prefixing instead of
sequential composition). See the infinite linear and the finite non-linear specifi-
cation of Stack in Table 2. Moreover, it has been shown in [6] that a recursive
BPA specification defining Stack has more than one equation; Stack cannot be
defined by a single equation over BPA. Another example, well-known in the
ACP literature, is that the process Bag cannot be defined by a finite recur-
sive BPA specification, while it can be defined using a parallel operator as is
present in the process algebra BPP [12] and in the axiom system PA[4] (see Ta-
ble 1). The process Queue cannot be defined by a finite recursive specification
in PA [7]; neither can it be defined in ACP with handshaking communicating
[1]. Further well-known results are that communication adds, in the presence of
global renaming operations, to the strength of PA (again [1]), and that abstrac-
tion via the τ -action and corresponding τ -laws further increase the expressive
strength.

An appealing way of representing processes is by means of labeled transi-
tion graphs. In this paper, we propose to deal with expressiveness questions by
considering geometric aspects of the labeled transition graphs associated with
a class of recursive specifications. For instance, it is not hard to show that the
labeled transition graphs associated with finite recursive BCCSP specifications
have finitely many non-bisimilar vertices (modulo bisimulation). From this it fol-
lows that the process Stack is not definable by means of a finite recursive BCCSP
specification, for the labeled transition graph of Stack depicted in Figure 1 has
infinitely many non-bisimilar vertices.
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Fig. 1. The labeled transition graph STACK representing the process Stack

The main contribution of the present paper is the definition of two key con-
cepts of the graph structure of processes, namely the density and the connectiv-
ity. For a process graph G, the density function maps a state s and a natural
number n to the number of states of G with distance less or equal to n from s.
The connectivity of a process graph G in a state s is a measure for how many
different ways “of going from s to infinity” exist in G. Thus both density and
connectivity are initially locally defined notions. It turns out that under certain
conditions on a process graph both measures have also a global meaning.

The issue of properties of process graphs was also taken up by other re-
searchers. In particular Caucal [10], Caucal and Montfort [9], and Burkart et
al. [8] obtained sophisticated results from the mere appearance of the graphs.
Although our primary motivation is the definability issue, one can imagine that
progress in understanding the ”geometry of processes” may have other bene-
fits as well. Recently, there are major advances in visualising large state spaces
of a plethora of processes (see work of Groote and van Ham reported in [15]).
The process graphs of such large state spaces exhibit many interesting geometric
phenomena that are at this moment largely unexplored. A better insight into
the geometric structure of such processes is very likely to increase our aware-
ness and intuition for such processes, with its obvious significance for verification
applications.

We consider this study as a step towards a geometry of processes. It is to be
expected that much more key notions will emerge. But already the present two
parameters of graphs, density and connectivity, enable us to give “high-level”
proofs of some non-definability theorems that before were obtained by intricate
ad hoc proofs. Actually, the present note is not a first step towards a geometry
of processes. Apart from the work already mentioned ([7,9,8]), one may also
view the seminal paper [18] of Muller and Schupp to point in the direction of
a geometrical study of processes, and likewise, there is a rich tradition of work
on graphs, pattern graphs, graph grammars, and so on. There are also historical
roots in the topological notion of Freudenthal, “ends” of topological spaces,
followed up by the notion of context-free graph of Muller and Schupp.
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2 Preliminaries on Labeled Transition Graphs

In this paper, we take the stance that a process is mathematically modeled as a
rooted labeled transition graph. We fix the set A of actions that will be used as
labels of edges in our graphs.

Definition 2.1. A labeled transition graph is a pair (S,→) consisting of a set S
of vertices (or: states), and a transition relation → ⊆ S×A×S. A rooted labeled
transition graph is a triple T = (S,→, r) with (S,−→) a labeled transition graph
and r ∈ S a distinguished state r called the root of T.

A labeled transition graph can be thought of as an edge-labeled directed graph
with → as the set of labeled directed edges. It can also be thought of as an edge-
labeled undirected graph if the direction of the edges, implied by the ordering of
the triples in →, is simply ignored. We shall rely on both views in the remainder
of this paper. We proceed to define several general notions for labeled transition
graphs. First we discuss the notions that depend on the direction of the edges,
and then we discuss the notions that do not take the direction of the edges into
account. Throughout, we fix a rooted labeled transition graph T = (S,→, r) (but
most of our notions actually do not depend on the declaration of a distinguished
root).

2.1 Labeled Transition Graphs as Directed Graphs

We write s
a−→ s′ for 〈s, a, s′〉 ∈ →, and s −→ s′ if there exists a ∈ A such that

s
a−→ s′.
A directed path from a state s to a state s′ in T is a sequence of states

s0, . . . , sn such that s = s0 −→ · · · −→ sn = s′. If there exists a path from s to s′,
then we also say that s′ is reachable from s. It is convenient to take the number
of transitions associated with a path as the length of the path (so the length of
the path s0, . . . , sn is n, and not n + 1).

A state s is normed if there is a directed path from s to a state s′ without
outgoing transitions; the length of the shortest such path is called the norm of
s. A labeled transition graph is normed if all its states are normed.

A state s ∈ S is called a coroot of T if it has no outgoing transitions and there
is a path to s from every other state in S. Note that if T has a coroot, then it is
clearly unique, and, moreover, T is normed.

Let Ti = (Si,→i, ri) (i = 1, 2) be rooted labeled transition graphs. A binary
relation R⊆ S1 × S2 is a bisimulation between T1 and T2 if s1 R s2 implies for
all a ∈ A:

(i) if s1
a−→ s′1, then there exists s′2 ∈ S2 such that s2

a−→ s′2 and s′1 R s′2;
(ii) if s2

a−→ s′2, then there exists s′1 ∈ S2 such that s1
a−→ s′1 and s′1 R s′2.

We write s1 ↔ s2 if there exists a bisimulation R such that s1 R s2. Fur-
thermore, we write T1 ↔ T2 if there exists a bisimulation relation R such that
r1 R r2.
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A self-bisimulation on T is a bisimulation between T and itself. The rooted
labeled transition graph T is canonical if every state is reachable from the root
and the diagonal on S (i.e., the binary relation {〈s, s〉 | s ∈ S}) is the only
self-bisimulation on T.

An isomorphism between T1 and T2 is a transition-preserving bijection be-
tween the subsets of states of T1 and T2 that are reachable from their respective
roots. If there exists an isomorphism between T1 and T2, then we say that they
are isomorphic (notation: T1 
 T2).

2.2 Labeled Transition Graphs as Undirected Graphs

We write s ←→ s′ if s −→ s′ or s′ −→ s. An undirected path between states s and
s′ is a sequence of states s0, . . . , sn such that s = s0 ←→ · · · ←→ sn = s′. Two
states s and s′ are connected if there exists an undirected path between s and
s′; a labeled transition graph is connected if any two states are connected.

The distance d(s, s′) of states s and s′ is the length of the shortest undirected
path between s and s′ if s and s′ are connected, and ∞ otherwise. Clearly,
distance is commutative, i.e., d(s, s′) = d(s′, s). The degree deg (s) of a state s
is the cardinality of the set of directed edges that have s as their source or as
their target, that is, we let deg (s) =

∣∣{〈s, a, s′〉, 〈s′, a, s〉 | s a→ s′ or s′
a→ s
}∣∣ . If

every state in T has a finite degree, then we say that T is locally finite. For all
states s in a locally finite labeled transition graph the set {s′ | d(s, s′) ≤ n} of
states at a distance less or equal some n ≥ 0 is finite.

A labeled transition graph T ′ = (S′,→′) is a subgraph of T (notation: T ′ ⊆ T)
if S′ ⊆ S and →′ ⊆ →. A connected component of T is a maximal connected
subgraph of T, i.e., it is a connected subgraph T ′ of T and, for all T ′′ such that
T ′ ⊆ T ′′ ⊆ T, either T ′′ = T ′ or T ′′ is not connected.

2.3 Density and Connectivity

We introduce the notions of density and connectivity to classify labeled transition
graphs according to their geometrical structure. The density of a labeled transition
graph T in a state s is a function that describes the dependency on n of the number
of states inside a sphere with radius n around s. The connectivity of a labeled
graph T in a state s is the limit, as n tends to infinity, of the number of infinite
connected parts into which T splits outside of a sphere around s with radius n.

Let n ∈ N and s a state of T . By In(s, n, T ) and Out(s, n, T ) we mean the
subgraphs of T that result by removing all states with distance greater than n
from s, and respectively, with distance less than n from s, i.e. we let

In(s, n, T ) = (Sin(s, n),→in) , Out(s, n, T ) = (Sout(s, n),→out) ,

with

Sin(s, n) = {s′ ∈ S | d(s, s′) ≤ n} , Sout = {s′ ∈ S | d(s, s′) ≥ n} ,

→in = {〈s1, a, s2〉 ∈ → | a ∈ A & s1, s2 ∈ Sin(s, n)} ,

→out = {〈s1, a, s2〉 ∈ → | a ∈ A & s1, s2 ∈ Sout(s, n)} .
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Definition 2.2. Suppose that T is a locally finite labeled transition graph. The
(undirected) density in a state s of T is the function ds : N → N defined by

ds(n) = |Sin(s, n)| ,

which maps every natural number n to the number of states of the subgraph
In(s, n, T ) of T . The directed density in a state s of T is the function d→

s : N → N
defined by

d→
s (n) =

{
s′ | there is a path of length ≤ n from s to s′

}
.

The density dT (directed density d→
T ) of T is the density (the directed density)

in the root of T. (Usually, T will be clear from the context, and then we shall
drop the subscript T and simply write d and d→ to denote the density, and
respectively, the directed density of T.)

From this definition it is obvious that, for a locally finite and connected graph
T , and for all states of s of T , the directed-density function d→

s of T in s is
bounded by the density function ds of T in s.

We shall generally be interested in bounds on the growth of the density func-
tion d locally in a vertex, or globally for all vertices. Let f : N → R a monotone
increasing function, and s a state of T . We say that f is an upper bound on the
density of T in s if and only if

(∃n0 ∈ N) (∀n ∈ N)
[
n ≥ n0 ⇒ ds(n) ≤ f(n)

]
. (1)

holds, that is iff ds is almost everywhere bounded by f . We call f a uniform upper
bound on the density of T if and only if, for all s ∈ S , f is an upper bound on
the density of T in s. Analogously, upper bounds are defined for directed-density
functions.

A function f : N → R is called constant , linear , polynomial , or exponential
if f ∈ Θ(1) , f ∈ Θ(n) , f ∈ Θ(nc) for some c ≥ 1 , or f ∈ Θ(cn) for some
c > 1 , respectively. We agree to say that the density of T is linear (polynomial ,
or exponential) if and only if, for all s ∈ S , there exists a linear (and respectively,
polynomial, or exponential) upper bound, but not a constant (and respectively,
linear, or polynomial) upper bound on the density of T in s. We say that the
density of T is constant iff, for all s ∈ S , there is a constant upper bound on the
density of T in s. This agreement, which also applies for the density of T in a state
s and for the directed density of T , is intended to allow succinct formulations
of some of our statements. However, it has the consequence that some density
functions are categorised imprecisely: graphs with super-linear, non-polynomial
density functions like n log n are said to have polynomial density, and graphs
with super-polynomial, but not-exponential functions like nlogn are agreed to
have exponential density.

Without proof we now give a proposition, which relates the global property of
a locally finite and connected labeled transition graph T to have linear, constant,
polynomial, or exponential (undirected) density to the local property of T in a
state s to have linear, constant, polynomial, or exponential (undirected) density
in s, respectively.
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Proposition 2.3. Let T be a locally finite and connected labeled transition
graph, and let s be a state of T . Then the density of T is linear (constant,
polynomial, or exponential) if and only if the density of T in s is linear (or
respectively, constant, polynomial, or exponential).

Proposition 2.3 makes it possible to determine the “degree of growth” of the
density in an arbitrary state of a locally finite and connected labeled transition
graph by only considering the density in the root. For example, by a glance at
the process graph STACK for the process Stack in Figure 1, one can recognise
that STACK has exponential density in all of its states.

Now we are going to introduce the “connectivity” of a labeled transition
graph T in a state s as the limit, as n goes to infinity, of the number of infinite
connected components of Out(s, n, T ), the subgraph of T consisting of all states
with distance greater or equal to n from s, and of all edges of T linking such
states. This definition coincides with the definition of the “number of ends”
of a locally finite, rooted graph that is used by Muller and Schupp in [17]. It
seems to have played a motivating role for the concept of “context-free” graphs
that has been introduced by the mentioned authors later in [18]. The “theory of
ends”, from which the definition of the “number of ends” stems, originated with
Freudenthal’s dissertation, on which [14] is based.

It is convenient to have notation for the set of all those connected components
of a labeled transition graph that have infinitely many states; we define

icc(T) = {T ′ | T ′ is an infinite connected component of T} .

(We say that a labeled transition graph is infinite if it has infinitely many states.)
For the definition below of our connectivity measure it is important to note the
following fact: For all locally finite and connected labeled transition graphs T
and states s of T , the function g : N → N , n �→ |icc(Out(s, n, T ))| is well-
defined and non-decreasing. This implies that the function g possesses a limit in
N ∪ {∞} , which we call the “connectivity of T in s.”

Definition 2.4. Let T be a connected and locally finite rooted labeled transition
graph and s a state of T . We define the connectivity cs of T in s by

cs = lim
n→∞

|icc(Out(s, n, T))| ∈ N ∪ {∞} .

By the connectivity cT of T we mean the connectivity of T in its root.

Without proof we state the following proposition, which expresses the fact that,
in locally finite and connected graphs, connectivity is a global concept that does
not need to be relativised to individual states of a labeled transition graph. For
such labeled transition graphs T , the connectivity of T is equal to the connec-
tivity in every state of T .

Proposition 2.5. Let T be a locally finite and connected labeled graph. Then,
for all states s1 and s2 of T , cs1 = cs2 holds, that is, the connectivity cs1 of
T in s1 coincides with the connectivity cs2 of T in s2 (and hence also with the
connectivity cT of T , the connectivity of T in its root).
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Finally, it is important to note that both of the concepts “density function” and
“connectivity” of labeled transition graphs are invariant under isomorphism, but
not under bisimilarity.

3 BPA-Graphs and BPP-Graphs

BPA-graphs and BPP-graphs are the labeled transition graphs of processes de-
finable in the process algebras BPA (Basic Process Algebra, [4]) and BPP (Basic
Parallel Processes, [13]). Starting with work by Caucal and Montfort (see [9]
and [11]) there have emerged a number of formal characterisations of the transi-
tion graphs of processes in well-known process algebras as the transition graphs
described by certain labeled rewrite systems. These characterisations provide
alternative definitions, which are widely used since, of process graphs belonging
to process algebras like BPA and BPP. A particularly elegant framework is that
of process rewrite systems due to Mayr in [16].

To limit technicalities in the two cases of classes of process graphs studied
here, BPA-graphs and BPP-graphs, we base the definitions on the somewhat
simpler framework of “labeled rewrite systems” (following the exposition in [8]).

Definition 3.1. An alphabetic labeled (string) rewrite system is a triple R =
(V, Σ, R) where V is an alphabet (or set of nonterminals), and R ⊆ V ×Σ × V ∗

is a finite set of rewrite rules. We will generally denote a rewrite system R =
(V, Σ, R) simply by R if V and Σ are clear from the context; rules 〈u, a, v〉 will
generally be denoted as transitions u

a→ v .

Let (V, Σ, R) be a labeled rewrite system. Then the prefix rewriting relation �→
of R is defined by

�→ =
{
〈uw, a, vw〉 | 〈u, a, v〉 ∈ R, w ∈ V ∗} .

We extend �→ to a “more-step prefix rewriting relation” �→∗ ⊆ V ∗×Σ∗×V ∗ by
defining, for all v, v′ ∈ V ∗ , a more-step transition v �→∗ v′ to be possible if and
only if v �→ u1 �→ u2 �→ . . . �→ un−1 �→ v′ holds for some u1, . . . , un−1 ∈ V ∗ . By
the labeled transition graph generated by �→ from u we mean the rooted labeled
transition graph

T (�→, u) = (
{
v ∈ V ∗ | u �→∗ v

}
, �→, u) .

For an example, we consider the alphabetic rewrite system (V, Σ, R) with
V = {A, B, C} , Σ = {a, b} , and set of rules

R = {A a→ λ, A
b→ AB, B

a→ λ, B
b→ BC, C

a→ λ} . (2)

The transition graph T (�→, u) , which we call TEMPLE, is illustrated in Figure 2.
Alternatively, this graph is defined by the recursive specification

〈A | A = a + b AB, B = a + b BC, C = a〉 (3)
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Fig. 2. The labeled transition graph TEMPLE

in the process algebra BPA, where the set of recursion equations is in “restricted
Greibach normal form”. The relationship indicated for this example between
guarded recursive specifications in BPA and alphabetic rewrite systems justifies
the following definition, by which the transition graph TEMPLE can be seen to
be a “BPA-graph”.

Definition 3.2. A rooted labeled transition graph (T,→, r) is called a BPA-
graph iff there exists an alphabetic rewrite system (V, Σ, R) and u ∈ V such
that (T,→, r) is isomorphic to T (�→, u) .

For introducing transition graphs associated with recursive specifications in the
process algebra BPP (of “Basic Parallel Processes”), we need some notation on
multisets. Let V be a set. We denote by

M(V ) = { ũ | ũ : V → N, ũ(v) > 0 for finitely many v ∈ V }

the set of finite multisets over V . By ⊕ and � we denote the operations multiset
union and multiset difference on the set M(V ). For all ũ ∈M(V ) , we let |ũ|=∑

X∈V ũ(X) the number of elements of the multiset ũ. Furthermore we designate
by ms(w), for all w ∈ V ∗ , the multiset in M(V ) that maps every v ∈ V to the
number of occurrences of v in w.

Let (V, Σ, R) be an alphabetic rewrite system. By the multiset rewriting
relation of R we mean the rewriting relation �⊆ M(V )×Σ ×M(V ) that is
defined, for all ũ, ṽ ∈ M(Σ), by

ũ � ṽ ⇐⇒
(∃〈X, a, w〉 ∈ R)

[
ũ(X) > 0 & ṽ = (ũ�ms(X))⊕ms(w)

]
. (4)
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Fig. 3. The canonical process graphs of the process BAG (on the left-hand side), and
of a terminating variant BAGt of BAG (on the right-hand side)

Similar as the prefix-rewriting relation �→ of R we extend �, to the “more-step
multiset rewriting relation” (�)∗ of R. By the labeled transition graph generated
by from ũ, where ũ ∈ M(V ) , we mean the rooted labeled transition graph

T (�, ũ) = (
{
ṽ ∈M(V ) | ũ �∗ ṽ

}
, �, ũ) .

As an example, let (V, Σ, R) be the alphabetic rewrite system with V =
{X, Y } , Σ = {0, 0, 1, 1} and

R = {X 0→ XY, X
1→ XZ, Y

0→ λ, Z
1→ λ} .

The transition graph T (�, ms(X)) is the transition graph BAG on the left in
Figure 3. This graph can also be specified by the recursive specification 〈X | X =
0 (X ‖Y) + 1 (X ‖ Z), Y = 0, Z = 1〉 in the process theory BPP, where ‖ denotes
the operator “merge” for parallel composition. Associativity and commutativity
of ‖ are the reason why BPP-specifications can be adequately formalised by
multiset rewrite relations based on alphabetic rewrite relations. The relationship
indicated here between guarded recursive specifications in BPP and alphabetic
rewrite systems justifies the following definition, by which the process graph
BAG can be recognised to be a “BPP-graph”.

Definition 3.3. A rooted labeled transition graph (T,→, r) is called a BPP-
graph if and only if there exists an alphabetic rewrite system (V, Σ, R) and
some u ∈ V such that (T,→, r) is isomorphic to T (�, ms(u)) .

4 Density and Connectivity of BPA-Graphs

In this section we will discuss the notions of density and connectivity as they are
found in BPA-graphs. We start with an experimental approach, by considering
a number of examples.
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Fig. 4. The labeled transition graph RAILS

4.1 Examples

Example 4.1. The first example is the BPA-graph STACK in Figure 1 we en-
countered in Section 1. Its specification, both the easy to understand infinite
one and the somewhat more sophisticated finite specification, have been given
in Table 2 in the Introduction. It is straightforward to draw the infinite process
graph corresponding to it. From the illustration in Figure 1 it is easy to read off
the salient properties of the Stack graph:

– it is canonical (two different nodes are not bisimilar, i.e., they are the roots
of subgraphs that are not bisimilar, or in our definition above, there is no
non-trivial self-bisimulation of the whole graph);

– it is not normed, since all maximal traces are infinite (in other words, there
is no coroot);

– the graph is not a tree since there are cycles, but it has a striking tree-like
appearance which moreover is in some sense periodical, to be explained more
precisely below;

– the density is exponential;
– the connectivity is infinite: cutting off a prefix of depth n, there arise 2n+1

icc’s, so the limit for growing n is infinite.

Example 4.2. The BPA-graph in Figure 4, which we call RAILS, belongs to the
guarded recursive BPA-specification 〈X | X = a+b YX, Y = c+d XY〉 . Equiva-
lently, it is given by the alphabetic rewrite system with set of rules

{
X

a→ λ, X
b→

Y X, Y
c→ λ, Y

d→ XY
}

. The graph RAILS has the following properties:

– it is not canonical; nodes on the same level (i.e. distance to the coroot that is
the highest node displayed) are bisimilar. So the graph can be compressed to
its unique canonical form by identifying the nodes in a horizontal direction;

– the graph is normed;
– the density is linear;
– the connectivity is 1.
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Fig. 5. The labeled transition graph KITES

Fig. 6. The labeled transition graphsTRIANGLE and BUTTERFLIES

Example 4.3. KITES, in Figure 5. This is a canonical and normed BPA-graph,
with exponential density and infinite connectivity. It corresponds to the recursive
BPA-specification 〈X | X = bY + dZ, Y = d + dX + bYY, Z = b + bX + dZZ〉;
its finite traces form the context-free language consisting of words containing as
many b’s as d’s. Again it has a periodical tree-like decomposition.

Example 4.4. BUTTERFLIES, in Figure 6.
This BPA-graph has the recursive BPA-specification 〈X |X = a + b Y +

f XY, Y = c X + d Z, Z = g X + e XZ〉. The characteristics are as for KITES.

So far, our sequence of experiments revealed BPA-graphs that have either linear
or exponential density. How about the graph BAG, or BAGt in Figure 3? Ac-
cording to our discussion in the Introduction, BAG is not a BPA-graph. Clearly,
it has polynomial (quadratic) density. Its connectivity is 1. It is not normed,
but it is canonical. Here one could jump to the guess that all BPA-graphs
have density linear or exponential—and not polynomial. However, Didier Cau-
cal pointed out to us that, surprisingly, there are BPA-graphs with polynomial
density. His beautiful example is displayed in Figure 2, as the graph called TEM-
PLE. It corresponds to the rewrite system with rules (2) and to the recursive
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Fig. 7. Determining the connectivity of the graph TEMPLE

specification (3). It is a normed, canonical graph with quadratic density and
infinite connectivity. That the connectivity is infinite, is clear from Figure 7,
where the shadowy part, obtained by removing the prefix of depth 6, consists of
5 icc’s; it is easy to see that the number of icc’s grows to infinity with the prefix
depth of nodes that are removed.

4.2 Periodic Decomposition

In the present note, we will not dwell on this phenomenon extensively, but refer
instead to [2]. All BPA-graphs displayed above, including the quadratically dense
TEMPLE, display a tree-like periodical decomposition, which was first observed
and proved in [2]. That is, there are finitely many graph fragments that are
strung together in a regular way.

So, for RAILS the graph fragment structure is described by the recursion
term 〈α|α = c(α)〉 , where c stands for “connected to”; for STACK we have
〈α|α = c(α, α)〉 ; for TEMPLE we have 〈α|α = c(β, α), β = c(β)〉 ; and for
KITES, 〈α|α = c(β, γ), β = c(β, γ), γ = c(β, γ)〉 . Alternatively, one may write
these recursion terms as μ-terms, obtaining μα.c(α) , etc.

We continue by mentioning another important feature of BPA-graphs, this
time with the restriction to normed graphs.

Theorem 4.5 (Caucal). The class of normed BPA-graphs (or equivalently, the
class of BPA-graphs with a coroot) is closed with respect to minimisation under
bisimulation.

It is a noteworthy fact that the restriction of normedness in this theorem is
crucial: the class of all BPA-graphs is not closed under minimisation (for an
example of an—unnormed—BPA-graph with a canonical graph that is not a
BPA-graph, see Figure 3 in [8]).

4.3 Relating Density and Connectivity

We now state in Table 3 the relationship between the density and connectivity for
BPA-graphs. Here we do not give the full proofs, but merely mention that they
are obtained from an analysis of the structural μ-terms that describe tree-like
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Table 3. Connectivity-density value pairs 〈c, d〉 that are possible for BPA-graphs

c versus d constant linear polynomial exponential

0 � — — —

finite, nonzero — � — —

∞ — — � �

Fig. 8. The labeled transition graph RINGS

periodic decompositions obtained as described in [2]. As a caveat, we mention
that the statements concerning Table 3 are still of tentative nature.

We now give an application. Figure 6 contains the graph TRIANGLE. Is it a
BPA-graph? It corresponds to the context-sensitive language {anbncn | n ∈ N} ,
which is not context-free; so our suspicion is that it is not a BPA-graph. Indeed
this is the case: it is normed, canonical, with quadratic density. However, its
connectivity is 1, and according to the table above, it should be infinite. Hence
TRIANGLE is not a BPA-graph. Similar for BAGt.

Now the fact that TRIANGLE and BAGt are not BPA-graphs, does not yet
mean that they are not BPA-definable. It could be that for TRIANGLE there
is a BPA-specification E, with process graph g(E), such that the canonical
form can(g(E)) ↔ TRIANGLE . Since TRIANGLE is canonical, we even have
can(g(E)) 
 TRIANGLE (recall that 
 stands for graph isomorphism). Now
TRIANGLE is normed, hence can(g(E)) is normed. So g(E) is normed (since
can(g(E)) ↔ g(E) , and normedness is preserved by bisimilarity). So, we can ap-
ply Theorem 4.5 on the normed BPA-graph g(E), and conclude that can(g(E))
is again a BPA-graph; say can(g(E)) 
 g(E′) for some BPA-specification E′.
Now we have that the BPA-graph g(E′) 
 TRIANGLE hence g(E′) has the same
connectivity and density as TRIANGLE, namely c = 1 and d is quadratic. But
this is impossible.

Now let us consider BAG and RINGS, in Figure 8. Both have quadratic density
and connectivity 1. They are therefore not BPA-graphs. But are they not BPA-
definable? Invoking Caucal’s theorem (Theorem 4.5) does not work here, since
both graphs are not normed. Here a more powerful theory is needed, and this is
found in the notion of “context-free graph” of Muller and Schupp, in conjunction
with more recent work of Caucal in [11] and [8].
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Suppose that BAG is BPA-definable. Then there exists a recursive specification
E in BPA such that BAG is bisimilar with a tree-like periodic graph g(E) as
defined by Baeten, Bergstra, and Klop in [2]. Then g(E) is a BPA-graph (in the
sense of Definition 3.2).1

In [8] Burkart, Caucal, and Steffen have shown that, for every BPA-graph T ,
the canonical graph of T is a “pattern graph”, which means that it can be gen-
erated from a finite (hyper)graph by a reduction sequence of length ω according
to a deterministic (hypergraph) grammar.2 Since BAG is itself a canonical graph
and since therefore BAG is the canonical graph of the BPA-graph g(E), it follows
that BAG is a pattern graph.

A theorem due to Caucal in [11] states that all (rooted) pattern graphs of
finite degree are “context-free” according to the definition of Muller and Schupp
in [18].3 It follows that BAG is context-free. However, it is not difficult to verify
that BAG is actually not a context-free graph according to the definition in [18].

In this way we have arrived at a contradiction with our assumption that BAG
is definable in BPA. For RINGS the same reasoning applies.

We conclude this section by mentioning a useful fact due to Muller and Schupp
in [18] that characterises the class of transition graphs corresponding to recur-
sively defined specifications in the process algebra PDP (containing “Pushdown
Processes”) as the class of “context-free graphs”.

Proposition 4.6. Every BPA-graph is context-free.

5 Density of BPP-Graphs

In this section we investigate the possible densities of BPP-graphs. We prove
that BPP-graphs have at most polynomial density, and apply this result to show
that the paradigmatic process Queue, which is definable in the process algebra
ACP, cannot be defined in BPP.

For the proof of the mentioned result concerning the density of BPP-graphs
the following technical lemma will be essential. This lemma contains a bound on
the number of finite multisets with k members over a set with m elements.

Lemma 5.1. Let V be a finite set with m ∈ N\{0} elements. Then, for all
k ∈ N , the number of multisets over V with k elements is equal to

(
m+k−1

k

)
.

1 In earlier papers of Caucal (e.g. in [9] and [11]) BPA-graphs were known under the
name “alphabetic graphs”.

2 “Pattern graphs” according to this definition used by Caucal and Montfort in [9]
are called “regular graphs” in the later paper [8] by Burkart, Caucal, and Steffen.
Because the use of the attribute “regular” for process graphs could lead to wrong
associations, we avoid this terminology from (hyper)graph rewriting here.

3 Note that the class of “context-free” graphs in Muller and Schupp’s definition does
not coincide with the graphs associated with “context-free” processes (the class of
BPA-graphs), but that it forms a strictly richer class of graphs corresponding to the
class of transition graphs of push-down automata.
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Furthermore it holds:(
k �−→

∣∣{ ṽ | ṽ ∈ M(V ), |ṽ| = k
}∣∣) ∈ O(km−1) , (5)(

k �−→
∣∣{ ṽ | ṽ ∈M(V ), |ṽ| ≤ k

}∣∣) ∈ O(km) . (6)

Proof. Let V = {X1, . . . , Xm} be a finite set with m ∈ N\{0} elements. Then,
for all k ∈ N , the number of finite multisets over V with k elements can be
computed as follows:∣∣{ṽ | ṽ ∈M(V ), |ṽ| = k

}∣∣ = ∣∣{(x1, . . . , xm) | 0 ≤ xi ≤ k ,
∑k

i=1 xi = k
}∣∣

=
∣∣{(x1, . . . , xk+m−1) | xi ∈ {0, 1},

∑m+k−1
i=1 xi = k

}∣∣
=
(
m+k−1

k

)
. (7)

For all k ∈ N with k ≥ m it holds:(
m + k − 1

k

)
=

(m + k − 1).(m + k − 2) . . . (m + 1).m
1.2 . . . (k − 1).k

=
(m + k − 1) . . . (k + 1)

1 . . . (m− 1)
≤ (2k)m−1

(m− 1)! .

This implies
(
k �→

(
m+k−1

k

))
∈ O(km−1), which in view of (7) demonstrates (5).

Furthermore with C1 =
∑m−1

i=0

(
m+i−1

i

)
and C2 = 2m−1

(m−1)! it follows:

k∑
i=0

(
m+i−1

i

)
=

m−1∑
i=0

(
m+i−1

i

)
+

k∑
i=m

(
m+i−1

i

)
≤ C1 + C2.

k∑
i=0

im−1 ≤ C1 + C2.(k + 1).km−1

= C1 + C2.(km + k)

which because of (k �→ km + k) ∈ O(km) and (7) now demonstrates (6). �

Now we are able to state and prove our result concerning the density of BPP-
graphs.

Theorem 5.2. For every BPP-graph there exists a polynomial uniform upper
bound on its density.

Proof. Let T = (S,→, r) be a BPP-graph. That is, there exists an alphabetic
rewrite system (V, Σ, R) with V = {X1, . . . , Xm} such that T is isomorphic
to the rooted labeled transition graph T (�, ms(X1)), where � is the multiset
rewrite relation of R. Since the density of a labeled transition graph is invariant
under isomorphism, we may assume, without loss of generality, that T actually
is the rooted labeled transition graph T (�, ms(X1)) .
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Now we let ũ, with ũ ∈M(V ), be an arbitrary state of T and investigate the
density of T in ũ.

We let N = max
{
1,
(
max〈X,a,v〉∈R lg(v)

)
− 1
}

. In particular, N is greater or
equal to the maximal length of the right-hand side of a rule in R minus one.
Therefore the definition of N implies, in view of the definition of � :

ṽ1 � ṽ2 =⇒ |ṽ2| ≤ |ṽ1|+ N (for all ṽ1, ṽ2 ∈M(V )) , (8)
ṽ1 � ṽ2 =⇒ |ṽ1| ≤ |ṽ2|+ 1 ≤ |ṽ2|+ N (for all ṽ1, ṽ2 ∈M(V )) . (9)

Now let, for all n ∈ N , =≤n
(R) be defined by

=≤n
(R) =

n⋃
i=0

(
� ∪(�)−1)i

as the restriction of the convertibility relation =(R) = (� ∪(�)−1)∗ of � to
conversions of length less or equal to n. Using (8) and (9) it can be proved by
induction on n that, for all n ∈ N ,

ṽ1 =≤n
(R) ṽ2 =⇒ |ṽ2| ≤ |ṽ1|+ n.N (for all ṽ1, ṽ2 ∈ M(V )) (10)

holds. Since ṽ1 =≤n
(R) ṽ2 holds if and only if d(ṽ1, ṽ2) ≤ n is the case, (10) entails

d(ṽ1, ṽ2) ≤ n =⇒ |ṽ2| ≤ |ṽ1|+ n.N (for all ṽ1, ṽ2 ∈ M(V )) ,

for all n ∈ N . Now this implies that, for all n ∈ N , a superset of the set Sin(ũ, n)
of states of the subgraph In(ũ, n, T ) of T can be found as follows:

Sin(ũ, n) =
{
ṽ ∈M(V ) | d(ũ, ṽ) ≤ n

}
⊆
{
ṽ ∈M(V ) | |ṽ| ≤ |ũ|+ n.N

}
.

By applying Lemma 5.1 now a bound on the density of T in ũ can be established
as follows:

dũ = (n �→ |Sin(ũ, n)|) ∈ O((|ũ|+ n.N)m) ⊆ O(nm) .

Hence there is a polynomial upper bound on the density of T in ũ; moreover,
for such an upper bound a polynomial of the order of the number of variables
in the alphabetic rewrite system underlying T can be chosen.

Since in this argument ũ has been an arbitrary state of T , we have established
that there is a polynomial which is a uniform upper bound on the density of T . ��

Now we turn to the paradigmatic process Queue in the first-in-first-out version
with unbounded capacity. An infinite specification of Queue in BPA is given
in Table 4. The canonical process graph of QUEUE is sketched, for the case
D = {0, 1} in Figure 9. Compared with the easier graphs of the paradigmatic
processes Stack and Bag, the structure of this canonical graph is more complex.
By using Proposition 2.5 it is easy to see from Figure 9 that cQUEUE = 1. Hence
the connectivity of QUEUE is the same as that of BAG, but different from that
of STACK. On the other hand, we will prove below that the density of QUEUE
is greater than that of BAG.
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Table 4. Queue, infinite BPA-specification

Q = Qλ = d∈D r1(d) · Qd

Qσd = s2(d) · Qσ + e∈D r1(e) · Qeσd

(for d ∈ D, and σ ∈ D∗)
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Fig. 9. The canonical process graph QUEUE of Queue

Table 5. Queue, finite ACP-specification with renaming

Q = d∈D r1(d)(ρc3→s2 ◦ ∂H)(ρs2→s3(Q) ‖ s2(d) · Z)
Z = d∈D r3(d) · Z

It is clearly desirable to obtain a finite specification of this process. It was
proved by Bergstra and Tiuryn in [7] that neither the process algebra BPA is
sufficient for that, nor in fact is its extension PA. Building on this result, Baeten
and Bergstra in [1] proved the even stronger statement that Queue cannot be
defined in ACP with handshaking communication under the weak additional as-
sumption that the pushing and popping actions are not the result of communi-
cations. However, in [1] also a finite recursive specification of Queue is given in
ACP with global renaming operators. This beautiful specification (see Table 5) is
originally due to Hoare who used a “chaining”-operation.

Proposition 5.3. Let D be a finite set with |D| > 1. Then the canonical process
graph QUEUE(D) of Queue(D) has exponential density.
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Proof. From the infinite BPA-specification for Queue in Table 4 it is easy to
verify that, for all σ1, σ2 ∈ D with σ1 �= σ2 , the subprocesses Qσ1 and Qσ2 of Q
in Table 4 cannot be bisimilar: the sequence of popping moves for the processes
Qσ1 and Qσ2 must be different. Hence the canonical process graph QUEUE for
Queue can be drawn in tree space; for the example of D = {0, 1}, QUEUE(D)
is hinted in Figure 9.

We first consider the case |D| = 2. Then it is easy to verify that the function
(n �→ 2n+1 − 3) is an asymptotic lower bound on the density of QUEUE (for each
vertex v by a sequences of length n of transitions in downwards-direction there
are 2n vertices reachable), and the function

(
n �→ 4

3 (4n − 1)
)

is an upper bound
on the density of QUEUE (as an easy consequence of the summation formula
for a geometric series in view of the fact that in QUEUE there are at most four
vertices reachable from an arbitrary vertex by a single transition).

In the general case, where k = |D|, it is easy to verify that
(
n �→ k(kn−1)

k−1 − 1
)

is an asymptotic lower bound on the density of QUEUE, and that
(
n �→2k((2k)n−1)

2k−1

)
is an upper bound on the density of QUEUE. �

The following theorem states two conditions, canonicity and the existence of
an exponential “lower bound” on the directed density, under which a labeled
transition graph is not a BPP-graph. In the proof it is shown that these conditions
enable to deduce a contradiction with Theorem 5.2, the statement that BPP-
graphs have at most exponential density.

Theorem 5.4. Let T be a rooted process graph that is canonical. Furthermore,
there exists an exponential function that is not an upper bound on the directed
density of T . Then T is not definable in BPP.

Proof. Let T = (S,→, r) be a rooted process graph that is canonical and for
which there exists an exponential function that is not an upper bound on the
directed density of T .

Suppose that T is definable in BPP. Then there exists an alphabetic rewrite
system R = (V,Σ,R) with V = {X1, . . . , Xm} such that for the rooted transi-
tion graph T ′ = (S′,→′, r′)= T (�,ms(X1)) it holds:

T ′ ↔ T . (11)

By Theorem 5.2 the density of T ′ is at most polynomial, and hence there exists
a polynomial upper bound p on the density of T ′ in the state r′ = ms(X1) ;
hence dr′(n) ≤ p(n) holds for all but finitely many n ∈ N . By assumption on
T there exists an exponential function f : N → R that is not an upper bound
on the directed density of T , which means that there are infinitely many n ∈ N
such that f(n) < d→

r (n) holds. As a consequence of the fact that p(n) < f(n)
holds for all but finitely many n, dr′(n) < d→

r (n) must hold for infinitely many
n. Due to this we can choose n0 ∈ N with the property that

|(S′)in(r′, n0)| = dr′(n0) < d→
r (n0) = |S→

in (r, n0)| (12)

holds, where

S→
in (r, n0) =

{
s ∈ S | there is a path of length ≤ n0 from r to s

}
.
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Now it follows from (11) by repeated applications of the back-condition for
a bisimulation between T ′ and T linking r′ and r that each state in T with
distance less or equal to n0 from r must be bisimilar to a state in T ′ with
distance less or equal to n0 from r′. Due to (12), the difference in cardinality
between (S′)in(r′, n0) and S→

in (r, n0) , it follows that there must exist different
states s1 and s2 in S→

in (r, n0) , and hence of T , and a state s′ in (S′)in(r′, n0) ,
and hence of T ′, such that s′ (in T ′) is bisimilar both to s1 and s2 (in T ). But
this entails that actually s1 and s2 are two different bisimilar states of T , which
is a contradiction with the assumption that T is a canonical graph.

Therefore the assumption that T is definable in BPP cannot be sustained. ��

By using this theorem, we are finally able to show that, for sets D with more
than one element, the paradigmatic process Queue(D) is not definable in BPP.

Corollary 5.5. For all finite sets D with |D| > 1 , Queue(D) is not definable
in BPP.

Proof. We assume that D is a finite set with more than one element and that
Queue(D) is definable in BPP. This means that there exists a guarded recursive
specification E in BPP with Queue(D) as a solution. From the specification E
a BPP-graph T can be extracted which has the property that it is bisimilar to
the canonical process graph QUEUE(D) of Queue(D), showing that the graph
QUEUE(D) is definable in BPP. However, Theorem 5.4 implies, in view of Propo-
sition 5.3, that QUEUE(D) is actually not definable in BPP. We have obtained
a contradiction. ��

We conclude with a question concerning the possible values of connectivity and
the relationship between connectivity and density for BPP-graphs.

Question 5.6. What can be said about the connectivity of BPP-graphs? Is there
a useful concept of “regular decomposition” for BPP-graphs? Is there perhaps,
similar as for BPA-graphs, a correspondence statement that relates density and
connectivity also for BPP-graphs?
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Barendregt for discussions about this paper and posing the definability questions
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Abstract. One of the advantages of temporal-logic model-checking tools is their
ability to accompany a negative answer to the correctness query by a counterex-
ample to the satisfaction of the specification in the system. On the other hand,
when the answer to the correctness query is positive, most model-checking tools
provide no additional information. In the last few years there has been growing
awareness to the importance of suspecting the system or the specification of con-
taining an error also in the case model checking succeeds. The main justification
of such suspects are possible errors in the modeling of the system or of the spec-
ification. The goal of sanity checks is to detect such errors by further automatic
reasoning. Two leading sanity checks are vacuity and coverage. In vacuity, the
goal is to detect cases where the system satisfies the specification in some un-
intended trivial way. In coverage, the goal is to increase the exhaustiveness of
the specification by detecting components of the system that do not play a role
in verification process. For both checks, the challenge is to define vacuity and
coverage formally, develop algorithms for detecting vacuous satisfaction and low
coverage, and suggest methods for returning to the user helpful information. We
survey existing work on vacuity and coverage and argue that, in many aspects,
the two checks are essentially the same: both are based on repeating the verifica-
tion process on some mutant input. In vacuity, mutations are in the specifications,
whereas in coverage, mutations are in the system. This observation enables us to
adopt work done in the context of vacuity to coverage, and vise versa.

1 Introduction

In temporal-logic model checking, we verify the correctness of a finite-state system
with respect to a desired behavior by checking whether a labeled state-transition graph
that models the system satisfies a temporal logic formula that specifies this behavior
[CGL93]). Beyond being fully-automatic, an additional attraction of model-checking
tools is their ability to accompany a negative answer to the correctness query by a
counterexample to the satisfaction of the specification in the system. Thus, together
with a negative answer, the model checker returns some erroneous execution of the sys-
tem. These counterexamples are very important and they can be essential in detecting
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subtle errors in complex designs [CGMZ95]. On the other hand, when the answer to
the correctness query is positive, most model-checking tools provide no additional in-
formation. Since a positive answer means that the system is correct with respect to the
specification, this at first seems like a reasonable policy. In the last few years, however,
there has been growing awareness to the importance of suspecting the system and the
specification of containing an error also in the case model checking succeeds. The main
justification of such suspects are possible errors in the modeling of the system or of the
behavior.

Early work on “suspecting a positive answer” concerns the fact that temporal logic
formulas can suffer from antecedent failure [BB94]. For example, verifying a system
with respect to the specification ϕ = AG(req → AF grant) (“every request is eventu-
ally followed by a grant”), one should distinguish between satisfaction of ϕ in systems
in which requests are never sent, and satisfaction in which ϕ’s precondition is some-
times satisfied. Evidently, the first type of satisfaction suggests some unexpected prop-
erties of the system, namely the absence of behaviors in which the precondition was
expected to be satisfied.

In [BBER01], Beer et al. suggested a first formal treatment of vacuity. As described
there, vacuity is a serious problem: “our experience has shown that typically 20% of
specifications pass vacuously during the first formal-verification runs of a new hardware
design, and that vacuous passes always point to a real problem in either the design
or its specification or environment” [BBER01]. The definition of vacuity according to
[BBER01] is based on the notion of subformulas that do not affect the satisfaction
of the specification. Consider a model M satisfying a specification ϕ. A subformula
ψ of ϕ does not affect (the satisfaction of) ϕ in M if M also satisfies all formulas
obtained by modifying ψ. In the example above, the subformula grant does not affect
ϕ in a model with no requests. Now, M satisfies ϕ vacuously if ϕ has a subformula
that does not affect ϕ in M . A general method for vacuity definition and detection
was presented in [KV03], and the problem was further studied in [AFF+03, CG04a,
BFG+05]. It is shown in these papers that for temporal logics such as LTL and CTL�,
where an occurrence of the subformula ψ can be replaced by a universally quantified
proposition, vacuity detection can be reduced to model checking specifications in the
logic obtained by adding universally quantified atomic propositions. This leaves vacuity
detection for LTL in PSPACE [AFF+03], but makes vacuity detection for CTL and
CTL� EXPTIME and 2EXPTIME complete — as hard as their satisfiability [CG04a].
Moreover, adding to the specification formalism a regular layer, such as the ability to
use regular expressions in the formula as in Sugar [BBE+01] and ForSpec [AFF+02],
also adds a need to replace some subformulas ψ by a university quantified interval,
which makes vacuity detection more complex than model checking.

When the system is proven to be correct, and vacuity has been checked too, there is
still a question of how complete the specification is, and whether it really covers all the
behaviors of the system. It is not clear how to check completeness of the specification.
Indeed, specifications are written manually, and their completeness depends entirely
on the competence of the person who writes them. The motivation for a completeness
check is clear: an erroneous behavior of the design can escape the verification efforts if
this behavior is not captured by the specification. In fact, it is likely that a behavior not
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captured by the specification also escapes the attention of the designer, who is often the
one to provide the specification.

The challenge of making the verification process as exhaustive as possible is even
more crucial in simulation-based verification. Each input vector for the system in-
duces a different execution of it, and a system is correct if it behaves as required for
all possible input vectors. Checking all the executions of a system is an infeasible task.
Simulation-based verification is traditionally used in order to check the system with
respect to some input vectors [BF00]. The vectors are chosen so that the verification
would be as exhaustive as possible, and it is crucial to measure the exhaustiveness of
the input sequences that are checked. Indeed, there has been an extensive research in
the simulation-based verification community on coverage metrics, which provide such a
measure [TK01]. Coverage metrics are used in order to monitor progress of the verifica-
tion process, estimate whether more input sequences are needed, and direct simulation
towards unexplored areas of the system. Coverage metrics today play an important role
in the system validation effort [Ver03]. For a survey on the variety of metrics that are
used in simulation-based verification, see [ZHM97, Dil98, Pel01, TK01]

Measuring the exhaustiveness of a specification in formal verification (“are more
properties need to be checked?”) has a similar flavor as measuring the exhaustiveness
of the input sequences in simulation-based verification (“are more sequences need to
be checked?”). Nevertheless, while for simulation-based verification it is clear that cov-
erage corresponds to activation during the execution on the input sequence, it is less
clear what coverage should correspond to in formal verification, as in model checking
all reachable parts of the system are visited. Early work on coverage metrics in formal
verification [HKHZ99, KGG99] suggested two directions. Both directions reason about
a state-transition graph that models the system. The metric in [HKHZ99], later followed
by [CKV01, CKKV01, CK02], is based on mutations applied to the graph. Essentially,
a state s in the graph is covered by the specification if modifying the value of a vari-
able in the state renders the specification untrue. The metric in [KGG99] is based on a
comparison between the graph and a reduced tableau for the specification.

In [CKV03], we adapted the work done on coverage in simulation-based verification
to the formal-verification setting in order to obtain new coverage metrics. Interestingly,
the adoption of metrics from simulation-based verification has brought vacuity to the
front of the stage again, and this time, in the context of coverage. To see why, con-
sider for example code-based coverage, where we check, for example, whether both
branches of an if statement have been executed during the simulation. A straightfor-
ward adoption would check the satisfaction of the specification in a mutant system, one
for each branch, in which the branch is disabled. Such a mutant system, however, has
less behaviors than the original system, and would clearly satisfy all universal specifi-
cations (i.e., specifications that apply to all behaviors, as in linear temporal logic) that
are satisfied by the original system. In general, the problem we are facing is the need
to assess the role a behavior has played in the satisfaction of a universal specification –
one that is clearly satisfied in the system obtained by removing this behavior. The way
we suggested to do so is to check whether the specification is vacuously satisfied in a
mutant system in which this behavior is disabled: a vacuous satisfaction of the specifica-
tion in such a system (we assume that the specification is not vacuously satisfied in the
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original system) indicates that the specification does refer to this behavior; on the other
hand, a non-vacuous satisfaction of the specification in the mutant system indicates that
the specification does not refer to the missing behavior. Accordingly, coverage metrics
adopted from the simulation-based word check both the satisfaction and the vacuous
satisfaction of the specification in mutant systems.

The definition of vacuity coverage in [CKV03] has related vacuity and coverage.
In this paper we strengthen the link between the two sanity checks further and argue
that, from the algorithmic point of view, the problems are essentially identical. In both
problems, we check whether all the components of the input to the model-checking
problem have played a role in the model-checking process. In the case of vacuity, the
components we check are subformulas of the specification. In the case of coverage, the
components are elements of the system. This suggests that the solutions to the vacuity
and coverage problems may be based on the same algorithm. We show that, indeed,
ideas developed for coverage can be adopted for vacuity, and vice versa.

2 Vacuity and Coverage

In this section we describe the basic definitions of vacuity and coverage. We consider
specifications in either linear or branching temporal logics. For a formula ϕ, a subfor-
mula ψ of ϕ, and a formula ξ, we use ϕ[ψ ← ξ] to denote the formula obtained from ϕ
by replacing all the occurrences of ψ in ϕ by ξ.

We define the semantics of temporal-logic formulas with respect to a Kripke struc-
ture K = 〈AP,W,R,win, L〉, where AP is a set of atomic propositions, W is a set
of states, R ⊆ W ×W is a total transition relation, win ∈ W is an initial state, and
L : W → 2AP maps each state to the set of atomic propositions that hold in this state.
A Kripke structureK can be unwound into an infinite computation tree in a straightfor-
ward way. Formally, the tree that is obtained by unwindingK is denoted byK and is the
2AP -labeledW -tree 〈TK , V K〉, in which a node x · w, for x ∈ W ∗ and w ∈ W , is as-
sociated with state w. Formally, ε ∈ TK is associated with win and V K(ε) = L(win).
Now, for all w with R(win, w), we have that w ∈ TK , and for all x · w ∈ TK and
v ∈ W with R(w, v), we have x · w · v ∈ TK and V K(x · w) = L(w). That is, V K

maps a node that was reached by taking the direction w to L(w).
The definition of vacuity involves formulas with an atomic proposition that is uni-

versally quantified. Consider an atomic proposition x. A Kripke structure K satisfies
a temporal logic formula ∀xϕ(x) iff ϕ is satisfied in all computation trees 〈T, V 〉 that
differ from 〈TK , V K〉 only in the label of the atomic proposition x. Note that different
occurrences of the same state in K may have different x labels.

Let us start with the basic definition of vacuous satisfaction. Intuitively, a Kripke
structure K satisfies a formula ϕ vacuously if K satisfies ϕ yet it does so in a non-
interesting way, which is likely to point on some trouble with either K or ϕ. For ex-
ample, a system in which requests are never sent satisfies AG(req → AF grant) vacu-
ously. In order to formalize this intuition, it is suggested in [BBER01] to formalize first
the notion of a subformula of ϕ affecting its truth value in K . We use the following
definition for the latter:
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Definition 1. [AFF+03] A subformula ψ of ϕ does not affect the truth value of ϕ inK
(ψ does not affect ϕ inK , for short) ifK satisfies ∀xϕ[ψ ← x] iffK satisfies ϕ.

The definition in [AFF+03] is semantic. Earlier definitions, and in particular the one
in [BBER01], were syntactic, in the sense they consider a replacement of ψ by other
subformulas. Thus, according to [BBER01], ψ does not affect ϕ in K if K satisfies
ϕ[ψ ← ξ] for all formulas ξ. A good reason to switch to the semantic-based definition is
the fact that [BBER01]’s definition is not effective, as it requires evaluation of ϕ[ψ ← ξ]
for all formulas ξ. To deal with this difficulty, [BBER01] considers only a small class,
called w-ACTL, of branching temporal logic formulas. Once we have defined when a
subformula of ϕ affects its truth value inK , the definition of vacuity is as expected1:

Definition 2. A system K satisfies a formula ϕ vacuously iffK |= ϕ and there is some
subformula ψ of ϕ such that ψ does not affect ϕ inK .

In [KV03], we showed that when all the occurrences of a subformula ψ in ϕ are of a
pure polarity (that is, they are either all under an even number of negations (positive
polarity), or all are under an odd number of negations (negative polarity)), the syntac-
tic and semantic definitions coincide, and checking whether ψ affects ϕ in K is easy.
Formally, for a formula ϕ and a subformula ψ of ϕ, let ϕ[ψ ← ⊥] denote the formula
obtained from ϕ by replacing ψ by false, in case ψ is positive in ϕ, and replacing ψ by
true, in case ψ is negative in ϕ. Now, by [KV03], ψ does not affectϕ iffK satisfies the
formula obtained from ϕ by the single extreme modification of ψ. Formally, we have
the following.

Theorem 1. [KV03] For every formula ϕ, a subformula ψ of a pure polarity of ϕ,
and a system K that satisfies ϕ, we have that ψ does not affect ϕ in K iff K satisfies
ϕ[ψ ← ⊥].

By Definition 2, vacuity detection can be reduced to checking whether K satisfied
∀xϕ[ψ ← x] for all subformulas ψ of ϕ. Also, by Theorem 1, when ψ is of a pure
polarity 2, the latter can be done by checking whether K satisfies ϕ[ψ ← ⊥]. In par-
ticular, when ϕ is polar (that is, all its subformulas are of a pure polarity), vacuity
detection can be reduced to a sequence of model-checking executions, each for a single
subformula (this is a naive algorithm for this task, and we later mention some heuris-
tics). When, however, some subformulaψ is of a mixed polarity, the check is harder and
requires model checking of formulas with quantified atomic propositions. For the case
of CTL and CTL�, the problem of vacuity detection is then as hard as the satisfiability
problem, namely it is EXPTIME and 2EXPTIME complete, respectively [CG04a]. For
LTL, it can still be reduced to LTL model checking and stay PSPACE-complete, but is
more complicated than simple model checking [AFF+03].

1 In [CG04b], the authors study an alternative definition of vacuity in which the mutual vacuity
of some subformulas is taken into a consideration.

2 Note that one can talk about a subformula ψ affecting ϕ in K or about an occurrence of ψ
affecting ϕ in K. Since a single occurrence is of a pure polarity, Theorem 1 always applies in
this setting.
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Remark 2. The semantic approach turned out to be appropriate also when the speci-
fication formalism has a regular layer [BFG+05]. There, the subformula ψ may be a
regular event, and the universal quantification that is needed is over intervals. Consider
for example the formula ϕ = G ((req · (¬ack )∗ · ack) triggers Xgrant), which says
that a grant is given exactly one cycle after the cycle in which a request is acknowledged.
Note that if ack does not affect the satisfaction of ϕ in K , we can learn that acknowl-
edgments are actually ignored: grants are given, and stay on forever, immediately after
a request. Such a behavior is not referred to in the specification, but is detected by reg-
ular vacuity. Thus, while LTL vacuity involved only monadic quantification (over the
set of points in which x may hold), regular vacuity also involves dyadic quantification
(over intervals – sets of pairs of points, in which int may hold). This transition, from
monadic to dyadic quantification, is technically very challenging, yet, as was shown in
[BFG+05], the automata-theoretic approach to LTL [VW94] can be extended to handle
regular vacuity, but the problem is much harder than LTL vacuity (it is in EXPSPACE
and is EXPTIME-hard).

As with usual vacuity, when a subformula ψ has a pure polarity, checking whether it
affects the truth value of ϕ can be reduced to checking whetherK satisfies ϕ[ψ ← ⊥],
with⊥ being true∗ in caseψ is of a negative polarity and is falsein caseψ is of a positive
polarity. Thus, in the context of regular vacuity, pure polarity is even more crucial. ��

We now turn to the basic definition of coverage in model checking. The idea, due to
[HKHZ99], is to define coverage by examining the effect of modifications in the system
on the satisfaction of the specification. Given a system modeled by a Kripke structure
K , a formula ϕ that is satisfied in K , and a signal (atomic proposition) q, let us denote
by K̃w,q the Kripke structure obtained from K by flipping the value of q in w. Thus,
K̃w,q = 〈AP,W,R,Win, L̃w,q〉, where L̃w,q(v) = L(v) for all v �= w, and L̃w,q(w) =
L(w) \ {q} if q ∈ L(w) and L̃w,q(w) = L(w) ∪ {q} if q �∈ L(w).

Definition 3. [HKHZ99] A state w of a Kripke structure K is q-covered by ϕ, for a
formula ϕ and an atomic proposition q, ifK satisfies ϕ but K̃w,q does not satisfy ϕ.

Thus, w is q-covered by ϕ if the Kripke structure obtained from K by flipping the
value of q in w no longer satisfies ϕ. Indeed, this indicates that the value of q in w is
crucial for the satisfaction of ϕ in K . Definition 3 is very basic not only since it con-
siders only mutations of a very limited nature, but also, as pointed out in [CKV01], it
ignores the fact that often, replacing the value of an atomic proposition also causes a
change in the transitions of K , which are typically defined by means of the values of
the atomic propositions in the target and source of each transition. As shown, however,
in [CKV01], the latter weakness is technical and it is possible to extend coverage algo-
rithms that consider mutations that do not change the transitions to mutations that do
change them.

3 Adopting Ideas from Vacuity to Coverage

In this section we show how ideas that have been suggested in the context of coverage
are actually an adoption of ideas in vacuity. We also point to ideas in vacuity that have
not yet been adopted in coverage.
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3.1 Single vs. Multiple Occurrences

We start with the definition of coverage. Recall that the basic definition of coverage
considered a very simple mutation: flip the value of one atomic proposition in one
state. Recall that the Kripke structure models a system, and that the execution of the
system corresponds to unwinding the Kripke structure into an infinite computation tree.
A state w of K may correspond to several nodes in the computation tree. The basic
definition of coverage flips the value of q in w in all these occurrences. In a similar
way, in the definition of vacuity, we have distinguished between a single occurrence of
a subformula ψ of ϕ and all its occurrence. In the first case, we have replaced only this
occurrence by a universally quantified proposition (in fact, in this case it is sufficient
to replace the single occurrence by ⊥), and in the second, we have replaced all the
occurrences. Each approach may return a different answer to the vacuity query.

This suggest that the definition of coverage should also be refined to reflect the fact
that the flipping of q in w can be performed in different ways. Such a refinement was
suggested in [CKKV01], which made a distinction between “flipping always”, “flipping
once”, and “flipping sometimes”, which are formalized in the definitions of structure
coverage, node coverage, and tree coverage below. We first need some notations.

For a domain Y , a function V : Y → 2AP , an observable signal q ∈ AP , and a
set X ⊆ Y , the dual function ṼX,q : Y → 2AP is such that ṼX,q(x) = V (x) for all
x �∈ X , ṼX,q(x) = V (x) \ {q} if x ∈ X and q ∈ V (x), and ṼX,q(x) = V (x) ∪ {q}
if x ∈ X and q �∈ V (x). When X = {x} is a singleton, we write Ṽx,q. Recall that
K̃w,q = 〈AP,W,R,Win, L̃w,q〉. For X ⊆ TK we denote by K̃X,q the tree that is
obtained by flipping the value of q in all the nodes in X . Thus, K̃X,q = 〈TK , Ṽ K

X,q〉.
WhenX = {x} is a singleton, we write K̃x,q.

Definition 4. Consider a Kripke structure K , a formula ϕ satisfied in K , and an ob-
servable signal q ∈ AP .

– A state w ofK is structure q-covered by ϕ iff the structure K̃w,q does not satisfy ϕ.
– A state w ofK is node q-covered by ϕ iff there is a w-node x in TK such that K̃x,q

does not satisfy ϕ.
– A state w of K is tree q-covered by ϕ iff there is a set X of w-nodes in TK such

that K̃X,q does not satisfy ϕ.

Note that, structure coverage coincides with Definition 3. Also note that a state is struc-
ture q-covered iff K̃X,q does not satisfy ϕ for the set X of all w-nodes in K. In other
words, a state w is structure q-covered if flipping the value of q in all the instances of w
in K falsifies ϕ, it is node q-covered if a single flip of the value of q falsifies ϕ, and it is
tree q-covered if some flips of the value of q falsifies ϕ.

3.2 A Semantic Approach to Coverage

Recall that earlier definitions of vacuity were syntactic and considered replacements of
a subformula ψ by another formula [BBER01]. Later, in [AFF+03], researchers have
moved to the semantic approach, where ψ is replaced by a universally quantified atomic
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proposition. We would like to use the idea of a universally quantified atomic proposition
also in the context of coverage. Thus, we seek a definition according to which w is not
covered by ϕ if ∀xK[w ← x] |= ϕ. In general, it is not clear what x is and what does
K[w← x] stands for. There are, however, settings in which an appropriate definition for
x exists. In particular, in symbolic methods, the state space is encoded by propositional
variables [BCM+92, BCC+99], and universal quantification is naturally defined. The
induced definition of coverage captures exactly our intuition of w not playing a role
in the verification process. Indeed, if, for example, we have reduced bounded model
checking to the non-satisfiability of a propositional formula θ and a vector x of variables
encodes the value of the system’s variables in state w in time t, then satisfiability of
∀xθ indicates that the values of the variables in x did play a role in the model-checking
procedure. Note that, as with usual coverage, there is a need to distinguish between
structure, tree, and node coverage.

3.3 Returning an Interesting Witness to the User

A witness for the satisfaction of a specification in a system is a sub-system, usually a
computation, that satisfies the specification. A witness is interesting if it satisfies the
specification non-vacuously [BBER01, KV03]. For example, a computation in which
both req and ¬grant hold is an interesting witness for the satisfaction of AG(req →
AF grant). An interesting witness gives the user a confirmation that his specification
models correctly the desired behavior, and enables the user to study some nontrivial
executions of the system.

An interesting witness in the context of coverage is a subformula that causes a com-
ponent to be covered. It is easy to extend existing coverage algorithms to return, for
each component of the system, the parts of the specification with respect to which it
is covered. More informative, however, and closer to the way interesting witnesses are
used in vacuity, is to return to the user information on how the component is covered.
Thus, for every component c of the system, the user should be able to get witnesses
to the coverage of c by means of an erroneous computations in which c is mutated.
From an algorithmic point of view, this involves solving exactly the same problem as
the problem of generating interesting witnesses in vacuity, namely the problem of gen-
erating counter examples [CGMZ95, KV03]. In the context of coverage, however, we
return to the user a family of counterexamples – one for each sub-specification that is
no longer satisfied in the system with c mutated.

4 Adopting Ideas from Coverage to Vacuity

The adoption we suggested in Section 4 considers the challenges of defining vacuity
and coverage and of returning helpful information to the user. In the context of cover-
age, much effort has been put in order to develop efficient algorithms for computing
coverage. As we shall detail below, this has to do with the fact that a naive algorithm
for coverage increases the complexity of model checking by a factor that depends on
the size of the system, whereas one for vacuity detection increases the complexity only
by a factor that depends on the specification. While the specification is typically much
smaller than the system, it is still desirable to get rid of this factor.



Sanity Checks in Formal Verification 45

A naive algorithm for the detection of components of the system that are not covered
by the specification proceeds by model checking mutations of the system. For example,
in order to find the set of states not q-covered by ϕ in a Kripke structure K with n
states, the naive algorithm executes the model-checking procedure n times, where in
each execution K̃w,q is checked for a different state w. Likewise, a naive algorithm for
vacuity detection proceeds by checking mutations of the specification, each obtained
by replacing a single subformula by a universally quantified proposition (in case the
subformula is of a mixed polarity) or by true or false (in case it is of a pure polarity).

In [CKV01, CKKV01], we presented two alternatives to the naive algorithm for
coverage. The first is symbolic, and the second makes use of overlaps among different
mutations of the same Kripke structures. In this section we briefly describe the two
algorithms and show how exactly the same ideas can be used in order to detect vacuous
satisfaction of polar formulas.

4.1 A Symbolic Approach

We start with the symbolic coverage detection algorithm for LTL specifications. The
algorithm is described in [CKKV01]. For simplicity, we start with node coverage,
and then explain how tree and structure coverage can be checked with the same idea.
The algorithm extends the LTL automata-based model-checking algorithm. There, we
translate an LTL specification ϕ to a nondeterministic Büchi automaton A¬ϕ that ac-
cepts all words that do not satisfy ϕ [VW94]. Model checking of K with respect to
ϕ can then be reduced to checking the emptiness of the product K × A¬ϕ. Let K =
〈AP,W,R,win, L〉 be a Kripke structure that satisfies ϕ, and letA¬ϕ=〈2AP,S,δ, S0, α〉
be the nondeterministic Büchi automaton for ¬ϕ. The product of K with A¬ϕ is the
fair Kripke structure K × A¬ϕ = 〈AP,W × S,M, {win} × S0, L

′,W × α〉, where
M(〈w, s〉, 〈w′, s′〉) iff R(w,w′) and s′ ∈ δ(s, L(w)), and L′(〈w, s〉) = L(w). Note
that an infinite path π in K × A¬ϕ is fair iff the projection of π on S satisfies the ac-
ceptance condition of A¬ϕ. Since K satisfies ϕ, we know that no initialized path ofK
is accepted by A¬ϕ. Hence, L(K ×A¬ϕ) is empty.

Let P ⊆ W × S be the set of pairs 〈w, s〉 such that A¬ϕ can reach the state s as
it reads the state w. That is, there exists a sequence 〈w0, s0〉, . . . , 〈wk, sk〉 such that
w0 = win, s0 ∈ S0, wk = w, sk = s, and for all i ≥ 0 we have R(wi, wi+1)
and si+1 ∈ δ(si, L(wi)). Note that 〈w, s〉 ∈ P iff 〈w, s〉 is reachable in K × A¬ϕ.
For an observable signal q ∈ AP and w ∈ W , we define the set Pw,q ⊆ W × S as
the set of pairs 〈w′, s′〉 such that w′ is a successor of w and A¬ϕ can reach the state
s′ as it reads the state w′ in a run in which the last occurrence of w has q flipped.
Formally, if we denote by L̃q : W → 2AP the labeling function with q flipped (that is,
L̃q(w) = L(w) ∪ {q} if q �∈ L(w), and L̃q(w) = L(w) \ {q} if q ∈ L(w)), then

Pw,q={〈w′, s′〉 : there is s∈S such that 〈w, s〉∈P,R(w,w′), and s′∈δ(s, L̃q(w))}.
Recall that a state w is node q-covered inK iff there exists a a w-node x in TK such

that K̃x,q does not satisfy ϕ. We can characterize node q-covered states also as follows

Theorem 3. Consider a Kripke structure K , an LTL formula ϕ, and an observable
signal q. A state w is node q-covered in K by ϕ iff there is a successor w′ of w and a
state s′ such that 〈w′, s′〉 ∈ Pw,q and there is a fair 〈w′, s′〉-path inK ×A¬ϕ.
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Theorem 3 reduces the problem of checking whether a state w is node q-covered to
computing the relation Pw,q and checking for the existence of a fair path from a state in
the productK × A¬ϕ. Model-checking tools compute the relation P and compute the
set of states from which we have fair paths. Therefore, Theorem 3 suggests an easy im-
plementation for the problem of computing the set of node-covered states. We describe
a possible implementation in the tool COSPAN, which is the engine of FormalCheck
[HHK96, Kur98]. We also show that the implementation can be easily modified to han-
dle structure and tree coverage.

In COSPAN, the system is modeled by a set of modules, and the desired behavior is
specified by an additional module A. The language L(A) is exactly the set of wrong
behaviors, thus the module A stands for the automaton A¬ϕ in cases the specification
is given an LTL formula ϕ. In order to compute the set of node q-covered states, the
system has to nondeterministically choose a step in the synchronous composition of the
modules, in which the value of q is flipped in all modules that refer to q. Note that this is
the same as to choose a step in which the moduleA behaves as if it reads the dual value
of q. This can be done by introducing two new Boolean variables flip and flag, local to
A. The variable flip is nondeterministically assigned true or false in each step. The
variable flag is initialized to true and is set to false one step after flip becomes true.
Instead of reading q, the module A reads q ⊕ (flip ∧ flag). Thus, when both flip and
flag hold, which happens exactly once, the value of q is flipped (⊕ stands for exclusive
or). So, the synchronous composition of the modules is not empty iff the state that was
visited when flip becomes true for the first time is node q-covered.

With a small change in the implementation we can also check tree coverage. Since
in tree coverage we can flip the value of q several times, the variable flag is no longer
needed. Instead, we need log |W | variables x1, . . . , xlog |W | for encoding the state w
that is now being checked for tree q-coverage. The state w is not known in advance and
the variables x1, . . . , xlog |W | are initialized to some special value ⊥. The variable flip
is nondeterministically assigned true or false in each step. When flip is changed to
true for the first time, the variables x1, . . . , xlog |W | are set to encode the current state
w. Instead of reading q, the module A reads q ⊕ (flip ∧ at w), where at w holds iff
the encoding of the current state coincides with x1, . . . , xlog |W |. Thus, when both flip
and at w hold, which may happen several times, yet only when the current state is w,
the value of q is flipped. So, the synchronous composition of the modules is not empty
iff the state that was visited when flip becomes true for the first time is tree q-covered.
Finally, by nondeterministically choosing the values of x1, . . . , xlog |W | at the first step
of the run and fixing flip to true, we can also check structure coverage.

Note that our algorithm is independent of the fairness condition being Büchi, and it
can handle any fairness condition for which the model-checking procedure supports the
check for fair paths. Also, it is easy to see that the same algorithm can handle systems
with multiple initial states. Finally, it is also easy to adjust the algorithm to definitions
of coverage in which several mutations are checked mutually.

Remark 4. The above algorithm handles specifications in LTL. A different symbolic
algorithm for coverage computation is described for CTL in [CKV01]. The algorithm
addresses the fact that even if model checking of each of the mutant Kripke structures is
checked symbolically, there may be many mutations to check. If we have, for example,
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a mutant structure for each state, then there are |W | mutant structures to check, and we
would like to refer also to these structures symbolically. Consider a Kripke structure
K = 〈AP,W,R,w0, L〉 and an atomic proposition q ∈ AP . For a CTL formula ϕ,
we define

P (ϕ) = {〈w, v〉 : K̃v,q, w |= ϕ}.
Thus, P (ϕ) ⊆ W ×W contains exactly all pairs 〈w, v〉 such that w satisfies ϕ in the
structure where we dualize the value of q in v. The q-covered set in K for ϕ can be
derived easily from P (ϕ) as it is the set {w : 〈w0, w〉 �∈ P (ϕ)}.

The symbolic algorithm in [CKV01] computes the OBDDs P (ψ) for all subformulas
ψ. The algorithm works bottom-up, and is based on the symbolic CTL model-checking
algorithm. The symbolic algorithm for CTL model-checking uses a linear number of
OBDD variables. The algorithm in [CKV01] above doubles the number of OBDD vari-
ables, as it works with sets of pairs of states instead of sets of states. By the nature of
the algorithm, it performs model-checking for all K̃w,q globally, and thus the OBDDs it
computes contain information about the satisfaction of the specification in all the states
of all the dual Kripke structures, and not only in their initial states. ��

We now turn to describe how the same idea can be used in order to symbolically detect
vacuity of polar formulas. The algorithm we describe can be viewed as a special case of
the symbolic algorithm in [CKV03] for the detection of vacuity coverage. Recall that
checking whether a system satisfies a specification vacuously involves model checking
of a mutant specification. We can use the idea in [CKKV01] in order to check symboli-
cally for vacuous satisfaction by adding a new variable x that encodes the subformula ψ
that is being replaced with ⊥. The subformula ψ belongs to the set cl(ϕ) of subformu-
las of ϕ. The variable x is an integer in the range 0, . . . , |cl(ϕ)|, thus it can be encoded
with O(log |ϕ|) Boolean variables. The value 0 of x stands for “no replacement”, thus
it checks the satisfaction of ϕ in the system. The value of (the variables that encode) x
is chosen nondeterministically at initialization and is kept unchanged. For example, if
ϕ = y1∨y2, and 1 encodes y1 and 2 encodes y2, then the value 1 of x corresponds to the
replacement of y1 with false (which is the ⊥ value for y1 in ϕ) resulting in the formula
(y1 ∨ y2)[y1 ← false] = y2. In the automatonA¬ϕ, each state variable corresponds to
a subformula (cf. [BCM+92]), thus the nondeterministic choice of the subformula leads
to a mutant automatonA¬ϕ[ψ←⊥]. The state space of the augmented product now con-
sists of triples 〈x, u, s〉, where x encodes the subformula replaced with ⊥, and u and s
are the components of the product automaton. The successors of 〈x, u, s〉 are the triples
〈x, u′, s′〉 such that 〈u′, s′〉 is a possible successor of 〈u, s〉 in a product between the
system with the automaton A¬ϕ[ψ←⊥], where ψ is the subformula encoded by x. The
subformulas that affect the value of ϕ in the systems are these encoded by a value x for
which there are initial states u0 and s0 of the system and the automaton, respectively,
such that there is a fair path from 〈x, u0, s0〉. Let P be the set of triples from which a
fair path exists in the augmented product (as above, P can be found symbolically), and
let P ′ be the intersection of P with the initial states of the system and the automaton,
projected on the first element. Note that x ∈ P ′ iff the subformula associated with x af-
fects the value of ϕ in the system. Thus, ψ is satisfied vacuously in the system if ¬P ′(0)
and P ′ �= {1, . . . , cl(ψ)}.
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4.2 Improving Average Complexity

Consider a Kripke structureK = 〈AP,W,R,w0, L〉, a formulaϕ, and an atomic propo-
sition q. Recall that the naive CTL coverage algorithm, which performs model checking
for all dual Kripke structures, has running time of O(|K| · |ϕ| · |W |). While for some
dual Kripke structures model-checking may require less than O(|K| · |ϕ|), the naive
algorithm always performs |W | iterations of model checking; thus, its average com-
plexity cannot be substantially better than its worst-case complexity. This unfortunate
situation arises even when model checking of two dual Kripke structures is practically
the same, and even when some of the states ofK obviously do not affect the satisfaction
of ϕ inK . In [CKV01] we presented an algorithm that makes use of such overlaps and
redundancies. The expectant running time of our algorithm is O(|K| · |ϕ| · log |W |).
Formally, we have the following:

Theorem 5. The set q-cover(K,ϕ) can be computed in average3 running time of
O(|K| · |ϕ| · log |W |).
Our algorithm is based on the fact that for eachw, the dual Kripke structure K̃w,q differs
from K only slightly. Therefore, there should be a large amount of work that we can
share when we model check all the dual structures. In order to explain the algorithm,
we introduce the notion of incomplete model checking. Informally, incomplete model
checking of K is model checking of K with its labeling function L partially defined.
The solution to the incomplete model checking problem can rely only on the truth values
of the atomic propositions in states for which the correspondingL is defined. Obviously,
in the general case we are not guaranteed to solve the model-checking problem without
knowing the values of all atoms in all states. We can, however, perform some work in
this direction, which is not needed to be performed again when missing parts of L are
revealed.

Consider a partition ofW into two equal sets,W1 andW2. Our algorithm essentially
works as follows. For all the dual Kripke structures K̃w,q such that w ∈ W1, the states
in W2 maintain their original labeling. Therefore, we start by performing incomplete
model checking of ϕ in K with L that does not rely on the values of q in states in W1.
We end up in one of the following two situations. It may be that the values of q in states
inW2 (and the values of all the other atomic propositions in all the states) are sufficient
to imply the satisfaction of ϕ inK . Then, we can infer that all the states inW1 are not q-
covered. It may also be that the values of q in states inW2 are not sufficient to imply the
satisfaction of ϕ in K . Then, we continue and partition the set W1 into two equal sets,
W11 andW12, and perform incomplete model checking that does not rely on the values
of q in states in W11. The important observation is that incomplete model checking
is now performed in a Kripke structure to which we have already applied incomplete
model checking in the previous iteration. Thus, we only have to propagate information
that involves the values of q in W12. Thus, as we go deeper in the recursion described
above, we perform less work. The depth of the recursion is bounded by log |W |. As
analyzed in [CKV01], the work in depth i amounts in average to model checking of ϕ
in a Kripke structure of size |K|

2i . Hence the O(|K| · |ϕ| · log |W |) complexity.

3 Average is taken with respect to all possible inputs to the algorithm as well as all random
choices made by the algorithm.
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In case of vacuity for polar formulas, the naive algorithm performs model checking
for each subformula, and thus has running timeO(|K|·|ϕ|2). The quadratic dependency
in ϕ is less crucial than the quadratic dependency in |W | in the case of coverage, but it
is still a problem, and efforts to come up with better algorithms are described in [PS02,
Nam04]. In order to improve the average complexity, we can encode all the mutations
to the formula (each mutation corresponds to a subformula that is replaced by ⊥) with
a vector x of variables. We then proceed with incomplete model checking where in
each iteration more variables get values. As with coverage, in each iteration we handle
smaller structures, and the overall complexity is, in average,O(|K|·|ϕ| log |ϕ|)[Cho03].

5 Discussion

Sanity checks are applied to the system after model checking has successfully termi-
nated. In addition to vacuity and coverage, other checks that have recently been advo-
cated are query checking [Cha00] and certification [Nam01]. In query checking, some
subformulas in the specification are replaced by the symbol “?” and the query-checking
algorithm returns strongest possible replacements to “?” with which the specification
is satisfied. In certification, the positive answer of the model-checking procedure is ac-
companied by a proof that the specification indeed holds. The idea is that it is much
easier to check a given certificate than to find one.

The different checks have a lot in common, both conceptually and from the algorith-
mic point of view. Still, each approach has its own algorithms and tools. We believe
that an effort should be made in order to accommodate sanity checks in one algorith-
mic framework. A good candidate is the theory of multi-valued logic (in fact, this has
already been done for query checking in [BG01]). The idea is that typical sanity checks
repeat the model-checking procedure with respect to “mutant inputs” — inputs that are
slightly different from the original model-checking input. By associating different sets
of mutations with different values, we can hopefully reduce the question of finding the
set of mutants for which model checking no longer succeeds to the problem of multi-
valued model checking [BG04]. In addition, as suggested in [Nam04] for the case of
vacuity, it may be possible to carry the sanity checks with respect to the model-checking
certificate, rather than with respect to the system and the specification.
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Abstract. Almost 30 years ago, the research on process calculi gained
a lot of momentum with the invention of ACP, CCS and CSP. Later on,
but also already 20 years ago, researchers started to consider so-called
mobile variants of process calculi, in which communication channels were
themselves treated as the exchanged data. The original Pi Calculus arose
out of a reformulation and extension of CCS. In turn, it boosted the
invention and study of a whole zoo of further process calculi.

In this tutorial, we provide a bird’s-eye view on the jungle of results,
techniques and subtleties about mobile process calculi. Next to a rough
overview on the zoo of calculi, this includes the coverage of both se-
mantic and pragmatic aspects, ranging from notions of equivalence and
expressiveness to challenging application domains.

Disclaimer

This document does not intend to constitute yet another, possibly updated bib-
liographic article about mobile process calculi. There have been several already.
To my knowledge, Kohei Honda did the first one in 1998, published online. Sil-
vano Dal-Zilio did another one in 2001 [Dal01], integrating references to “truly
mobile” calculi reminiscent of Mobile Ambients. Finally, during the years 1994–
2003, Björn Victor and I actively co-maintained an online bibliography and web
pages on the topic of Calculi for Mobile Processes [NV98]. When we stopped
updating the bib-files, the corresponding LATEX’ed version of the complete bib-
liography was 29 pages long, of course not even being complete at that time.

This document neither intends to constitute a typical technical tutorial-like
introduction to mobile process calculi. There have been several already. The
usual suspects that I would recommend are the ones listed on the mobility
web pages, carefully written by Milner et. al. [MPW92, Mil99], Parrow [Par01],
Pierce [Pie97], Sangiorgi [San01], Sewell [Sew00], etc.

This document, as well as the actual tutorial talk at CONCUR, rather tries
to respond to typical critical questions that I often come across when having to
defend mobile process calculi. The questions matter, especially when posed by
“non-believers” who are very knowledgeable concerning immobile process calculi
(like ACP, CCS and CSP) and who challenge that mobile process calculi would
be truly foundational, canonical, elegant, or even useful at all. Especially when
compared to the previous immobile calculi. The idea for such a document dates
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back to July 2003 when I proposed to the moca mailing list to develop a Mobility
FAQ. Unfortunately, this idea had not taken off since, so here I go again.

To my colleagues in the Pi Calculus community, I apologize for possibly having
missed to cite some of their own work, but there are simply too many interesting
papers to include all that I probably should have. I also apologize for possibly
trivializing too much on certain aspects within this informal guide.

The following questions (each listed as a separate section) represent just a
starting point. Many more deserve to be posed and hopefully will be (cf. §10).

1 What’s the Relation Between Ambient and Pi Calculi?

A welcome source of confusion. It is triggered by both families of calculi being
equipped with the label “mobile”, but interpreted on a quite different concept
of “locations”, i.e., places within a distributed system. The mobility difference is
of course also manifest in the two quite different underlying basic computational
paradigms. An obvious commonality is the role and treatment of names and the
use of a restriction operator to dynamically create fresh names and to statically
delimit and govern their scope during future computations. Both families of
calculi are therefore nowadays also called nominal (cf. [Gor02]).

In Pi Calculi [MPW92], the location of a process can be understood as de-
termined by its surrounding network configuration: the (current) set of active
communication channels (a processes’ communication interface), together with
the set of partners reachable through these channels. Then, the location of a
process changes whenever its surrounding network configuration changes. The
role of name passing is precisely to implement such dynamic reconfigurations
by means of explicit communication. This has been very clearly explained, e.g.,
by Milner [Mil99, §8]. The real expressive power of the Pi Calculus stems from
the fact that also local (read: bound) names can be shipped in a controlled
fashion.

In contrast, in Ambient Calculi [CG00], the location of a process is modeled
explicitly by means of a syntactic entity. Locations usually appear as nested
hierarchies. Processes themselves are locations. Computation occurs by having
locations move around the hierarchy, thus by changing it. Depending on the set
of Ambient primitives, location boundaries can also be dissolved dynamically.

In synthesis, there are also extensions of Pi Calculi with explicit concepts
of location and movement, like the Distributed Pi Calculus or the Nomadic Pi
Calculus. On the other hand, for convenience, also the Ambient Calculus and its
descendants provide explicit communication concepts, although often bound to
be used locally within a single ambient. To compare the expressive power of Pi
and Ambient Calculi, mutual encodings have been studied in great detail.

With respect to this section, I also recommend Silvano Dal-Zilio’s commented
bibliography [Dal01]. In it, he structures the discourse by dividing mobile calculi
into labile process systems (relating to chemistry) and motile (relating to biol-
ogy) process systems. The former corresponds more to the first-order movement
of names, the latter more to the higher-order movement of processes.

In this document, I will deliberately focus much more on Pi calculi.
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2 The Pi Calculus Is Too Complicated!

There are actually many different reasons why people conceive the Pi Calculus
as being complicated. In fact, sometimes it really is. But it does not have to be.

The Syntax Is Unreadable. Many different syntactic variants of the Pi Cal-
culus have appeared over the years. However, for understanding how to send
a value v over a channel a it should not matter that much whether you write
it as av or a〈v〉 or a ← v or a!v. I do agree that the “bar” notation is not
necessarily ideal, but it originates from CCS, and one can also get used to it.
The arrow notation was introduced in Honda’s ν-calculus, which is asynchronous
(see below) and makes it resemble an assignment. The “bang” notation is closely
related to ASCII syntax, which is useful when the goal is to discuss programming
idioms, but you might confuse it with the replication bang (see below).

A quick word about names . . . and (channel) constants . . . and variables. In
CCS with label passing [EN86], all of these entities were modeled as distinct syn-
tactic concepts. In the original Pi Calculus [MPW92], they were unified into the
single concept of names. Both approaches have their advantages and disadvan-
tages. If you have just names, then many definitions get much more light-weight.
If you have the distinction, then you get easier control when you have to distin-
guish names according to the positions in which they may occur. The differences
are subtle, but most of the time just a matter of taste, philosophy or readability.

To Be Foundational, There Are Far Too Many Primitives. When com-
pared to the Lambda Calculus, there are definitely more primitives. But, the
domain of concurrent computation is also more complicated. On the other hand,
one of the smallest and in my opinion very readable Pi Calculus with well enough
expressivity is the Asynchronous Pi Calculus, my personal favorite, with or with-
out the matching construct [x = y]P . Its syntax is generated from this grammar:

P ::= 0︸︷︷︸
nil

∣∣ P |P︸︷︷︸
parallel

∣∣ a〈v〉︸︷︷︸
message

∣∣ a(x).P︸ ︷︷ ︸
reception

∣∣ ! a(x).P︸ ︷︷ ︸
replication

∣∣ (νx)P︸ ︷︷ ︸
restriction

It can also get smaller, but this is rather a debate covered by the study of (mu-
tual) encodings between the various calculi. See Section 6, but also [Yos02] for
a study of minimality based on combinators appealing to the Lambda Calculus.

The Labeled Semantics Has Too Many Side-Conditions. I got two an-
swers. Labels characterize the interactions with the observing environment. Un-
der dynamic reconfigurations, the scope of binding structures may span across
the interface between an observed process system and its concurrently observing
process. As a consequence, a labeled semantics must carefully keep track of which
names may occur in free or bound position. This justifies the side-conditions.

Now, please have a look at §4, and then come back here. In the spirit of the
various incarnations of the Pi Calculus, the labeled semantics is only used for
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the purpose of providing an underlying deductively defined transition relation
on which to define labeled bisimilarities—as proof techniques. For understanding
the execution of processes, reduction semantics plainly suffices.

There Are Far Too Many Kinds of Bisimulation. Yes and no. The problem
that is usually referred to, when complaining about the many bisimilarities in
Pi Calculi, is the different versions called ground, early, late, open, . . . .

First, consider that also for immobile process calculi, a frightening number of
process equivalences have been defined, studied and compared [Gla93]. There,
the usually accepted defense seems to be that the choice of process equivalence
depends on the application under study: the strongest equivalence that is sat-
isfied by a pair of processes tells you a lot about their intuition and semantics.
For the many bisimilarities of Pi Calculi, such an argumentation does not quite
play well, because the notions are too close to each other. The question of which
bisimulation scheme implies the more natural equations leads to debatably sub-
jective answers on whether they matter in practice [SW01].

Now, ultimately, we are interested in process congruences. I simply take this
point of view for granted, so I will not further argue for it. In process calculi
with explicit passing of data, congruences also need to consider closure prop-
erties w.r.t. input prefix, i.e., the appearance of processes as continuations of
input clauses, where input variables are to be substituted by the received data.1

All of the above-mentioned notions are just variants of bisimulation that differ
in the treatment of substitution of names (variables) by other names (data).
Unfortunately, the moment on when to apply substitutions, gives rise to strictly
different bisimilarities. Which one is the good one? There are at least three
answers.

If you want a bisimilarity that constitutes a congruence by itself, then choose
the open variant. It is also the one, for which more verification tools exist (cf. §7).

If you are of the opinion that the Pi Calculus is no good, because all these
bisimilarities differ, then you should be happy to see that there are Pi Calculi
in which the bisimilarities actually coincide . . . and are congruences themselves.
This is one of the many reasons for which I (very subjectively) very much “like”
the Asynchronous Pi Calculus (cf. §2 and §4). There is also the Private Pi Cal-
culus (formerly called “Pi Calculus with internal mobility”) [SW01]. Both of
these are strict subcalculi of the “standard” Pi Calculus that nevertheless retain
sufficient expressive power (cf. §6) for most if not all practical purposes.

Last but not least, please (unless you have already had) have a look at §4,
and then come back here. Assume you agree that barbed congruence or re-
duction congruence is what your bisimulation-based congruence2 shall coincide
with. Then, depending on the calculus at hand, chances are very good that the
bisimulation scheme to go for (i.e., to base your congruence on) is the early
one.
1 Note that some problems already arise in the context of Value Passing CCS [Ing94],

so it is not only a problem of name passing calculi.
2 Usually, we take the largest congruence contained in a given bisimilarity by requiring

its closure under substitution. The result is called full bisimilarity in [SW01].
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3 Why Are There So Many Different Calculi?

Counter-question: why are there so many different programming languages?
Surely, there are several different driving forces that triggered this abundance

of Pi Calculi. We may classify them according to several quests, namely for:

Minimality. Which primitives are needed to retain sufficient expressive power?
Usually, particular (combinations of) primitives are best studied in isolation,
each time giving rise to a new variation of the calculus. Typical primitives
of interest are the basic communication paradigms, which can be synchro-
nous [MPW92], asynchronous [Bou92], include selection labels as in TyCO
[Vas94], and the inclusion of matching and mismatching primitives (there
would be too many papers to cite, here).

Applicability. For every application (domain), one usually has the choice be-
tween the use of the bare base calculus, or some syntactically sugared version.
Then, it is often a matter of efficiency of available implementations or the
precision and comprehension of feedback from formal analysis that triggers
the decision to come up with yet another extension of the calculus. Suitable
data types are a popular candidate to conveniently extend existing calculi
(see also the Applied Pi Calculus [AF01]). Sometimes, however, completely
new dimensions are explicitly added to some base calculus, driven by the
application. Explicit notions of space [RH98, WS00, Uny01], time [Ber04],
stochastics [Pri95], probabilities [HP00], . . . , each give rise to new calculi.

Implementability. The interpretation of Pi Calculus as a computational for-
malism implies that it shall be implemented in order to execute its programs
on computers, not just on paper. This quest contributed to the wide-spread
use of (extended) sub-calculi often based on asynchronous communication
like the ν-calculus [HT92], Lπ [MS04], and the Join Calculus [FG96]: synchro-
nous communication, especially combined with general form of summation,
is too hard to implement efficiently in a distributed setting [Pal03].

4 What Are These “Barbs”?

At the time of CCS, providing an operational semantics to a process calculus
meant to write out deduction rules for a labeled transition relation, where the in-
tuition is that labels characterize what a process is able to do. One distinguishes
internal (invisible) from external (visible) steps. Visible steps model the inter-
actions with an observer—a process that represents the actions of the observing
environment. Technically, the labels were just copied from the occurrence of syn-
tactic actions in process terms, with one exception: internal steps (labeled by τ)
can also be triggered by the concurrent execution of two complementary (syn-
tactic) actions, occurring at two different syntactic positions within the process.
Back then, the world was mostly simple and elegant. ACP was a bit more flexible
by allowing more varied new actions to be produced by means of combinations
of concurrent actions. With the Pi Calculus, labeled semantics got more compli-
cated since actions had to consider more structure: directed channels (subjects),
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data (objects) and even dynamically adaptable binding information. A labeled
semantics to keep track of such aspects looks, at first, rather complicated to the
outsider. Even worse, there seem to be several different but equally meaningful
possibilities to characterize oberver actions through labels.

Let us take a step back. Initially, labeled transition semantics tried to prepare
for (at least) three things at a time: (1) to define an execution semantics, which
also considered actions at the interface to observers; (2) to define a sensible
notion of observational congruence, and (3) to provide a tractable (co-inductive)
proof technique for this notion. It is here that the Pi Calculus is too rich a setting
in that it allows for many reasonable choices of how to define things (cf. §2).
Now, the “barbed approach” [MS92] provides a simple and reasonably uniform
solution, based on the separation of the above-mentioned three definitional tasks.

1. One defines a simple unlabeled transition semantics, called reduction se-
mantics that only considers the execution of internal steps, which are inde-
pendent of the observing environment. To this aim, and to cope with the
syntactic distribution of the complementary parts of redexes, reduction is
considered modulo structural rearrangement congruence (typically monoid
laws for composition and summation, among others), according to

P ≡ Q Q −→ Q′ Q′ ≡ P ′

P −→ P ′

The main reduction rule for the Asynchronous Pi Calculus above then is:

a〈v〉 | a(x).P −→ {v/x}P

In Pi Calculus, the treatment of fresh names is also conveniently pushed into
the notion of structural congruence, essentially by the law

(νx) ( P | Q ) ≡ ((νx)P ) | Q if x does not occur freely in Q

that allows to extend or syntactically shrink the scope of bound names. Thus,
to model the so-called scope extrusion, one just first structurally extends the
scope—reading the above law from right to left—and then applies the simple
standard reduction rule within the scope. As a result, the reduction semantics
for the Pi Calculus looks actually almost as simple as the one for CCS.3

2. Based on a reduction semantics, one defines a bisimulation-like notion of ob-
servational congruence on top. Since reductions do not contain information
about the observing environment, the congruence is defined by explicit quan-
tification over sets of contexts, i.e., processes with a single hole. Formally, a
symmetric relation B is a barbed bisimulation, if whenever P B Q, then
– P −→ P ′ implies that there is Q =⇒ Q′ with P ′ B Q′, and
– P “has barb O” iff Q “has barb O”.

3 Exercise: to get a feeling for structural congruence, it is instructive to try to find a
minimal set of structural rearrangement laws (≡) that suffice to define CCS reduction
in 1-1 correspondence to the labeled τ -transitions of the respective CCS-terms.
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The first item essentially requires the notion to be a reduction
bisimulation.

In the second item, barb O is usually instantiated by some observation
predicate, often written as ⇓ (or ⇓a), telling that one can reach a state where
some (or a particular kind of action involving the name a) action is enabled.

As usual, two processes P and Q are called barbed bisimilar, written
P ≈B Q, if there is a barbed bisimulation B that contains (P,Q). Barbed
bisimulation as such is not very interesting, because it does not consider
interactions with an observing environment. Thus, we add this information
explicitly. Two processes are barbed congruent, written P ∼=B Q, if, for all
contexts C[·], C[P ] ≈B C[Q]. Thus, barbed congruence is a contextual no-
tion. To prove two processes congruent, in addition to the otherwise sim-
ple obligations of the definition, one has to consider an infinite number of
contexts.

But, since quantification is done over an explicit set of contexts, we now
also have a convenient definitional scheme at hand to define coarser con-
gruences by cutting down the number of contexts considered. The biggest
beneficiaries are the following two: (1) notions of typed barbed congruence
(cf. [PS96]), where the class of contexts to consider is characterized by only
those that yield well-typed terms when plugging some process into the hole;
(2) notions of congruence up to translated contexts in the study of encodings
(cf. §6).

3. One is then looking for a labeled transition semantics and a suitable labeled
notion of bisimulation congruence that—as a proof technique—approximates
the previously defined uniform notion of barbed congruence. In other words,
barbed congruence should guide the quest for finding the “right notion of
labeled congruence”. Ideally, of course, one finds a labeled version that is
not only sound, but also complete w.r.t. the barbed notion.

Note that the above story is actually independent of the Pi Calculus. How-
ever, it was the Pi Calculus in whose rich context one felt the need to estab-
lish some more uniform way to capture observational equivalences. Later on,
it has also been followed by many other calculi, e.g., Ambient Calculi and Spi
Calculus.

Accompanying the discussion of barbed congruence, one should also men-
tion the arguably more canonical definition of so-called reduction congruence
[HY95]: the main difference is that no notion of observation predicate (i.e.,
barb) needs to be justified. Instead, the general notion of process insensitiv-
ity is used to govern the definition of process congruence on top of reduction-
closed equality (roughly corresponding to reduction bisimulation). In most
calculi, reduction congruence is finer than barbed congruence. Roughly, reduc-
tion congruence corresponds to the requirement of quantification over contexts
after every step in the bisimulation game. Fournet and Gonthier [FG04] have
proved, for the Asynchronous Pi Calculus with matching, that barbed con-
gruence and reduction congruence coincide, also with labeled asynchronous
bisimulation (cf. §2).
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5 Are There Any Applications?
More Precisely: Beyond What You Can Do with CCS ...

In the early years, there was the convincing analysis of (simple versions of) the
GSM handover protocol, being reused in many papers, with more or less com-
plicated scenarios. The situation reminds a bit of the numerous studies on the
Alternating Bit Protocol within immobile process calculi and other concurrency
formalisms during the 1980’s. This is not necessarily bad, because it allows re-
searchers to quickly get to the point and it allows referees to quickly understand
the added value of the technique contributed by some submitted paper.

It is probably true that, for a too long time, the GSM handover has been
the only truly mobile application example. Instead, those parts of the mo-
bile process calculus community that were interested in “applications” went
on studying the representations and implementations of high-level program-
ming concepts by means of encoding them into a basic mobile process calcu-
lus (cf. §6). Examples include typed imperative, functional, object-oriented and
even constraint-oriented programming, the latter two also in concurrent ver-
sions, whose semantics tends to be complex and difficult to get right. Although
the modeling or encodings of high-level programming paradigms, as well as of
typed data structures bears a number of similarities with assembler languages,
the contributions can be stated as being surprisingly successful: the precision,
depth and comprehensibility of results that could be achieved by translating
concepts into Pi Calculi is astonishing, particularly in the functional and object-
oriented domain. Also the Actor model—one of the sources of inspiration for the
Pi Calculus—could be understood by representing it as a particular typed Pi
Calculus [AT04].

Nevertheless, more and more truly mobile applications have been entering the
landscape. The motivation to model Internet phenomena led to various distrib-
uted Pi Calculi, as well as versions that natively integrate XML datatypes, and
also the Ambient Calculus. The Spi Calculus [AG99] has been used with suc-
cess to model security protocols. Stochastic Pi Calculi have been used to model
phenomena in Systems Biology [PRSS01]. This domain also inspired the devel-
opment of tailor-made nominal calculi [DL04]. Finally, the domain of Business
Process Modeling provides applications, where the standard original Pi Calculus
has proved to be a useful modeling tool [PW05].

In most if not all of these applications, the expressive power and careful treat-
ment of fresh name generation—a distinctive feature when compared to immobile
process calculi—is the key to concise and successful modeling.

6 What’s the Point of Studying Encodings?

Very many encodings that use Pi Calculi as target languages have been studied.
So many that I do not include any explicit references in this part. The use of
encodings is actually a quite standard technique. If you want to compare the
expressive power of two calculi, then it is convenient to study mutual encodings
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between them.4 If you want to represent high-level programming concepts (cf. §5)
within some basic calculus, then you do this by means of an encoding function.
Such encodings actually represent formal abstract implementations.

Encodings can be analyzed in many respects. Typically, a “good” encoding
preserves and reflects as many semantic properties as possible, e.g., notions of
equivalence, the decidability of properties, or just the existence of matching
transitions according to the operational semantics. Although many criteria for
the quality of encodings have been proposed, there is still not yet an agreed-upon
“theory of encodings” that tells how all of those criteria relate. Ongoing debates
include the following questions: (1) How compositional does an encoding have
to be? Is it acceptable to translate [[P |Q ]] as C[[[P ]]|[[Q ]]], where C could be
some powerful arbiter, or should we insist on C being the empty context? (2) Is
it acceptable to require the intended behavior of encoded terms w.r.t. encoded
contexts only, or should we insist on good behavior w.r.t. all contexts available in
the target language? (3) Is it acceptable that an encoding introduces divergence?

7 What About Tools?

Actually, there are quite a few available (see an incomplete list at [Nes]). Some
of them are compilers that allow one to efficiently run mobile programs written
within some high-level programming language based on one the Pi Calculi, and
this even in truly distributed settings. Others are analysis tools that allow one
to simulate Pi Calculus executions, even for the Stochastic Pi Calculus. Further
tools automate equivalence-checking, various forms of reachability analysis, some
of them specialized for security protocols written in variants of the Spi Calculus.
A member of the moca mailing list summarized the situation in 2003 as follows:
“Process-calculists are not so interested in coding and coders don’t read our
papers, so cross fertilization has been somewhat lacking”. I think it is fair to say
that the situation has changed at least a bit, but we could still profit from more
“efficient” analysis tools for mobile process calculi.

8 After 20 Years, What Are the Main Contributions?

This is a difficult question.
It is certainly the case that the fundamental role and pragmatic expressive

power of fresh-name generation has proved to be useful for many practical pro-
gramming and modeling problems (cf. §5).

The proliferation and extensive study of so many variations of the original Pi
Calculus has helped to build up a large set of semantic techniques and results.
It also helped to identify typical pitfalls and traps such that the development of
further (domain-specific) variations is nowadays a much easier task. It has in fact
become so easy to design new calculi (with notions of execution and observational
4 Apparently, the question of expressive power is particularly appealing in the context

of concurrency. The respective high quality 1-day workshop EXPRESS, which at its
peak attracted 30 submissions, is now already running its 13th incarnation.
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congruence, according to the scheme of § 4) that there is the running gag that
we can “make up new calculi while having breakfast, several of them”.

I think it is also fair to state that we have not yet discovered the process
calculus that constitutes the foundation of mobile/global/distributed computa-
tion. Some sweet spots have been identified, e.g., where the many bisimulations
collapse. Maybe, it could be stated as a contribution that there is reason to
believe that there simply is no single one, e.g., with a fixed single concept of
communication. Yet, if there is a single one, then it is likely a nominal calculus.

I also count as a main contribution the extensive study of name-based type
systems in the context of mobile process calculi. Although they sometimes appear
to be complicated, they are rich and flexible. The community even managed to
convince an EU-official in the context of the GC-initiative of the importance of
type systems for many concepts of distributed computation.

In this document, I have not at all covered the study of unifying models
that are designed to capture the different notions of sequential, concurrent and
distributed computation, e.g., Bi-Graphs. Their evolutionary development can
certainly be counted as a main contribution, supported by mobile process calculi.

9 I Want to Use the Pi Calculus. Should I Take One off the
Shelf, or Should I Assemble My Own Little Calculus?

There are some obviously good reasons for choosing a calculus off-the-shelf.
(1) You want to use one of the tools that have been written to analyze Pi Cal-
culus terms. (2) You do not yourself have to work out the theoretical results
that you might need for your application. (3) You need to be able to state that
you are using some “standard” calculus in order to convince your application
community. (4) You only need to read one or two papers on Pi Calculus yourself.

Yet, there are also very good reasons for using your own home-brewed calcu-
lus. (1) The typical argument for the use of domain-specific languages applies:
to model your application, existing calculi might not offer the right set of primi-
tives, be it at the proper level of abstraction, or be it a completely independent
modeling dimension that has not yet been considered appropriately. (2) You
have a Pi Calculus guru next door who knows about the traps and pitfalls, who
might help you work out the theory, or might even do it for you. (3) You might
get another paper published by carefully motivating the design of your domain-
specific process calculus. (4) You may help the process calculus community by
inspiring the development of new techniques and theories.

10 Will There Be Further Work?

Concerning the Pi Calculi themselves, I am convinced that active research will
continue for many more years, but I know of no roadmap that the community
has agreed to pursue, possibly apart from the UK Grand Challenge on Sciences
for Global Ubiquitous Computing. A list of open problems could be a good start.
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Ideally, this document triggers many more questions that the “Pi Calculus
community” should respond to. I will happily collect any such information—
questions and responses—and provide an online resource, e.g., in the form of a
Wiki, such that the guide will become less subjective as it appears herein.

Acknowledgments. Jos Baeten and Holger Hermanns for discussing related
issues at the social event of CONCUR 2001. The members of the moca mailing
list, in particular Martin Berger, for some discussion in July/August 2003.
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Abstract. We give a brief overview of operational models for concurrent
systems that exhibit probabilistic behavior, focussing on the interplay
between probability and nondeterminism. Our survey is carried out from
the perspective of probabilistic automata, a model originally developed
for the analysis of randomized distributed algorithms.

1 Introduction

The study of randomization in concurrency theory started almost two decades
ago, leading to the proposal of several formalisms. In this paper we focus on
operational nondeterministic models with discrete probabilities, and we analyze
them from the perspective of Probabilistic Automata.

After giving the formal definition of probabilistic automata, we describe other
existing proposals as extensions or restrictions of probabilistic automata, thus
surveying the existing literature from a uniform point of view. We then turn to
the definition of simulation and bisimulation relations. These relations are stud-
ied extensively for their mathematical simplicity; yet, several existing definitions
appear incomparable. We show how to view the existing definitions based on the
definitional style of probabilistic automata. We give several references along the
way, including references to other relevant topics that we do not cover explicitly.

2 Preliminaries on Measure Theory

We start with some preliminary notions from measure theory. Although we define
all the necessary concepts, some familiarity is useful. We refer the reader to any
textbook on measure theory in case the use of some concepts is hard to grasp.

A σ-field over a set Ω is a subset F of 2Ω that includes the empty set and
is closed under complement and countable union. We call the pair (Ω,F) a
measurable space. A special σ-field is the set 2Ω, which we call the discrete σ-
field over Ω. Given a subset C of 2Ω, we denote by σ(C) the smallest σ-field that
includes C, and we call it the σ-field generated by C.

A measure over a measurable space (Ω,F) is a function μ : F → R≥0 such
that μ(∅) = 0 and, for each countable family {Xi}I of pairwise disjoint elements
of F , μ(∪IXi) =

∑
I μ(Xi). If μ(Ω) ≤ 1, then we say that μ is a sub-probability
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measure, and if μ(Ω) = 1, then we say that μ is a probability measure. If F is
the discrete σ-field over Ω, then we say that μ is a discrete measure over Ω. In
such case, for each set X ⊆ Ω, μ(X) =

∑
x∈X μ({x}). We drop brackets from

singletons whenever this does not cause any confusion. We denote by Disc(Ω)
the set of discrete probability measures over Ω and by SubDisc(Ω) the set of
discrete sub-probability measures over Ω. We say that a set X ⊆ Ω is a support
of a measure μ if μ(Ω − X) = 0. If μ is a discrete measure, then there is a
minimum support of μ consisting of those elements x ∈ Ω such that μ(x) > 0.

A function f : Ω1 → Ω2 is said to be a measurable function from (Ω1,F1) to
(Ω2,F2) if the inverse image under f of any element of F2 is an element of F1.
In this case, given a measure μ on (Ω1,F1) it is possible to define a measure on
(Ω2,F2) via f , called the image measure of μ under f and denoted by f(μ), as
follows: for each X ∈ F2, f(μ)(X) = μ(f−1(X)). In other words, the measure
of X in F2 is the measure in F1 of those elements whose f -image is in X . The
measurability of f ensures that f(μ) is indeed a well defined measure.

3 Probabilistic Automata

In this section we define probabilistic automata and we relate them to several
other existing models.

3.1 Probabilistic Automata

The main idea behind probabilistic automata is that the target of a transition
is not just a single state, but rather is determined by a probability measure.
Thus, if a transition describes the act of flipping a fair coin, then the target
state corresponds to head with probability 1/2 and tail with probability 1/2.
However, in contraposition to ordinary Markov processes, for each state there
may be several possible transitions.

A probabilistic automaton (PA) is a tuple (Q, q̄, A,D), where Q is a countable
set of states, q̄ ∈ Q is a start state, A is a countable set of actions, and D ⊆
Q×A×Disc(Q) is a transition relation. The set of actions A is further partitioned
into two sets E,H of external and internal (hidden) actions, respectively.

The only difference with respect to ordinary automata is in the third element
of the transition relation D, which is not a single state but rather a discrete
probability measures over states. Indeed, an ordinary automaton can be seen as
a special case of a probabilistic automaton where all transitions lead to Dirac
measures, i.e., measures that assign probability 1 to a single state.

In the sequel we use A to denote a probabilistic automaton and we refer to
the elements of A by Q, q̄, A,D, propagating indices and primes as well. Thus,
e.g., H ′

i is the set of internal actions of a PA A′
i.

Remark 1. The definition of probabilistic automaton given here includes a single
start state; however, nothing prevents us from defining PAs with multiple start
states or where start states are replaced by start probability measures. Such
extensions do not provide much additional insight; however, they impose simple
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Fig. 1. A probabilistic automaton that flips a coin

cosmetic adjustments in several definitions that we prefer to avoid in favor of
clarity. Similar reasons motivated the restrictions on the cardinality of Q and A.

Example 1. Figure 1 gives a graphical representation of a PA that performs
an action flip and then beeps if the result of the coin flip is head and buzzes
otherwise. The PA is nondeterministic since the coin to be flipped can be either
fair or unfair, leading to head with probability 2/3 in the unfair case.

An execution fragment of a PA A is a sequence of alternating states and actions,
α = q0a1q1 · · ·, starting with a state and, if the sequence is finite, ending with a
state, such that, for each non final index i, there exists a transition (qi, ai+1, μi+1)
in D with μi+1(qi+1) > 0. We denote by fstate(α) the first state q0 of α, and, if
the sequence is finite, we denote by lstate(α) the last state of α. An execution
of a PA A is an execution fragment of A whose first state if q̄. We denote by
Frags∗(A) the set of finite execution fragments of a PA A.

An execution fragment is the result of resolving nondeterminism and fixing the
outcomes of the probabilistic experiments. However, resolving nondeterministic
choices only leads to more complex structures that should be studied.

Example 2. Consider the coin flipper of Example 1 and suppose we want to
compute the probability that it beeps. We should note first that such proba-
bility depends on the coin that is flipped. Indeed, the coin flipper beeps with
probability 1/2 if the fair coin is flipped, and with probability 2/3 if the unfair
coin is flipped. Therefore, in order to answer our question, we should first fix the
coin to be flipped, and then study probabilities on the structure that we get.

We can think of resolving nondeterminism by unfolding the transition relation
of a PA and then choosing only one transition at each point. From the formal
point of view it is more convenient to define a function, which we call scheduler,
that chooses transitions based on the past history (i.e., the current position in
the unfolding of the transition relation).

A scheduler for a PA A is a function σ : Frags∗(A) → SubDisc(D) such that,
for each finite execution fragment α and each transition tr with σ(α)(tr) > 0,
the source state of tr is lstate(α). A scheduler σ is deterministic if, for each finite
execution fragment α, either σ(α) assigns probability 1 to a single transition or
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Fig. 2. Probabilistic executions

assigns probability 0 to all transitions. A scheduler σ is memoryless if it depends
only on the last state of its argument, i.e., for each pair α1, α2 of finite execution
fragments, if lstate(α1) = lstate(α2), then σ(α1) = σ(α2).

Informally, σ(α) describes the rule for choosing a transition after α has oc-
curred. The rule itself may be randomized. Since σ(α) is a sub-probability mea-
sure, it is possible that with some non-zero probability no transition is chosen,
which corresponds to terminating the computation (what in the purely nondeter-
ministic case is called a finite execution fragment). Deterministic schedulers are
not allowed to use randomization in their choices, while memoryless schedulers
are not allowed to look at the past history in their choices. Deterministic and
memoryless schedulers are easier to analyze compared to general schedulers, and
several properties (e.g., reachability) can be studied by referring to deterministic
memoryless schedulers only.

Remark 2. Terminology may be confusing at this point. In the original defin-
ition of PAs [35] a scheduler is called adversary since it is seen as a hostile
entity that degrades performance as much as possible. In the field of Markov
Decision Processes [15], a scheduler is called policy since it is seen as an en-
tity that optimizes some cost function. In practice the three terms may be used
interchangeably.

Example 3. Figure 2 gives two examples of probabilistic executions of the coin
flipper of Example 1. In the left case the unfair coin is flipped, while in the
right case each coin is flipped with probability 1/2 and the buzz transition is
never scheduled. In general, considering that a scheduler may also terminate
executions, we can say that the coin flipper beeps with probability at most 2/3.
Furthermore, if we assume that transitions are scheduled whenever possible, then
we can say that the coin flipper beeps with a probability between 1/2 and 2/3.

We now describe formally how to associate a probability measure to execution
fragments once nondeterminism is resolved. Interestingly, we do not need to build
explicitly the structures depicted in Figure 2. First we need to define the set of
measurable events (when we talk about probabilities an element of the σ-field is
called an event); then we associate probabilities to events. As basic measurable
events we consider the set of cones of finite execution fragments, where the
cone of a finite execution fragment α consists of all possible extensions of α and
denotes the occurrence of α possibly followed by some other behavior. Formally,
the cone of α, denoted by Cα, is the set {α′ ∈ Frags(A) | α ≤ α′}, where ≤ is
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the standard prefix preorder on sequences. Informally, referring to Figure 2, the
probability of a cone Cα is the product of the probabilities of all the edges of
the path α. Formally, we give a recursive definition. Fixed a scheduler σ and a
state s, we define a measure εσ,s on cones as follows.

εσ,s(Cα) =

⎧⎨⎩
0 if α = q for some state q �= s,
1 if α = s,
εσ,s(Cα′)

∑
tr∈D(a) σ(α)(tr)μtr(q) if α = α′aq,

where D(a) denotes the set of transitions of D with label a. Standard measure
theoretical arguments ensure that εσ,s extends uniquely to the σ-field generated
by cones. We call the measure εσ,s a probabilistic execution fragment of A and
we say that it is generated by σ from s. If s is the start state of A, then we say
that εσ,s is a probabilistic execution.

The cone-based definition of σ-field is quite general, and indeed typical prop-
erties of interest are measurable. The occurrence of an action a (of a state s) is a
union of cones, and thus measurable since there are countably many cones. Sim-
ilarly, we retain measurability if we require n occurrences of an action or state.
Also infinitely many occurrences of an action are measurable, since they can be
expressed as the countable intersection, over all naturals n, of n occurrences.
It is also known that any ω-regular language is measurable [39] and that the
properties expressed by existing probabilistic temporal logics are measurable.

We conclude this section with the definition of a parallel composition operator.
In our definition we synchronize two probabilistic automata on their common
actions; however, many other synchronization styles are possible.

Two probabilistic automata A1,A2 are compatible if H1 ∩A2 = A1 ∩H2 = ∅.
The composition of two compatible probabilistic automata A1,A2, denoted by
A1‖A2, is a probabilistic automaton A where Q = Q1 × Q2, q̄ = (q̄1, q̄2), E =
E1 ∪E2, H = H1 ∪H2, and D is defined as follows: ((q1, q2), a, μ1 × μ2) ∈ D iff,
for each i ∈ {1, 2}, either a ∈ Ai and (qi, a, μi) ∈ Di, or a /∈ Ai and μi = δ(qi),
where δ(qi) denotes the probability measure that assigns probability 1 to qi and
μ1 × μ2((q′1, q

′
2)) is defined to be μ1(q′1)μ2(q′2).

3.2 Reactive, Generative, and Stratified Models

In [19] probabilistic models are classified into reactive, generative, and stratified.
The paper was first written in 1990 in the context of concurrency theory, where
the trend was to replace nondeterministic choices with probabilistic choices.
The main driving idea was that the presence of probabilities does not hide the
underlying nondeterminism, but rather gives more information.

A reactive system is a labeled transition system whose arcs are equipped with
probabilities. Furthermore, for each state q and each action a, either there is
no transition labeled by a from q, or the probabilities of all transition labeled
by a from q add to 1. In other words, a reactive system does not provide any
information about the way an action is chosen, but provides information about
the way a transition is chosen once the action is fixed. The information about the
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underlying nondeterminism for an action a can be retrieved via an appropriate
projection operation that removes all probabilities from the arcs.

A generative system is similar to a reactive system; however, this time the
requirement is that for each state q either there is no transition from q, or
the probabilities of all transition from q add to 1. In other words a generative
system adds information about the way actions are chosen. The information
about the actions available (i.e., the underlying reactive system) can be retrieved
by an appropriate projection operation that renormalizes the probabilities of the
transitions labeled by the same action.

A stratified system adds more information to a generative system in the sense
that a measure over visible transitions is obtained via several non-visible tran-
sitions that reveal some hierarchy. This model has not received much attention
in the literature and therefore we refer the interested reader to [19].

The view of [19] is that stratified is more general than generative and that
generative is more general than stratified with the justification that the pro-
jection operators preserve bisimilarity. Our definition of probabilistic automata
departs considerably from such view. Indeed, there is no way to encode the non-
determinism of the probabilistic automaton of Example 1 within a reactive or
generative system. In contraposition to the underlying idea of [19], probabilistic
automata keep explicitly both nondeterministic and probabilistic choices.

Observe that a reactive system can be seen also as a deterministic PA, i.e., a
PA that from each state enables at most one transition for each action. However,
this implies abandoning the idea of [19] that the underlying nondeterminism can
be retrieved by removing probabilities.

3.3 Markov Decision Processes

Another well known model of probabilistic and nondeterministic systems is
Markov Decision Processes (MDPs) [15], which in practice correspond to de-
terministic probabilistic automata. MDPs were studied originally within oper-
ational research: a process evolves probabilistically according to measures that
depend only on the current states (Markovian property); however, from each
state there are several possible actions available, each one leading to different
evolutions. The objective is to choose actions from each state (choose a policy)
so that some cost function is optimized. States may be associated with rewards
that are used to compute the cost function. MDPs are deterministic in the sense
that from each state each action identifies a unique evolution.

Another related model which is worth mentioning here are the probabilistic
automata of Rabin [34]. Again, these correspond to deterministic probabilistic
automata. They were studied originally in the context of language theory to
show that finite-state probabilistic automata accept a class of languages which
is strictly larger than regular languages.

3.4 Alternating Models

In [39] Vardi studies model checking algorithms for Markov processes in the pres-
ence of nondeterminism. For the purpose he distinguishes probabilistic states,
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Fig. 3. An alternating representation of the coin flipper of Figure 1

where the next state is determined by a probability measure, from nondeter-
ministic states, where several ordinary transitions may occur. The same idea
is followed in [22] for the definition of Labeled Concurrent Markov Chains. The
objective of [22] was to give a semantics to a probabilistic process algebra, where
probability measures are expressed by appropriate expressions. Thus, a distinc-
tion between nondeterministic and probabilistic states follows naturally.

The models of [39,22] are currently referred to as alternating models, in con-
traposition to probabilistic automata which are non-alternating. The model of
[22] is further called strictly alternating since it imposes a strict alternation
between nondeterministic and probabilistic states, whereas the model of [39]
permits transitions between nondeterministic states.

Since an ordinary transition is a special case of a probabilistic transition,
the alternating models can be seen as special cases of probabilistic automata,
where restrictions are imposed on the transition relations. This idea is formalized
in [37] via appropriate embedding functions. The interesting aspect of viewing
the alternating models as special cases of probabilistic automata is that several
concepts that in the literature are defined on the models in very different styles
turn out to be equivalent [37]. This is reassuring since it means that we can
grasp the whole theory by understanding fewer concepts.

Example 4. Figure 3 represents the coin flipper of Figure 1 as an alternating
probabilistic automaton. The main difference is that the transitions labeled by
flip are split into two transitions, one from a nondeterministic state to a proba-
bilistic state, and one from the probabilistic state to a probability measure over
nondeterministic states. There is indeed a folklore idea, formalized in [37], on
how to transform a non-alternating model into an alternating model by splitting
transitions and vice-versa how to transform an alternating model into a non-
alternating model by collapsing transitions. Observe also that the coin flipper of
Figure 3 is a PA as well if we add dummy internal labels to the unlabeled arcs.
This is the main idea behind the embedding functions of [37].

3.5 Generative Probabilistic Automata

The original definition of probabilistic automaton [35] was based on a more
general notion of transition where not only the target state is determined by a
probability measure, but also the action to be performed. In addition, it is also
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possible for a transition to deadlock with some probability. Although several
concepts can be adapted to this general definition of probabilistic automaton,
the main problem is that we are not aware yet of any meaningful definitions
of composition that are conservative extensions of existing definitions in non
probabilistic models. It is shown in [35] that several natural attempts break
associativity of composition. A successful attempt is reported in [12] with the
introduction of the bundle model. In this model a transition leads to a probabil-
ity measure over sets of ordinary transitions and thus parallel composition can
be defined easily. However, it is arguable whether this is really a conservative ex-
tension of ordinary automata or a faithful representation of generative systems.
For example, in [5] it is argued that the bundle model is more expressive than
generative probabilistic automata according to a classification that we describe
in Section 5; however, we may also see a bundle system just as a special case of
a probabilistic automaton in a similar way as we see the alternating models as
special cases of probabilistic automata via embedding. This point of view is not
investigated yet.

For the above reasons, as we do in this paper, it is now typical to use the term
probabilistic automaton to refer to what in [35] is called a simple probabilistic
automaton. Following the classification of [19] we could call the probabilistic
automata of [35] probabilistic automata with generative transitions or genera-
tive probabilistic automata and the probabilistic automata of this paper, i.e.,
the simple probabilistic automata of [35], probabilistic automata with reactive
transitions or reactive probabilistic automata.

3.6 Probabilistic I/O Automata

Following the style of [27], where the external actions of ordinary automata
are partitioned into input and output actions, it is possible to introduce the
input/output distinction on probabilistic automata as well. The advantage of
this approach is that we can recover all the techniques used within I/O automata,
including the task mechanisms used to describe fairness properties and the ability
to use language inclusion to preserve fairness properties as well.

A probabilistic I/O automaton (PIOA) [10] is a probabilistic automaton whose
external actions are partitioned into input and output actions such that for
each state q and each input action a there is at least one transition labeled
by a enabled from q (input enabling property). Output and internal actions are
called locally controlled actions. Two PIOAs can be composed only if their locally
controlled actions are disjoint. As a consequence, the external environment can
never block any locally controlled action of a PIOA (the other automata may
have the same action only as an input, which is always enabled), or, in other
words, every PIOA is in full control of its locally controlled actions. We can say
alternatively that each action is under the control of at most one component.

Another advantage of the input/output distinction is that it is possible to
consider PIOAs with generative locally controlled transitions, and yet define a
meaningful composition operator [40,35]. Indeed, the transitions of a composition
can be obtained either by synchronizing input transitions, or by synchronizing a



72 R. Segala

locally controlled transition of one component with appropriate input transitions
of the other component.

The definition of PIOA of [40] does not include nondeterminism: each state
enables exactly one reactive transition for each input action and possibly one
generative transition with locally controlled actions. The nondeterminism that
arises in a composition is resolved by assigning weights to each component and
using relative weights as probabilities to solve conflicts determined by locally
controlled transitions. It was observed later that this amounts to assuming that
the locally controlled transitions of a component PIOA are performed with time
delays governed by an exponential distribution whose delay parameter is the
weight of the component. Thus, the PIOAs of [40] are special instances of the
pure probabilistic models described later in Section 3.8.

3.7 Unlabeled Models

Probabilistic automata include labels; however, especially in the context of model
checking, it is typical to consider unlabeled models and add structure to the
states to define properties. For example, we could easily define probabilistic
Kripke structures by removing labels from the transition relation of a PA and
adding a labeling function that associates propositional symbols with states.

If we consider composition with synchronization between components, then
synchronization occurs typically via shared variables. However, problems similar
to those encountered with generative probabilistic automata arise if we do not
impose any control structure on the values of the shared variables (e.g., the values
of some variables are under the control of a single component). A successful
attempt to solve the synchronization problem in unlabeled models appears in
[13], where a probabilistic extension of reactive modules [1] is studied.

Example 5. Consider two unlabeled probabilistic automata A1,A2 whose states
include a variable X . Suppose that A1 from its initial state flips a fair coin to
set X either to 0 or 1, while A2 from its initial state flips a fair coin to set X
either to 0 or 2. What transition should appear from the initial state of A1‖A2?
We have at least two choices: either we deadlock whenever the two automata set
X in an incompatible way, and thus X is set to 0 with probability 1/4 and the
system deadlocks with probability 3/4, or we consider only compatible choices
and renormalize probabilities, and thus X is set to 0 with probability 1.

3.8 Pure Probabilistic Models

If we remove all nondeterminism and keep only probabilistic choices, then in
the unlabeled case we obtain Markov processes, while in the labeled generative
case we obtain Markov processes with actions. These models are used mainly
for performance evaluation and are studied in the context of stochastic process
algebras [20,24,6]. The underlying idea is that actions describe resources that are
available with exponentially distributed delays, which means that there is a close
correspondence between the delay parameter of the actions and their probability
to occur. Each model manages actions in a slightly different way, but overall
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actions are partitioned into two sets. Actions from the first set occur according
to some probability measures and describe the resources available, while actions
from the second set are passive, and simply synchronize with actions from the
first set. Passive actions describe the consumers of the resources. Thus some
input/output distinction is present. Composition amounts to adding resources
and users. If a resource cannot be used, then probabilities are renormalized.

A complete description of stochastic process algebras goes beyond the scope
of this paper. Here we observe that composition of stochastic process algebras
is not a conservative extensions of composition of ordinary automata and is not
comparable with composition of probabilistic automata. A good understanding
of the relationship between these models is still open.

We mention also the interesting approach to performance evaluation of In-
teractive Markov Chains [23]. In this case actions are immediate and time is
described by explicit transitions with exponential delays. The advantage of this
approach is that it is possible to keep nondeterminism in the model.

3.9 Models with Time

There is a vast literature on timed extension of probabilistic models. We have
described before some ways to associate delays with actions and we refer the
interested reader to a survey that appears in [7]. In the context of probabilistic
automata one possibility to deal with time is by adding explicit time-passage
transitions to the model and keep the underlying theory unchanged. This is
done already in the work of Hansson and Jonsson [22] by discretizing time and
representing the passage of a quantum of time via a “tick” action. Segala [35]
considers a dense time domain and adds to probabilistic automata time-passage
transitions labeled by the amount of time elapsed. However, in order to reuse
the theory of probabilistic automata, schedulers can only be discrete.

A treatment of real-time with non-discrete measures poses non-trivial mea-
surability problems that go beyond the scope of this paper. We refer the reader
to [30,18] for an understanding of the problem on deterministic models and to
[9] for an understanding of the problem in the presence of nondeterminism.

4 Simulations and Bisimulations

Simulation and bisimulation relations are attractive for their mathematical
simplicity. They have been studied extensively in the context of probabilistic
systems, including reactive systems [26], alternating models [21,32,2], and non
alternating models [36,4]. The existing definitions are very different in style;
however, as shown in [37], all the proposals end up being equivalent once we see
the alternating models as special instances of probabilistic automata.

4.1 Lifting Relations

We start by lifting a relation on a setX to a relation on probability measures over
X . This is useful since the target of a transition in a PA is a probability measure.
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Let R be a relation on a set X . The lifting of R, denoted by L(R), is a relation
on Disc(X) such that, μ1 L(R) μ2 iff for each upper closed set C ⊂ X , μ1(C) ≤
μ2(C), where the upper closure of a set C is the set {x ∈ X | ∃c∈C , c R x}.
This definition of lifting was first proposed in [16] in the context of non-discrete
systems and is equivalent to an earlier proposal of [25,36] for discrete systems
stating that μ1 L(R) μ′1 iff there exists a weighting function w : Q×Q → [0, 1]
such that (1) w(x1, x2) > 0 implies x1 R x2, (2)

∑
x1
w(x1, x2) = μ2(x2), and

(3)
∑

x2
w(x1, x2) = μ1(x1). Informally, w redistributes probabilities between μ1

and μ2 respecting R. An important observation is that if R is an equivalence
relation, then μ1 L(R) μ2 iff, for each equivalence class C of R, μ1(C) = μ2(C).

4.2 Strong Simulations and Bisimulations

A strong simulation on a PA A is a relation R on Q such that, for each pair of
states (q1, q2) ∈R and each transition (q1, a, μ1) of A there exists a transition
(q2, a, μ2) of A such that μ1 L(R) μ2. If R is an equivalence relation, then we
say that R is a strong bisimulation.

Sometimes it is more convenient to talk about simulation and bisimulation
relations between two PAs A1 and A2. These definitions can be recovered from
the definition above by considering the disjoint union of the states Q1 $Q2, the
union of the transition relations D1, D2, and requiring start states to be related.

If we apply the definition above to deterministic PAs, then we obtain the
definition of bisimulation of [26], and similarly we obtain the definition of bisim-
ulation of [21] if we consider strictly alternating PAs. There is also a definition of
bisimulation for alternating PAs proposed in [32]. This definition, however, co-
incides with our definition above only if we transform an alternating automaton
into a PA according to the construction of Example 4. Indeed, the definition of
[32] was given by viewing alternation just as a formal artifact to describe PAs.

4.3 Strong Probabilistic Simulations and Bisimulations

Consider the two PAs of Figure 4. The two PAs are not bisimilar since the
middle transition of A2 cannot be simulated by A1. On the other hand, the
middle transition of A2 is just a convex combination of the other two transitions.
If we are just interest in bounds to the probabilities of satisfying a property
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(say performing action beep), there should be no reason to distinguish A1 from
A2. In [36] it is shown that A1 and A2 satisfy the same formulas of PCTL, a
probabilistic temporal logic which indeed observes only bounds on probabilities,
and thus it is argued that A1 and A2 should not be distinguished. This lead to
the formulation of a probabilistic version of simulation and bisimulation relations,
where transitions can be simulated by convex combinations of other transitions.

Let A be a probabilistic automaton, and let {(q, a, μi)}I be a countable family
of transitions of A. Let {pi}I be a family of probabilities such that

∑
i∈I pi = 1.

Then the triplet (q, a,
∑

i∈I piμi) is called a combined transition of A.
A strong probabilistic simulation on a PA A is a relation R on Q such that, for

each pair of states (q1, q2) ∈R and each transition (q1, a, μ1) of A there exists a
combined transition (q2, a, μ2) of A such that μ1 L(R) μ2. If R is an equivalence
relation, then we say that R is a strong probabilistic bisimulation.

It turns out that in the alternating models strong bisimulation and strong
probabilistic bisimulation coincide [37]. Thus, the distinction between the two
kinds of bisimulation is relevant only for PAs.

Example 6. Observe that the ability to simulate a transition by convex com-
binations of transitions is lost in the alternating model, which is why strong
and strong probabilistic bisimulation coincide. Indeed, if we transform the prob-
abilistic automata of Figure 4 by splitting transitions, then they would not be
bisimilar any more since the intermediate probabilistic state reached by the mid-
dle transition of A2 cannot be related to any state of the transformation of A1.

4.4 Weak Probabilistic Simulations and Bisimulations

The next step is to abstract from internal computation and extend weak simu-
lations and bisimulations to PAs. The only interesting aspect is how to define a
weak transition in the probabilistic case. On ordinary automata a weak transition
is represented by a finite execution fragment whose trace consists of at most one
external action. Here the trace of an execution fragment α, denoted by trace(α),
is the subsequence of external actions that occur in α. In the probabilistic case
a weak transition is represented by a probabilistic execution fragment.

Let A be a probabilistic automaton, and let εσ,q be a probabilistic execution
fragment ofA generated by σ from state q. If εσ,q(Frags∗(A)) = 1 and there exists
an action a such that trace(εσ,q) = trace(a), then we say that (q, a, lstate(εσ,q))
is a weak combined transition of A. Here we have used implicitly the fact that
functions trace and lstate are measurable.

A weak probabilistic simulation on a PA A is a relation R on Q such that, for
each pair of states (q1, q2) ∈R and each transition (q1, a, μ1) of A there exists
a weak combined transition (q2, a, μ2) of A such that μ1 L(R) μ2. If R is an
equivalence relation, then we say that R is a weak probabilistic bisimulation.

Since we have imposed no restrictions on the schedulers that generate weak
transitions, we have defined directly the probabilistic versions of the weak re-
lations. Indeed, it turns out that the non-probabilistic versions of the weak re-
lations are not transitive [14]. A definition of weak bisimulation is proposed
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also for the alternating model [33] using deterministic schedulers. The definition
uses conditional probability measures and is given in a very different style com-
pared to this paper; however, our definition of weak probabilistic bisimulation
restricted to the alternating model coincides with the definition of [32].

4.5 Other Kinds of Bisimulations

Bisimulation relations are studied extensively also in pure probabilistic models.
The definitional style is very similar to ours and we refer the reader to [3] for
an extensive comparative study. In particular in the absence of nondeterminism
several relations coincide. There are also several variations of simulation and
bisimulation relations in the literature, often proposed with specific applications
in mind. Here we cite two important proposals.

In [36] there is a proposal for a probabilistic version of branching bisimulation,
which is shown to preserve a weak version of PCTL. This definition is given in the
same style of the previous subsections, except that some restrictions are imposed
on the intermediate states of a weak transition, exactly as in the definition of
branching bisimulation. A definition of branching bisimulation is also proposed
in [2] for the alternating model. Once again, the definition of [36] coincides with
the definition of [2] once restricted to the alternating model.

In [4] there is a proposal for a probabilistic version of normed bisimulation
which has the advantage of being decidable efficiently. Indeed, strong bisimu-
lations are decidable in polynomial time [8], while weak bisimulations are de-
cidable in exponential time on probabilistic automata [8]. Interestingly, though,
weak bisimulations are decidable in polynomial time in the alternating model
[32] since the alternating structure ensures that two states are bisimilar iff for
each action and each equivalence class the maximum probabilities of reaching
the given class with the given action coincide. See [8] for more details.

5 Concluding Remarks

In this paper we have given an overview of the main operational models for
probabilistic and nondeterministic systems. In doing so we have been forced to
leave out other important approaches that the reader may want to investigate
further. Within the field of domain theory and denotational semantics, several
models have been proposed that combine probability and nondeterminism. The
interested reader may start from [38,11] for more details. There has been also
extensive research on probabilistic extensions of guarded command languages
and their applications. The interested reader is referred to [28].

Our overview is given by taking probabilistic automata as reference model
and viewing the others as special cases or generalizations. There are also other
ways to classify models. In particular [5] proposes a hierarchy where a model
is more expressive than another one if it is possible to transform objects of
the least expressive model into objects of the other model so that bisimilarity
is preserved and reflected. The transformations should preserve states; thus,
for example, the transformations of [37] are not acceptable since they add or
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remove probabilistic states. Indeed, the alternating and non-alternating models
are incomparable according to [5].

We have omitted here any reference to process algebras, axiomatizations and
logical characterizations for probabilistic models. For process algebras the reader
may look at [31] and references therein, while for logical characterizations the
reader may look at [26,17]. The work in [17] is carried out in the context of
alternating non-discrete systems and improves the results of [26].
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Abstract. We describe an incomplete but sound and efficient livelock
freedom test for infinite state asynchronous reactive systems. The method
abstracts a system into a set of simple control flow cycles labeled with
their message passing effects. From these cycles, it constructs a homoge-
neous integer programming problem (IP) encoding a necessary condition
for the existence of livelock runs. Livelock freedom is assured by the in-
feasibility of the generated homogeneous IP, which can be checked in
polynomial time. In the case that livelock freedom cannot be proved, the
method proposes a counterexample given as a set of cycles. We apply an
automated cycle dependency analysis to counterexamples to check their
spuriousness and to refine the abstraction. We illustrate the application
of the method to Promela models using our prototype implementation
named aLive.

1 Introduction

The main characteristic of a concurrent reactive system [17] is that of maintain-
ing an ongoing activity of exchanging and processing information. One salient
property that any reactive system must satisfy is deadlock freedom, i.e., the exe-
cution of the system is non-blocking. However, a system may be free of deadlock
and yet it does no progress in executing its tasks. Such a situation is referred to
as livelock. Freedom from livelock is highly desirable as it is important to ensure
that the execution of a system is not only continuous but also meaningful.

Explicit state model checking techniques are mostly used to verify livelock
freedom for finite state systems [4,11,9]. However, these techniques suffer from
the state explosion problem especially when applied to asynchronous concur-
rent systems. Such systems usually possess a large global state space due to the
combinatorial interleaving of the executions of local processes. On the contrary,
integer programming (IP) based verification techniques do not rely on the enu-
meration of global states and thus avoid the state explosion problem. However,
the existing IP based techniques focus on the analysis of synchronous systems.

In this paper we propose an incomplete analysis method for livelock freedom
of asynchronous reactive systems, relying on the observation that control flow
cycles play a central rôle in the setting of reactive systems with a “forever run”
behavior. We consider asynchronous message-passing as the underlying commu-
nication paradigm of the systems that we analyze. The livelock freedom test is
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reduced to the solving of a homogeneous integer programming problem, which
can be done in polynomial time. In case the incomplete analysis method that
we propose cannot establish livelock freedom we use a heuristic abstraction re-
finement method to improve the accuracy of our analysis. Since the size of the
communication channels is not relevant to the analysis, we can assume they are
infinite, meaning that our method can verify infinite state systems that cannot
be addressed via an explicit state space exploration.

The paper is structured as follows. Section 2 introduces the running example
described in Promela. Section 3 properly defines the livelock freedom problem,
while Section 4 presents the core idea of checking livelock freedom using integer
programming solving. Section 5 gives the refinement procedure. We conclude
with experimental results, related work, conclusions and future work.

2 Promela

We briefly introduce the Promela modeling language for concurrent systems and
present the running example of this paper.

Promela is the input language of the SPIN explicit state model checker [11].
It has been successfully used for the modeling and analysis of many concurrent
systems [12,4]. The Promela language supports asynchronous communication as
well as synchronous rendez-vous communication and synchronization via shared
variables. In the scope of this paper, we concentrate on asynchronous communi-
cation and exclude the use of any other types of communication that Promela
offers.

mtype = {req, ack, rel};

chan c_s[2] = [1] of {mtype};
chan s_c[2] = [1] of {mtype};

proctype client(int index) {
do
:: c_s[index]!req;

s_c[index]?ack ->
// do some computation here

c_s[index]!rel;

od;
}

proctype server() {
do
:: c_s[0]?req -> s_c[0]!ack; c_s[0]?rel;
:: c_s[1]?req -> s_c[1]!ack; c_s[1]?rel;
od

}

init {
run server();
atomic {

run client(0); run client(1);
}

}

Fig. 1. The running example in Promela

Figure 1 shows a simple Promela model that will be used throughout the
paper as a running example. The model consists of two instances of the client
process type and one instance of the server process type. Each client client[i]
exchanges messages with the server over two exclusive communication buffers
c s[i] and s c[i]. The types of exchanged messages are defined as elements of
the special enumeration type mtype. Each client performs a loop: it first sends a
resource request (req) to the server; after it receives an acknowledgment (ack)
from the server, it performs some local computation and then sends back a
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resource release notification (rel). The server can accept only one request at a
time, and it chooses nondeterministically a request to handle.

The choice of the Promela language in the context of this paper is motivated
by reasons of convenience. Promela possesses the salient features of most asyn-
chronous concurrent system models, and a large number of models are publicly
available. However, Promela was designed to be used for finite state verification
and hence possesses some language features to ensure this property, such as lim-
iting data to finite domains and requiring message buffers to have finite capacity.
However, our livelock freedom analysis is applicable to both finite and infinite
state systems which is why we simply ignore the respective Promela constructs.
To facilitate our analysis we also assume that it is known at compile time how
many Promela processes of which type will be instantiated at run time. In Sec-
tion 4.3 we show that the soundness of our analysis does not rely on specifics of
the Promela language, which is why we put forward that its application to other
modeling and programming languages for asynchronous concurrent systems can
easily be accomplished.

3 Livelock Freedom

Livelock has been defined variously in different contexts [10]. For concurrent
systems, livelock often means “individual starvation”: a process is prevented from
performing some particular actions [17]. These actions are normally intended to
make progress, deliver outputs, or respond to the environment and other peer
processes. We call such an action a progress action. In the running example, a
progress action of a client is to do the local computation after it receives an
acknowledgment. In this paper we follow this meaning of livelock and give its
definition in the setting of reactive systems.

We define that a livelock for a reactive system is an infinite run in which only
non-progress actions are executed after a certain point of the run, i.e., all the
progress actions are repeated only a finite number of times. If a reactive system
has no livelock runs, then it is livelock free.

Both livelock and deadlock result in a lack of progress in the system. They are
sometimes not distinguishable from a practical point of view. However, these two
concepts are used to refer to two different sources of non-progress. Furthermore,
from a formal point of view, they belong to two different types of properties:
deadlock freedom is a safety property while livelock freedom is a liveness prop-
erty. As a consequence, the techniques used to check these two properties are
radically different. That is why we make a clear distinction of deadlock and
livelock in our definition: a finite run, in particular a deadlocked run, is not a
livelock run. In our analysis, we focus on checking the absence of livelock and
ignore the existence of deadlocks: if a system is proved to be livelock free using
our method, it may still have deadlocks.

The SPIN model checker distinguishes in a similar fashion between dead-
lock and livelock [11]. In Promela models, “progress” labels are attached to
progress actions. SPIN then checks livelock freedom by checking the absence of
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non-progress global cycles by a nested depth first search in the global state space.
However, such a state enumeration approach suffers from the state explosion
problem and can only deal with finite state systems.

In this paper we will cover infinite state systems with unbounded communica-
tion buffers. A standard modeling framework for such systems are communicating
finite state machines (CFSM) [22,1], which also serves as one intermediate ab-
straction level in our method. However, we can prove that the livelock freedom
is undecidable for CFSM, using a simple reduction from the following problem
proved to be undecidable in [1]:

Executability of a message reception in a CFSM system:

Instance: A CFSM M and a local state s of M having an outgoing edge
labeled by the receive action ‘?a’

Question: Does there exist a run of M such that the message reception ‘?a’
is executed in state s?

The reduction is as follows. Given M , s, and ?a as above, we construct an-
other CFSM M ′ such that M ′ enters in a livelock after the reception ‘?a’. More
precisely, M ′ is obtained from M by replacing the outgoing edge from s labeled
by ?a, with another edge also labeled by ?a but going to a new local state sL
that has a self-loop labeled by !aL. Moreover, we add to M ′ a new state machine
with a single state s′L with a self-loop labeled by ?aL. In M ′ we set all actions
except !aL and ?aL as progress actions.

It is now easy to see that the reception ?a is executed in state s of M if and
only if M ′ has a livelock run: For the direct implication, let r be a finite run of
M in which ?a in state s is executed only once as the last step. Then, we can
simulate the same run r in M ′ and reach the local state sL. At this point we
obtain a livelock by infinitely executing alternations of !aL and ?aL which are
the only non-progress actions of M ′. For the reverse implication, if M ′ contains
a livelock, this necessarily involves the sending of aL messages, but it is possible
only if state sL is reached, which implies that the reception ?a is executable in s
in M ′. From the construction of M ′ upon M , we can find a run in M such that
?a is executed in s. �

4 Livelock Freedom Analysis

We propose an incomplete but sound method to prove livelock freedom for asyn-
chronous reactive systems based on integer programming solving. The incom-
pleteness follows from the undecidability of livelock freedom as proved above.

We outline the method as follows. Given a reactive system and a set of progress
actions, we first carry out a series of abstractions that transforms the system
into a set of independent control flow cycles labeled with their message passing
effects. A cycle is a progress cycle if it contains one of the progress actions, and we
identify the set of all the local progress cycles in the system. We give a necessary
condition which ensures the existence of a livelock run, i.e., an infinite run in
which all the progress cycles are repeated only a finite number of times. We
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translate this condition into a homogeneous integer programming problem (IP).
If the resulting IP problem has no solution then the necessary condition cannot
hold, which implies livelock freedom. On the other hand, if the resulting IP has
solutions then the system may or may not be livelock free, which corresponds to
the incomplete side of our test.

4.1 Abstraction

In asynchronous reactive systems, concurrent processes coordinate their actions
by exchanging messages. Thus, the message passing behavior is a major factor
to decide how cycles in the control flow are executed. This observation underlies
the conservative abstraction approach sketched below for our livelock freedom
analysis. The same abstraction steps were also used in our previous work on
buffer boundedness analysis, which are detailed in [14,13]. In particular [13]
deals with specifics of abstracting Promela models.

Code Abstraction. Given the program code of a reactive system we first abstract
from variables, operations on data, the testing of conditions, etc., and retain only
the finite control structure and the message passing behaviour of all processes.
The resulting system is a CFSM system.

Message Orders. In the next step, we abstract from the order of messages in all
communication buffers. We use an integer vector to represent how many messages
of a certain type are currently stored in each buffer. In the running example,
an integer vector < 1, 0, 3, 2, 4, 6 > denotes that there is 1 req message in the
buffer c s[0], no ack message in s c[0], 3 rel messages in c s[0], 2 req messages
in c s[1], 4 ack messages in s c[1], and 6 rel messages in c s[1]. We also use an
integer vector, called an effect vector, to denote the message passing effect of
a transition. A positive component in an effect vector corresponds to message
sending, and a negative component corresponds to message consumption.

Activation Conditions and Dependencies of Control Flow Cycles. In this step,
we assume that (1) any control flow cycle can be reached from the initial con-
figuration of the system and that (2) the executions of these cycles are totally
independent from one another. We detect all the local control flow cycles in each
process of the system. We consider only simple cycles, i.e., cycles that cannot
be decomposed into smaller cycles. For each cycle, we compute the sum of the
effect vectors of all the transitions along the cycle. The resulting system is a set
of independent control flow cycles with their effect vectors. In the running ex-
ample, there are 4 cycles: one from the process client[0], one from client[1], and
two from server given as the two nondeterministic choices within the do loop.
Their effect vectors are respectively < −1, 1,−1, 0, 0, 0 >, < 0, 0, 0,−1, 1,−1 >,
< 1,−1, 1, 0, 0, 0 >, and < 0, 0, 0, 1,−1, 1 >.

4.2 Determining Livelock Freedom

A reactive system is livelock free if at least one progress cycle can be repeated
infinitely often in any infinite run. Let C1, . . . , Cn be the set of control flow cycles
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that we collect from the system, and Cj1 , . . . , Cjm (j1, . . . , jm ∈ {1, . . . , n}) be
the set of progress cycles. We use ci to denote the effect vector of a cycle Ci.
We use the following IP problem to characterize a necessary condition for the
existence of a livelock run, i.e., an infinite run in which any progress cycle can
be repeated only a finite number of times.

x1c1 + . . . + xncn ≥ 0̄ (1)

x1 + . . . + xn > 0 (2)

xj1 + . . . + xjm = 0 (3)

xi ≥ 0 for all i (4)

In the above inequalities, we assign an integer variable xi to each cycle Ci to
denote the number of times that it is repeated in a finite segment of a run. These
variables may have only non-negative values as imposed by the inequalities 4.
A particular assignment to all xi’s represents a linear combination of cycle ex-
ecutions. The inequality 1 states that the overall effect of a linear combination
of cycle executions does not consume any messages. Thus, an infinite exclusive
repetition of such a linear combination is possible since it does not run out of
any type of messages. The inequality 2 excludes a trivial combination in which
no cycle is executed at all. The inequalities 1 and 2 give a necessary condition
for the existence of infinite runs. The inequality 3 then excludes any progress
cycle Cji from a linear combination. Consequently, this condition excludes any
progress cycle from being repeated infinitely often in any infinite run. The argu-
ments in Section 4.3 ensure that the IP problem defined by the inequalities 1–4
gives indeed a necessary condition for the existence of livelock runs.

If the IP problem has no solutions, then the necessary condition cannot hold.
In such a case, at least one progress cycle Cji has to be repeated infinitely often
in any infinite run. This proves livelock freedom for the system. On the other
hand, if the IP problem has solutions, then we do not know whether the system
is livelock free since the IP problem gives a necessary but not sufficient livelock
existence condition.

In the running example, let the only progress action be the local computation
of one client, say client[0]. We use x1 to correspond to the cycle in client[0], x2
to the cycle in client[1], and x3 and x4 to the two cycles given as the two non-
determinstic choices within the do loop in server. The resulting livelock freedom
determination IP problem is given as below.

− x1 + x3 ≥ 0 (5)

x1 − x3 ≥ 0 (6)

−x1 + x3 ≥ 0 (7)

−x2 + x4 ≥ 0 (8)

x2 − x4 ≥ 0 (9)

−x2 + x4 ≥ 0 (10)

x1 + x2 + x3 + x4 > 0 (11)

x1 = 0 (12)

x1, x2, x3, x4 ≥ 0 (13)

The inequalities 5–10 restrict the aggregate effect vector of a linear combina-
tion to be positive1. The inequality 11 excludes an all-zero combination. The
inequality 12 excludes the only progress cycle in client[0]. There is one solution

1 A vector is positive if all its components are non-negative.
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satisfying these inequalities: x2 = x4 = 1 while assigning 0 to all other variables.
As a consequence we cannot prove livelock freedom for the running example.
However, we can construct a counterexample from the above obtained solution
as a collection of cycles whose variable receives a nonzero value in the solution.
A manual check of the counterexample reveals a real livelock scenario in which
the server decides to accept only requests from client[1]. Note that due to the
overapproximating abstractions that we use, a counterexample corresponds not
always to a valid execution of the system. In such a case, the counterexample is
called spurious. An automated method to determine spurious counterexamples
will be discussed in depth in Section 5.

To eliminate the source of livelock that we uncovered above, we modify the
model by removing the nondeterministic behavior of the server. We fix an order
in which the server alternatively handles requests from the two clients as follows:

proctype server() {
do
:: c_s[0]?req -> s_c[0]!ack; c_s[0]?rel;

c_s[1]?req -> s_c[1]!ack; c_s[1]?rel;
od

}

The resulting IP problem for the revised model, given below, has no solutions,
which implies livelock freedom.

− x1 + x3 ≥ 0 (14)

x1 − x3 ≥ 0 (15)

−x1 + x3 ≥ 0 (16)

−x2 + x3 ≥ 0 (17)

x2 − x3 ≥ 0 (18)

−x2 + x3 ≥ 0 (19)

x1 + x2 + x3 > 0 (20)

x1 = 0 (21)

x1, x2, x3 ≥ 0 (22)

Complexity of the Livelock Freedom Test. Given a reactive system, the size of
the constructed IP problem is linear in the number of message types and in the
number of simple local control flow cycles. The number of simple cycles may
be exponential in the size of the control flow graph. However, in practice the
control flow graph extracted from the Promela code of a process is sparse, and
we observed that the number of simple cycles is usually polynomial.

Furthermore, the IP problem that our method constructs is homogeneous, i.e.,
the right hand side of each inequality in the problem is 0. This homogeneous
IP problem can be solved in polynomial time as follows. We solve the linear
programming version of the IP problem to obtain a rational solution. This can
be done in polynomial time [19]. If we obtain a rational solution, we can easily
construct an integer solution by multiplying each component in the rational
solution by the least common denominator of all the components.

4.3 Soundness Proof

The soundness proof of our method relies on the following preliminary lemma and
proposition. In the following we denote by [i..j] the set {i, . . . , j} (for i ≤ j) and
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by x̄ the n-dimensional integer vector (x1, . . . , xn) ∈ Zn. For two n-dimensional
vectors, we have x̄ ≤ ȳ iff xi ≤ yi, for all i ∈ [1..n]. Moreover, x̄ < ȳ iff x̄ ≤ ȳ
and there exists i ∈ [1..n] with xi < yi.

Lemma 1. Let {c̄0, . . . , c̄n} be n + 1 vectors of dimension m (with n,m ≥ 1),
i.e., c̄i := (ci1, . . . , cim) for all i ∈ [0..n]. Then, if the following system of linear
inequations has no integer solutions

x1c̄1 + . . .+ xnc̄n ≥ 0̄ (23)
x1 + . . .+ xn > 0 (24)

xi ≥ 0 for all i (25)

then, there exists an upper bound B such that for all integer solutions of

c̄0 + x1c̄1 + . . .+ xnc̄n ≥ 0̄ (26)
x1 + . . .+ xn > 0 (27)

xi ≥ 0 for all i (28)

and any k ∈ [1..m],
c0k + x1c1k + . . .+ xncnk ≤ B.

Proof. Defining for each k ∈ [1..m] a function fk : Zn → Z as fk(x1, . . . , xn) :=
x1c1k + . . .+ xncnk, we will prove that fk is bounded for any k ∈ [1..m] on the
domain of integer solutions of (26)–(28).

By contradiction, assume that there exists a k ∈ [1..m] such that fk is un-
bounded. This implies that there exists an infinite sequence {x̄i}i≥1 of integer
solutions of (26)–(28) such that limi→∞ fk(x̄i) = +∞ (the limit cannot be −∞
because of (26)).

We first show that without loss of generality, we can assume that the sequence
{x̄i}i≥1 has the property that

for any i < j : x̄i < x̄j and fk(x̄i) < fk(x̄j) (29)

This can be proved using standard mathematical analysis techniques as follows.
Since limi→∞ fk(x̄i) = +∞, we can select an infinite subsequence {ȳi}i≥1 of
{x̄i}i≥1 such that {fk(ȳi)}i≥1 is strictly increasing. Moreover, we can select
{ȳi}i≥1 to be also strictly increasing. This is possible because {ȳi}i≥1 is on
one hand bounded from below by 0̄ following (28), while on the other hand is
an infinite sequence taking fk to +∞. In the following, we replace {x̄i}i≥1 by
{ȳi}i≥1 (for the sake of consistency with the notation in (29)).

Next, we observe the behavior of the increasing sequence {x̄i}i≥1 on the other
functions fk′ , for k′ �= k. We have the following two possibilities for each k′ ∈
[1..m] \ {k}:

– {fk′(x̄i)}i≥1 is bounded: In this case, since {fk′(x̄i)}i≥1 is also infinite,
there exists an infinite increasing subsequence {ȳi}i≥1 of {x̄i}i≥1 such that
fk′(ȳi) = fk′(ȳj), for any i, j ≥ 1.
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– {fk′(x̄i)}i≥1 is unbounded: Because of (26), {fk′(x̄i)}i≥1 is bounded from
below (by−c0k), so necessarily there exists an infinite increasing subsequence
{ȳi}i≥1 of {x̄i}i≥1 such that fk′(ȳi) < fk′(ȳj), for any i < j (similar to (29)).

From (29) and the above case analysis applied stepwise for each k′, it is easy
to see that there exists an infinite strictly increasing sequence {ȳi}i≥1 (whose
elements are solutions of (26)–(28)) such that fk(ȳi) ≤ fk(ȳj), for any k ∈ [1..m],
and i < j.

Finally, let us fix two indices i < j (from [1..m]). Then, for all k ∈ [1..m]
we have fk(ȳi) ≤ fk(ȳj), which implies fk(ȳj) − fk(ȳi) ≥ 0. But since all the
functions fk are linear, we have that fk(ȳj− ȳi) ≥ 0 (*). Moreover, since {ȳi}i≥1
is strictly increasing, ȳj − ȳi > 0̄ (**). Slightly rewriting (*) and (**), we obtain
that ȳj − ȳi is a solution to the system of inequations (23)–(25), which is a
contradiction with the hypothesis of the lemma. �

Proposition 1. Let S be a CFSM system and C a subset of control flow cycles
in S. Suppose that there exists no positive linear combination of effect vectors
of cycles in C. Then, for any infinite execution in which only cycles in C are
executed, the number of messages in all the communication buffers is always
bounded.

Proof. Given a CFSM and a subset of control flow cycles C = {C1, . . . , Cn}, we
consider c̄i as the effect vector of cycle Ci for each i ∈ [1..n]. Moreover, let c̄0 be
an upper bound for all the effect vectors of the all acyclic paths of the CFSM.

First, since there exists no positive linear combination of effect vectors of
cycles in C (from the hypothesis of Proposition 1), the hypothesis of Lemma 1 is
satisfied, which implies that there is a global upper bound for c̄0+x1c̄1+. . .+xnc̄n
for any fixed c̄0 and x̄ := (x1, . . . , xn). This means that there is an upper bound
B on all the message buffers for all executions consisting of an acyclic path
followed by a linear combination of simple cycles.

Secondly, suppose now by contradiction that there exists a run of the CFSM
that strictly exceeds the bound B in one of the buffers and let us denote by r a
finite run that increases the number of messages in one of the buffers to B + 1.
Since r is necessarily composed of an acyclic path and a finite number of simple
cycles (seen as a linear combination of cycles), the effect of r on the message
buffers is bounded by B (according to the above application of Lemma 1), but
this contradicts the previous assumption on r being able to fill B + 1 messages
on one of the buffers. �

Theorem 1 (Soundness). If we prove livelock freedom for a reactive system
using the method described in Subsection 4.2, then the system is indeed livelock
free.

Proof. Consider a reactive system for which we use our method to prove livelock
freedom. The first abstraction step constructs a CFSM from the original system
in a conservative way in that it preserves the existence of livelock runs. Thus, if
the CFSM is livelock free, then the original system is also livelock free.
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Assume that the reactive system is proved to be livelock free. Then, in the
corresponding CFSM there exists no positive linear combination of effect vectors
of non-progress cycles (as there is no solution to the corresponding IP problem
described by the inequalities 1–4). By Proposition 1, taking C to be the set of
all non-progress cycles, we obtain that the number of messages in each commu-
nication buffer is bounded if only non-progress cycles are executed.

We prove that the CFSM is livelock free, which implies livelock freedom for
the original system. We assume by contradiction that the CFSM has a livelock
run r. In r all the progress cycles are repeated only a finite number of times.
Then, there exists a particular point of time t in r after which only non-progress
cycles are executed. As discussed above, following Proposition 1, the number of
messages in each communication buffer must always be bounded after t in r.
Note that any state machine in the CFSM has only finitely many local states.
Thus, there will be only finitely many reachable configurations of the CFSM after
t in r. Furthermore, since r is an infinite run, there must be two distinct points
of time t′ and t′′ after t at which the CFSM reaches one same configuration.
The finite segment of execution between t′ and t′′ can be represented as a linear
combination of executions of non-progress cycles. The aggregate effect vector of
this segment is however an all-zero vector. This contradicts the previous claim
that no linear combination of effect vectors of non-progress cycles is positive. �

Note that the above proof does not use any assumption about buffer lengths. Con-
sequently, if a system with unbounded buffers is proved to be livelock free, then
the same system with bounded buffers of predefined lengths is also livelock free.

5 Counterexample-Based Refinements

The abstractions described in the previous section reduce the accuracy of the
analysis, and our method may propose spurious counterexamples. We observed
that the introducing of spurious counterexamples is often caused by the ab-
straction from those conditional statements that determine the repeatability of
control flow cycles. As we will show later, such conditionals enforce dependen-
cies among cycles that have been lost during the abstractions. In [15] we have
proposed a counterexample-based refinement technique based on re-discovering
local dependencies among the cycles of a same process. This technique can be
adopted to the livelock freedom analysis in this paper and will be illustrated on
a simple example. We will also present an improvement to the determination of
cycle dependencies in [15] that is more efficient and precise in practice. We men-
tion that all the techniques used in the refinement procedure are conservative
with respect to livelock freedom.

Cycle Dependency Analysis. The details of the cycle dependency analysis can
be found in [15]. Here we only illustrate the basic idea of the technique on a
simple example. Figure 2 shows the control flow graph of a process in a reactive
system. It contains four cycles C1, C2, C3 and C4. Suppose that none of them
is a progress cycle and that the integer variable x is local. C1 is enabled when
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(x <= 5)->
ch!msg1;
x++

x++

x=6

ch?msg2

x=0

C1

C2

C3 C4

Fig. 2. Running example of Section 5

the value of x is no larger than 5. When executed, it sends a message msg1 and
increments the value of x by 1. C1 leads to a spurious counterexample because
the condition x ≤ 5 is omitted during the abstraction, i.e., in the abstraction it
is assumed that C1 can be executed forever without interruption. To exclude this
spurious counterexample, we perform the following cycle dependency analysis.

– We first determine that C1 can be repeated without interruption at most 5
times before the condition x ≤ 5 turns false. However, the determination of
the maximal number of times that a cycle iterates relies on a termination de-
cision which is undecidable. We recently proposed an incomplete automated
termination proving technique [16] that can be easily extended to estimate
cycle iteration counts, complementing the approach described in [15].

– We determine two sets of cycles that C1 depends on. One set consists of
all C1’s neighbors, i.e., cycles that share some common states with C1. In
our example the neighbors are C2 and C3. Another set of cycles that we
determine consists of all the so-called supplementary cycles that, intuitively
speaking, exert a positive effect to enable the execution of C1 again, i.e., to
render the condition x ≤ 5 to become true. As can be easily seen, C1 has only
one such supplementary cycle which is C3. However, in general it is hard to
determine the exact set of supplementary cycles for a given cycle. Later in
this section we will propose a so-called “next door” strategy that can be used
to determine supplementary cycles more efficiently and precisely in practice.

– The following cycle dependencies can be determined from the above analysis:
every 5 times that C1 is repeated, (1) one of its neighbors has to be executed
at least once; and (2) one of its supplementary cycles has to be executed at
least once.

Refinement. We can easily express the two above determined dependencies using
two linear inequalities. Let ci be the variable corresponding to Ci in the respec-
tive livelock freedom determination IP problem. The inequality c1 ≤ 5(c2 + c3)
describes the first dependency regarding neighbors, and the inequality c1 ≤ 5c3
describes the second one regarding supplementary cycles. These two inequalities
are then added to the livelock freedom determination IP problem, which refines
the abstraction by imposing the discovered cycle dependencies and thus ruling
out the spurious counterexample consisting of only C1.

In [15] we also consider other sources of cycle dependencies than those im-
posed by conditional statements in cycles. We leave out the discussion here due
to limited space.
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Next Door Strategy. In [15] two alternative methods were proposed to determine
supplementary cycles. These methods are either relatively coarse or costly, and
we give an improvement using what we call the “next door” strategy.

Note that, in the example in Figure 2, the incrementation of x in C4 does not
influence the satisfaction of the condition in C1. This is because x is re-assigned
with a constant by C3, a neighbor of C1, on the way back to C1 from C4. Thus,
C4 is not a supplementary cycle of C1. In fact we can see that C1 is isolated by
all its neighbors in that, upon re-entering C1, x is always reset to some constant
by one of its neighbors. In such a case, the satisfaction of the condition in C1
is totally decided by its neighbors, and thus no cycle other than a neighbor is
supplementary to C1.

Given a cycle whose supplementary cycles are to be determined, the next door
strategy will first check whether the given cycle is isolated by all its neighbors.
When this is the case, we can safely restrict the search for supplementary cycles
to the set of its neighbors.

6 Case Studies

We implemented the livelock freedom proving method in a prototype system
named aLive, and carried out a few case studies with realistic Promela models
on a Pentium IV 1.60GHz machine with 1GB memory. We also compared the
performance of aLive and the SPIN model checker on each model.

GARP. The Group Address Registration Protocol (GARP) is a network protocol
allowing users to dynamically register to and detach themselves from a multicast
group. A progress action is either for a user to join or leave a multicast group,
or for the system to remove all the users from a group. The Promela implemen-
tation of GARP [18] consists of 7 concurrent processes with 131 local states, 212
local transitions, and 10 communication buffers. SPIN proved livelock freedom
for the model within 56 seconds and visited 5×106 global states during the check.
aLive used only 8 seconds to return the same result after 7 abstraction refinement
steps. We contend that this seven fold speedup compared to SPIN is possible
because aLive does not need to visit all reachable global states and thus avoids
the combinatorial state space explosion caused by concurrency that the verifica-
tion algorithm of SPIN is subject to. During the verification aLive identified 29
message types, collected 86 local control flow cycles, and generated altogether 21
IP problems. During the analysis 7 counterexamples were suggested and aLive
automatically determined all of these to be spurious. One of these spurious coun-
terexamples suggests the following scenario: While no other process moves on,
one process keeps executing a cycle in which it sends a join message to inform a
service process of some user’s decision to join a multicast group. However, after
the message is sent, the user is included in the group, and the process cannot send
another join message. This cycle can be repeated only if another cycle of the same
process has been executed in which the process receives a message through which
the user announces that he is leaving the group. aLive successfully detected this
dependency between these two cycles and refined the abstraction accordingly.
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GSM Handover. We also checked livelock freedom for a model of the Handover
procedure in the GSM protocol. The model is included as an example in the
latest SPIN 4.26 distribution. In this case a progress action is to hand over the
control of communication from one base region to another one. We carefully
revised the original model to remove the use of sending data objects correspond-
ing to communication buffers from one process to another, which is a Promela
language feature that we currently cannot handle. However, the revision does
not change the behavior of the original model. The revised model consists of 6
processes with 49 local states, 62 local transitions, and 7 communication buffers.
For the revised model, SPIN immediately reported an error trail with a length
of 36 steps. aLive also found one counterexample in the first checking iteration
and returned unknown after it failed to determine spuriousness for the counterex-
ample. The counterexample consists of 6 control flow cycles and indicates the
situation in which a base station is continuously forwarding messages between
a mobile user and the system without handing over the control to another base
region. Guided by this counterexample, we replayed the indicated scenario by
a manual simulation of the original model within exactly 36 steps. Thus, the
counterexample that aLive found is a real counterexample.

CORBA GIOP. Our analysis of the CORBA GIOP [12] protocol revealed a
limitation of the current aLive approach that is rooted in the unavailability of
suitable static analysis methods for global cycle dependencies in the abstrac-
tion refinement loop. aLive found 8 counterexamples during the analysis and
determined spuriousness for all but the last one. The failure on the last coun-
terexample results exactly from the existence of a global cycle dependency that
we cannot currently handle. A manual inspection easily proves the spuriousness
of this counterexample. On the contrary, SPIN proved livelock freedom for the
GIOP model very efficiently.

Analysis of Parametric and Infinite State Models. Note that aLive actually
proves livelock freedom for a class of Promela models that can be parameterized
with arbitrary finite communication buffer capacities. SPIN, on the other hand,
verifies only a given model with a fixed finite buffer length setting. As a conse-
quence, if the buffer lengths specified in a Promela model are increased, SPIN
may run out of memory due to an exponential growth of the size of the global
state space and hence be unable to prove livelock freedom. On the contrary,
aLive is insensitive to the size of the buffers bounds. Even more, if we assume
that the (syntactically inadmissible) omission of buffer bounds in Promela chan-
nel declarations is interpreted as buffers with unbounded capacity, then our aLive
analysis extends to the class of infinite state Promela models.

7 Related Work

Integer programming based techniques were previously used in the verification
of concurrent systems [2,5,3,6,20]. INCA [2] relies on IP to provide an incomplete
but sound method of verifying safety and liveness properties. However, INCA
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currently handles only synchronous rendezvous-like communication, although
the theoretical framework is extensible to asynchronous communication. Fur-
thermore, the analysis in INCA is restricted to control flow structures whereas
our method also takes data into account. Also, the refinements of the control
flow constraints proposed in [20] for INCA are different than the ones proposed
in this paper. The work described in [5] uses a notion of T -invariants described
in constraint programming (a more powerful framework than IP) to give an NP-
complete semi-decision test (“yes” or “unknown”) for LTL liveness properties
on 1-safe Petri nets.

Livelock analysis was also studied in the context of process algebras. Tools
explicitly verifying livelock freedom in the synchronous communication model of
CSP are [7,21]. Note that our analysis focusses on the asynchronous communi-
cation model and is therefore fundamentally different.

In explicit state model checking, the verification of livelock freedom reduces to
the detection of non-progress cycles using nested [11] or even simple [9] depth first
state space traversals. In fact, any CTL or LTL model-checker is able to address
livelock freedom checking [4], since livelock freedom can be expressed in both
CTL and LTL temporal logics. SPIN [11] checks livelock-freedom of Promela
models (attaching ‘progress’ labels to actions of interest and searching for non-
progress cycles). Verisoft [8] addresses also the livelock freedom issue, but with
a very restricted definition of livelock that is only applicable to finite executions.

8 Conclusion

In this paper we have presented an incomplete analysis method for the detection
of livelock freedom for asynchronous infinite-state reactive systems. The method
is based on a property conserving abstraction that reduces these systems to a
system of numerical effect vectors. The livelock problem is then encoded into
an integer programming problem over these effect vectors. The solvability of
this IP problem answers the question, whether the program is livelock free, or
whether livelock freedom cannot be proven. In the latter case the analysis returns
a counterexample. We have devised automated heuristics to determine spurious-
ness of a given counterexample and to refine the abstraction, when applicable.
We have evaluated the analysis using a number of real-life Promela models that
we subjected to our prototype analysis tool aLive. The analysis together with
the automated refinement in aLive have produced meaningful results. In one
instance our automated counterexample refinement failed, which points at nec-
essary improvements in the underlying static analysis. We have also compared
our analysis with finite-state verification, in particular the SPIN model checker,
and found that aLive performs very favorably. As we have argued, the soundness
of our analyis does not hinge upon finiteness of the underlying model.

Further research aims at investigating how to encode other types of liveness
properties, such as response properties, using effect vector analysis. Furthermore,
we plan to use the counterexamples (linear combination of cycles) produced by
our analysis to guide SPIN in its search for non-progress cycles (livelocks) using,
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for instance, as heuristic metric function the distance to a cycle in the counterex-
ample. We also plan to improve our static analysis and extend it to global cycle
dependencies so that impediments to automated abstraction refinement such as
those occurring in GIOP will be eliminated.
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Abstract. We present a new method for proving liveness and termination prop-
erties for fair concurrent programs, which does not rely on finding a ranking
function or on computing the transitive closure of the transition relation. The
set of states from which termination or some liveness property is guaranteed is
computed by a backwards reachability analysis. A central technique for handling
concurrency is a check for certain commutativity properties. The method is not
complete. However, it can be seen as a complement to other methods for proving
termination, in that it transforms a termination problem into a simpler one with
a larger set of terminated states. We show the usefulness of our method by ap-
plying it to existing programs from the literature. We have also implemented it
in the framework of Regular Model Checking, and used it to automatically verify
non-starvation for parameterized algorithms.

1 Introduction

The last decade has witnessed impressive progress in the ability of tools to verify prop-
erties of hardware and software systems (e.g., [9,16,24]). The success has to a large
extent concerned safety properties, e.g., absence of run-time errors, deadlocks, race
conditions, etc. Progress in verification of liveness properties has been less prominent.
A major reason is that they are harder to verify than safety properties. For finite-state
systems and some parameterized systems, safety properties can be verified by comput-
ing (some approximation of) the set of reachable states. Verifying liveness properties,
requires at least a repeated search through the state space in enumerative model check-
ers [24]. In symbolic model checkers, a natural but more expensive technique is to
compute the transitive closure of the transition relation. Multiple fairness requirements
can make the situation even more complicated. For general infinite-state systems, the
difference between safety and liveness properties is even larger. For some classes of
systems, such as lossy channel systems, checking safety properties is decidable [5],
whereas checking liveness properties is undecidable [4].

The general approach for proving liveness involves finding auxiliary assertions as-
sociated with well-founded ranking functions and helpful directions (e.g., [26]). Find-
ing such ranking functions is not easy, and automation requires techniques adapted to
specific data domains. Techniques have been developed for programs with integers or
reals [12,13,14,18,19], functional programs, [25], and parameterized systems [22,23].

The main technique of software model checking, using finite-state abstractions [16]
has been difficult to apply when proving liveness properties, since abstractions may in-
troduce spurious loops [33] that do not preserve liveness. Podelski and Rybalchenko
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C. Baier and H. Hermanns (Eds.): CONCUR 2006, LNCS 4137, pp. 95–109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



96 P.A. Abdulla et al.

therefore extended the framework of predicate abstraction to that of transition predi-
cate abstraction [32], which involves constructing an abstraction of the transition rela-
tion and its transitive closure. However, the transitive closure is harder to compute or
approximate than the set of reachable states.

Here, we present a new method for proving liveness using simple reachability analy-
sis, which uses neither computation of transitive closure nor explicit construction of
ranking functions. The method assumes that the liveness property has been transformed
to the property of termination for a system; which is standard for many classes of live-
ness properties, including the so-called progress properties (of form �(P =⇒ �Q)).
Termination is then checked by backwards reachability analysis, which computes the
set of states that are backwards reachable from the set of terminated states under a
particular transition relation, which we call a convergence relation. Computing the set
of backwards reachable states is conceptually easier than finding ranking functions or
computing the transitive closure. Thus, liveness properties can be established for a class
of systems, provided that there is a powerful way to compute sets of backwards reach-
able states. For many classes of parameterized and infinite-state systems, the set of
backwards reachable states is computable (e.g., [5,2]). For other classes of infinite-state
systems, powerful acceleration techniques have been developed that compute or under-
approximate the set of reachable states (e.g., [35,3]). It should be possible to develop
equally powerful techniques for backwards reachability analysis, and apply them to
proving liveness properties.

For a simple deterministic (non-concurrent) program, the set of states in which termi-
nation is guaranteed can be calculated as the set of states that are backwards reachable
from some terminated state. We generalize this observation to develop techniques for
using backwards reachability analysis to prove termination for general concurrent pro-
grams with arbitrary (weak) fairness (aka justice) requirements; backwards reachability
analysis should be the only non-trivial computation on the verified program. A central
new technique for handling concurrency is the use of commutativity properties between
different actions of the program.

Our technique is in general not complete. It computes an under-approximation of the
set of states from which termination is guaranteed. If this under-approximation does
not include the states for which one intends to prove termination, there are several ways
to increase the power of the method. One way is to repeat the backwards reachability
analysis, letting the computed under-approximation play the role of terminated states.
One then exploits the fact that our convergence relation increases when the set of ter-
minated states increases: a repeated reachability analysis will therefore improve the
under-approximation. Another way is to apply other techniques (e.g. based on ranks
or transitive closure computation) to prove termination for the remaining states of in-
terest. Here, we present such a complementary technique, developed particularly for
parameterized systems.

To show the usefulness of our method, we apply it to several examples. The first is
a program also considered by Podelski and Rybalchenko [32]; our method also han-
dles the other programs in [32]. The second example is the well-known alternating bit
protocol. This is an example of a lossy channel system, for which liveness properties
are undecidable [4]. Our example shows that backwards reachability analysis (which is
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guaranteed to terminate [5]) can prove liveness properties for some of these systems,
although in general they are undecidable. Finally, we have implemented our technique
in the framework of regular model checking [7]. We prove starvation-freedom for sev-
eral parameterized mutual exclusion protocols; some of which we have previously not
been able to prove starvation-freedom for using transitive closure computation [6].

Related Work. For infinite-state systems, fair termination is typically proven by finding
auxiliary assertions associated with well-founded ranking functions and helpful direc-
tions (e.g., [26,27]). Automated construction of such ranking functions is a challenging
task, which requires techniques adapted to specific data domains. Recently, significant
progress has been achieved for programs that operate on numerical domains, integers or
reals [12,13,14,18,19,21]. Rather few papers present efficient techniques to prove ter-
mination for programs that operate on arbitrary data domains. For families of parame-
terized systems, where each system instance is finite-state, liveness can in principle be
proven from the transitive closure, but computation of transitive closure is typically ex-
pensive [30]. Another approach is to develop heuristics to automate the search for rank
functions [22,23] and procedures to check the conditions in a general proof rule [27]
automatically. A third approach has been to find specialized abstractions, e.g., into in-
tegers, which work in certain cases [31].

Podelski and Rybalchenko extend the framework of predicate abstraction to that of
transition predicate abstraction [32,33,29,20], which can be applied on arbitrary pro-
grams. The transitive closure of the transition relation is harder to compute or approx-
imate than the set of reachable states. Extensions of predicate abstraction techniques
for synthesizing ranking functions have also been developed by Balaban, Pnueli, and
Zuck [8].

Our use of commutativity between actions is inspired by the use of commutativity
in partial-order techniques to optimize state-space exploration [17] in finite-state model
checking.

Organization of the Paper. Section 2 contains basic definitions, Section 3 an informal
overview of our method, and Section 4 the formal presentation of the method. In Sec-
tion 5, we verify an example also considered by Podelski and Rybalchenko [32], and
the alternating bit protocol. In Section 6, we give experimental results on non-starvation
for parameterized mutual exclusion algorithms, and describe our complementary ter-
mination rule, particularly developed for parameterized systems. Section 7 contains
conclusions.

2 Preliminaries

Programs. We consider fair concurrent programs modeled as transition systems. A
program may contain a set of actions with (weak) fairness requirements (aka justice),
as in, e.g., UNITY [15].

Formally, a program P is a triple 〈S,−→,A〉, where

– S is a set of states,
– −→⊆ S × S is a transition relation on S. We require that the identity relation is

included in −→.
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– A is a finite or countable set of fair actions, each of which is a subset of −→, and
required to be deterministic.

An action is any subset of the transition relation. We write s −→ s′ for (s, s′) ∈−→.
For an action α, we use s

α−→ s′ to denote (s, s′) ∈ α. An action α is enabled in a state
s if there is some state s′ such that s

α−→ s′. The set of states in which the action α is
enabled is denoted En(α). If T is a set of states, then α ∧ T denotes the set of pairs
(s, s′) of states such that s

α−→ s′ and s ∈ T . For a set B of actions, let B ∧ T denote
{α ∧ T | α ∈ B}. A computation of P from a state s ∈ S is an infinite sequence
of states s0 s1 s2 . . . such that (i) s = s0; (ii) si−→ si+1 for each i ≥ 0; and (iii)
for each fair action α ∈ A, there are infinitely many i ≥ 0 where either si

α−→ si+1 or
si �∈ En(α).

For a set T of states and action α, let Pre(α, T ) be the set of states s such that s
α−→ t

for some t ∈ T . For a set of actions B, let Pre∗(B, T ) be the union of T and the set of
states s such that s

α1−→· · · αn−→ t for some t ∈ T and α1, . . . , αn ∈ B.

Termination. Let P be a program 〈S,−→,A〉 and F ⊆ S be a set of terminated states.
We assume F to be stable, i.e., that s ∈ F and s −→ s′ implies s′ ∈ F . Define �F as
the set of states s such that any computation of P from s contains a state in F . In other
words, �F is the set of states from which termination is guaranteed, in the sense that
each computation from s will eventually reach F . In this paper we present methods for
computing (an under-approximation of) �F .

We can also consider many classes of liveness properties, e.g., progress properties (of
form �(P =⇒ �Q)), by first transforming them to termination properties. There exist
standard techniques for such reductions. For example, a program satisfies �(P =⇒
�Q) if �Q includes states that can be reached from an initial state in a sequence of
transitions that visit P , but have not yet visited Q.

Remarks. The restriction that each fair action be deterministic can often be circum-
vented by representing a nondeterministic action as a union of several deterministic
ones. Our definition of program does not mention initial states. When initial states are
given, a typical use of our techniques will be to first compute the set of reachable states
(or an over-approximation), and let them be the states of the program as defined above.

3 Overview of the Proof Method

In this section, we give an overview of our method for computing a (good) under-
approximation of the set �F , where F is a set of states of a program P = 〈S,−→,A〉.
The inspiration for our method is the simple observation that when P is a deterministic
program with only one fair action α, then �F is the set Pre∗(α, F ). Our goal is there-
fore a technique for proving termination and liveness properties, where the only non-
trivial computation is a predecessor calculation, i.e., computing Pre∗(B, T ) for some
set of states T and actions B.

Our method works by computing a so-called convergence relation, here denoted
↪→F , on the states of P ; this is a relation with the property that if s ↪→F t and t ∈ �F
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then also s ∈ �F . From this property it follows that Pre∗(↪→F , F ) ⊆ �F for any con-
vergence relation ↪→F . The construction of ↪→F depends in general on F . Since ↪→F

will be employed in a predecessor calculation, it is natural to allow the use of prede-
cessor calculations also in the construction of ↪→F itself, but to avoid computations of
transitive closures or other more powerful techniques.

Our main technique for constructing ↪→F uses a commutativity argument to in-
fer that it satisfies the required properties. To explain its intuition, consider the fol-
lowing simple program, which consists of two deterministic processes executing in
parallel.

α1 : x := x− 1 if x > 0
α2 : y := y − 1 if y > 0

Variables x and y assume values in the natural numbers. For i = 1, 2, process i repeat-
edly performs action αi. Both α1 and α2 are fair actions. The transition relation is the
union of both actions plus the identity relation. The set F of terminated states is the
single state with x = y = 0.

In this example, our method computes ↪→F as α1 ∪α2. Our method implicitly as-
certains that ↪→F is a convergence relation using a commutativity argument. To un-
derstand why α1 is in ↪→F , assume that s

α1−→ t and t ∈ �F . Consider any computa-
tion from s. If it goes first to t we are done. Otherwise, it first consists of a sequence
of executions of action α2. During this sequence, α1 remains enabled, and so must
eventually (by fairness) be executed, leading to some state t′. Now observe that since
α1 and α2 commute, t′ is reachable from t. Since t ∈ �F we infer, using the fact
that �F is a stable set, that t′ ∈ �F and hence that s ∈ �F . We conclude that
termination is guaranteed for all states in Pre∗(↪→F , F ), which here is the set of all
states.

The above method can prove termination for many programs with a regular struc-
ture. It is in general incomplete. For programs where the above method computes
a too small under-approximation of �F , we offer the following two ways to
proceed.

The backwards reachability computation can be repeated several times. If one com-
putation produces an under-approximationG of �F , the next application of our method
will compute �G using a convergence relation ↪→G that is larger than in the first com-
putation, since it depends on G instead of F . Let us illustrate this by changing the
above program by changing the guard of α1 into 0 < x ≤ y ∨ y = 0. This destroys
commutativity between α1 and α2 in case y = x. However, a first backwards reach-
ability computation will produce the set G consisting of states with 0 ≤ x ≤ 1 or
with 0 ≤ y < x as an under-approximation to �F . A second backwards reachability
computation thereafter reveals that all states are in �G, hence also in �F .

In many cases, the under-approximation of �F computed by our method is suffi-
ciently large that other techniques (e.g., standard techniques based on ranks or transitive
closure computation) become computationally feasible. For the class of parameterized
systems, we have developed a powerful method, whose only nontrivial computation
is predecessor calculation, which can be used after applying the commutativity-based
method.
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4 Proving Termination as Backward Reachability

In this section, we formalize the methods for calculating (an under-approximation of)
the set �F by backwards reachability analysis, presented in the previous section. We
first present the general approach, and then our main technique.

Assume a program 〈S,−→,A〉. Let F be a stable set of terminated states. Define a
convergence relation on S for F to be a relation ↪→F on S such that whenever s ↪→F t
and t ∈ �F then also s ∈ �F . The point of convergence relations is that if ↪→F is
a convergence relation for F , then Pre∗(↪→F , F ) ⊆ �F , i.e., we can use predecessor
calculation to prove that termination is guaranteed from a set of states. Larger conver-
gence relations allow to prove termination for larger sets of states. Furthermore, even
if we cannot precisely calculate Pre∗(↪→F , F ), any under-approximation of this set is
also in �F .

To apply these ideas, we need techniques to compute sufficiently powerful conver-
gence relations. Any number of convergence relations can be combined into one, since
the union of two convergence relations is again a convergence relation. Now we present
our main technique, which is based on a commutativity argument.

Definition 1. Let α be a deterministic fair action, and let F be a set of states. Define
the left moving states for (α, F ), denoted Left(α, F ), as the set of states s satisfying

– whenever there are states s′, t′ with t′ �∈ F such that s−→ s′
α−→ t′, then there is a

state t with s
α−→ t−→ t′.

Intuitively, α can “move left” of −→, and still reach the same state. The definition is
illustrated in Figure 1.

∃ t −→ t′ ∈ F

∀ s′, t′

−→α −→α
s −→ s′

Fig. 1. s ∈ Left(α, F ). Action α commutes left at state s.

Definition 2. Define the α-helpful states, denoted Helpful(α, F ), as the largest set T
of states such that T ⊆ ((En(α) ∩ Left(α, F ))∪F ), and

– whenever s ∈ Helpful(α, F ) and s−→ s′ then either s
α−→ s′, or s′ ∈ F , or s′ ∈

Helpful(α, F ).

Intuitively, a state is α-helpful if the properties that α is enabled and left moving remain
true when any sequence of transitions not in α are taken, unless F is reached. The above
concepts can be used to define a convergence relation as follows.

Theorem 1. Let α be a fair action of 〈S,−→,A〉 and F be a stable set of states. Then

the relation
α
↪→F , defined by

α
↪→F ≡ α ∧ Helpful(α, F )

is a convergence relation for F .
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Proof. Assume that s
α
↪→F t and t ∈ �F . Consider any computation s0 s1 s2 . . . from

s = s0. We must show that it contains a state in F .

– If there is a k with sk ∈ F we are done.
– Otherwise, if there is a k with sk

α−→ sk+1, let k be the least such index. By in-
duction, using the definition of Helpful(α, F ), we infer that si ∈ Helpful(α, F ),
hence si ∈ En(α) and si ∈ Left(α, F ) for i = 0, . . . , k. Let ti be the unique state
with si

α−→ ti, in particular sk+1 = tk. By induction we infer, using the definition
of Left(α, F ), that ti is reachable from t for all i with 0 ≤ i ≤ k. In particular,
sk+1 = tk is reachable from t. From t ∈ �F we infer sk+1 ∈ �F and hence the
computation must contain a state in F . An illustration of this argument is provided
in Figure 2.

– Otherwise, we infer by induction over k, using s ∈ Helpful(α, F ), thatα is enabled
in all states of the computation. By fairness, α will eventually be executed, and we
are back to the previous case. �

t −→ t1 −→ t2 −→ · · · −→ tk

−→α −→α −→α −→α
s

¬α−→ s1
¬α−→ s2

¬α−→ · · · ¬α−→ sk

Fig. 2. (s, t) ∈ α
↪→F . The α-successor of any successor of s, is either a successor of t, or in F .

Corollary 1. Pre∗({ α
↪→F |α ∈ A} , F ) ⊆ �F

In order to show how termination can be proven by backwards reachability analysis, we
must finally explain how to compute Helpful(α, F ), or an under-approximation of it,
by backwards reachability analysis. We first observe that:

Left(α, F ) = ¬Pre((−→ ◦α)− (α ◦ −→),¬F )

Proposition 1. The set Helpful(α, F ) is the complement of the set

Pre∗((A− α) ∧ ¬F , (¬Left(α, F )∪¬En(α)) ∩ ¬F )

Proof. According to Definition 2, a state s is not in Helpful(α, F ) if and only if there
is a sequence of transitions from s, none of which is in α or visits a state in F , which
leads to a state neither in F nor in En(α) ∩ Left(α, F ); exactly what the proposition
formalizes. �

5 Examples

In this section we illustrate our method, by applying it to two examples from the
literature.

5.1 Any-Down

The example Any-Down is used by Podelski and Rybalchenko [32] to illustrate their
method of transition invariants. In fact, our method can handle, in two iterations or less,
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all the examples given in [32]. For readability, we reformulate the program into the
action-based syntax of the example in Section 3, as follows.

α1 : y := y + 1 if x = 1
α2 : x := 0 if true
α3 : y := y − 1 if x = 0 ∧ y > 0

The program variable y assumes values in the natural numbers, and the variable x as-
sumes values in {0, 1}. Both α2 and α3 are fair actions. The transition relation is the
union of all three actions plus the identity relation. The set F of terminated states is the
single state with x = y = 0. It is well-known that a standard termination proof for this
program will require a ranking function whose range is larger than the natural numbers.
This suggests that we need at least two iterations of our method to compute the set �F .
We describe each iteration below.

In the first iteration we compute Helpful(αi, F ) for i = 2, 3 (we omit α1, since it is
not a fair action). These computations are summarized in the below table.

En(αi) Left(αi, F ) Helpful(αi, F )
α2 true x = 0 x = 0
α3 x = 0 ∧ y > 0 x = 0 ∨ y = 0 ∨ y = 1 x = 0

We explain the entries of the table for α2. The corresponding entries for α3 can be
explained in a similar manner. The set Left(α2, F ) includes all states s where x = 0.
This is since either (i) y = 0 in which case s ∈ F ; or (ii) y > 0, which means that
α1 is not enabled, and α2 commutes with α3. On the other hand, Left(α2, F ) does not
include any state s with x = 1, as follows. We have s

α1−→ α2−→ t, for some t with y > 0.
Obviously, t �∈ F and furthermore it is not the case that s

α2−→ α1−→ t since α2 disables
α1. This means we have violated the condition for being a left mover.

The set Helpful(α2, F ) includes all states where x = 0; such a state s belongs to
Left(α2, F ). The action α2 is enabled from s. Furthermore, the action α1 is disabled,
while the execution of α3 from s again leads to a state satisfying Helpful(α2, F ).

By Corollary 1, the following set is in �F :

G ≡ Pre∗((α2 ∧ Helpful(α2, F ))∪(α3 ∧ Helpful(α3, F )), F ) ≡ x = 0

In the second iteration we compute Helpful(αi, G) for i = 2, 3 in the same way. The
interesting difference is that Left(α2, G), which is true, is larger than Left(α2, F ),
since any execution of α2 leads to G. Hence also Helpful(α2, G), which is true, is
larger than Helpful(α2, F ).

En(αi) Left(αi, G) Helpful(αi, G)
α2 true true true
α3 x = 0 ∧ y > 0 true x = 0
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By Corollary 1, the following set is in �G, hence in �F :

Pre∗((α2 ∧ true)∪(α3 ∧ Helpful(α3, F )), G) ≡ true

5.2 Alternating Bit Protocol

As a second example, we consider a protocol that consists of finite-state processes that
communicate over unbounded and lossy FIFO channels. As shown in our earlier work,
it is decidable whether a protocol satisfies a safety property [5], but undecidable whether
a protocol satisfies a liveness property [4]. Using our technique, we can prove liveness
properties for some of these protocols.

In the Alternating Bit Protocol, a sender and a receiver communicate via two un-
bounded and lossy FIFO channels. One channel, cM , is used to transmit messages
from the sender to the receiver, and another, cA, to transmit acknowledgments from
the receiver to the sender. The behavior of the sender and the receiver are depicted in
Figure 3. The sender sends alternately the messages m0 and m1, while the receiver
sends back acknowledgment ai after receiving the message mi. A state of the system
is of form sirj(w1, w2) where si is a sender state (s0 or s1), rj is a receiver state
(r0 or r1), and w1, w2 are the contents of channels cM , respectively cA. The initial
state is s0r0(〈〉, 〈〉) with both channels empty. Here, a channel is modeled as a per-
fect FIFO buffer. Message loss is modeled as a nondeterministic choice between a send
and a skip action. All actions, except skip, are fair. This corresponds to the assumption
that if a message is continuously retransmitted, then eventually one of the messages is
not lost.

In this example, we let the states S be those reachable from the initial state. This set
can be computed, using e.g. the acceleration techniques based on Queue-content Deci-
sion Diagram (QDD) developed in [10], as the union of the four sets s0r0(m∗

0m
∗
1, a

∗
1),

s0r1(m∗
0, a

∗
0a

∗
1), s1r0(m

∗
1, a

∗
1a

∗
0), and s1r1(m∗

1m
∗
0, a

∗
0) where we use regular sets to

denote the possible contents of each channel.
We use the method defined in Section 4 to prove the following four progress proper-

ties of the protocol.

Fig. 3. The Alternating Bit Protocol
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1 : s0r0(m∗
0m

∗
1, a

∗
1) ⊆ �s0r1(m∗

0, a
∗
0a

∗
1)

2 : s0r1(m∗
0, a

∗
0a

∗
1) ⊆ �s1r1(m∗

1m
∗
0, a

∗
0)

3 : s1r1(m∗
1m

∗
0, a

∗
0) ⊆ �s1r0(m∗

1, a
∗
1a

∗
0)

4 : s1r0(m∗
1, a

∗
1a

∗
0) ⊆ �s0r0(m∗

0m
∗
1, a

∗
1)

These properties imply that the sender and the receiver indefinitely alternate sending
m0, a0,m1, and a1. Here, we show how the first condition is proven; the other ones are
analogous. Letting F = s0r1(m∗

0, a
∗
0a

∗
1), we calculate a set of states included in �F .

To ensure the stability of F , we first modify each action α to α := α∧¬F . Then we
again use QDDs to compute the helpful set of states for every fair action in the protocol,
according to Proposition 1. The results for actions α2, α7 and α11 are summarized in
the following table.

En(αi) ∩ Left(αi, F ) Helpful(αi, F )
α2 s0r0(m∗

0m
∗
1, a

∗
1) s0r0(m∗

0m
∗
1, a

∗
1)∪ s0r1(m∗

0, a
∗
0a

∗
1)

α7 s0r0(m∗
0m

+
1 , a

∗
1)∪ s1r0(m+

1 , a
∗
1a

∗
0) s0r0(m

∗
0m

+
1 , a

∗
1)∪ s1r0(m+

1 , a
∗
1a

∗
0)

∪ s0r1(m∗
0, a

∗
0a

∗
1)

α11 s0r0(m+
0 , a

∗
1) s0r0(m+

0 , a
∗
1)∪ s0r1(m∗

0, a
∗
0a

∗
1)

Helpful(α7, F ) = s0r0(m∗
0m

+
1 , a

∗
1)∪ s1r0(m+

1 , a
∗
1a

∗
0)∪ s0r1(m∗

0, a
∗
0a

∗
1) because

for every state s in Helpful(α7, F ), it is the case that either (i) s is in F ; or (ii) s is
in s0r0(m∗

0m
+
1 , a

∗
1)∪ s1r0(m+

1 , a
∗
1a

∗
0). In the second case we have that (i) α7 is en-

abled from s and commutes with any other enabled action; and (ii) the execution of any
other action from s leads again to s0r0(m∗

0m
+
1 , a

∗
1)∪ s1r0(m+

1 , a
∗
1a

∗
0). The other sets

can be explained in a similar way.
By Corollary 1, the set G = Pre∗({ αi

↪→F |i = 1, . . . , 12}, F ) is in �F . Observe that
s0r0(m∗

0m
∗
1, a

∗
1) = Pre∗({αi ∧ Helpful(αi, F )|i = 2, 7, 11}, F ) is a subset of G. We

therefore conclude that s0r0(m∗
0m

∗
1, a

∗
1) ⊆ �F .

6 Parameterized Systems

In this section we consider verification of liveness properties for parameterized systems:
these are systems with an arbitrary number of similar processes operating in parallel. A
challenge is that they are not finite-state, since the number of processes is unbounded.
We describe an implementation of our method in the framework of Regular Model
Checking [7]. For several examples, the proof rule of Section 4 computes a strict under-
approximation of the set �F ; therefore we also present a complementary rule which
can prove termination for those examples.

Example: Szymanski’s Algorithm As an example of a parameterized system, we de-
scribe the mutual exclusion algorithm by Szymanski [34]. In the algorithm, an arbitrary
number of processes compete for a critical section. The processes are numbered, say
from 1 toN . The local state of each process consists of a control state ranging over the
integers from 1 to 7 and of two Boolean flags, w and s. A pseudo-code description of
the behavior of process number i is shown in Figure 4.
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1: await ∀j : j = i : ¬s[j]
2: w[i], s[i] := true, true
3: if ∃j : j = i : (pc[j] = 1) ∧ ¬w[j]

then s[i] := false ; goto 4
else w[i] := false ; goto 5

4: await ∃j : j = i : s[j] ∧ ¬w[j]
then w[i], s[i] := false, true

5: await ∀j : j = i : ¬w[j]
6: await ∀j : j < i : ¬s[j]
7: s[i] := false ; goto 1

Fig. 4. Szymanski

For instance, according to the code on line 6, if the control state of a process i is 6,
and if the value of s is false for all processes j < i, then the control state of i may be
changed to 7. Line 7 represents the critical section. Each numbered line is modeled as
an action:αj(i) is the statement beginning at line j in the pseudo-code for process i. All
actions are fair, except α1(i); this action represents process i entering the competition
for the critical section, and therefore its execution should not be enforced.

Starvation freedom can be formulated as follows: whenever any process is at line 2
it will eventually reach line 7. Define Fk to be all states in which process k is at line 7.
To prove starvation freedom for process k we must show that all reachable states where
process k is at line 2 are in �Fk.

6.1 A Complementary Termination Rule

In this section, we present a proof rule for termination, which is particularly suitable
for the class of parameterized systems considered in this section. It will be used to
complement the method of Corollary 1. The rule assumes that we select a finite number
of fair actions of the program, and establishes that a state s is in �F if computations
from s satisfy

– whenever one of these actions is enabled, it remains enabled until it is executed,
– each of the actions can be executed at most once before F is reached, and
– when all these actions are disabled, the computation has reached F .

This rule is particularly useful for parameterized systems, since termination is often
achieved by letting a selected subset of the processes execute a fixed sequence of actions
(i.e., statements). Let us define the involved properties formally. Assume a program
〈S,−→,A〉. Let F be a set of terminated states.

– Persist(α, F ) is the set of states s such that in any computation from s, whenever
α is enabled, it remains enabled unless it is executed or F is reached.

– Twice(α, F ) is the set of states, from which there exists a computation where α is
executed twice (or more) without visiting F .

– Let B be a finite set of actions. After(B, F ) is the set of states s such that in any
computation from s, whenever all actions inB are disabled at a state s′, then s′ ∈ F .
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The above sets are computable using backwards reachability analysis, in a manner anal-
ogous to the way Helpful(α, F ) is computed in Proposition 1. Note that the set B used
in After(B, F ) is typically a parameterized set of actions, containing a set of actions
of form αj(i) for a finite set j, and an arbitrary i with 1 ≤ i ≤ N . Thus the set
B is unboundedly large, but still finite. Care must be taken to handle the parameters
correctly when performing the predecessor calculations. Now we state the termination
rule.

Theorem 2. Let B be a set of fair actions of 〈S,−→,A〉, and let F be a set of states in
S. Then [

After(B, F ) ∩
⋂
α∈B

(¬Twice(α, F ) ∩ Persist(α, F ))

]
⊆ �F

Proof. Let s be a state in the set defined by the left-hand side. Consider a computation
from s. Assume that it contains no state in F . Then, since s ∈ After(B, F ) it also
contains no state in which all actions in B are disabled. This means that at any state in
the computation, some action α is enabled. Since s ∈ Persist(α, F ) the action α will
remain enabled until it is executed, and thereafter (since s ∈ ¬Twice(α, F )) never be
executed again. This implies that after a finite number of computation steps, all actions
in B have been executed. This contradicts the previous conclusion that thereafter some
action in B is enabled, and will eventually be executed.

6.2 Implementation

We have implemented a verification method based on Corollary 1 and Theorem 2 in the
framework of Regular Model Checking [7], and applied it to a number of well-known
parameterized mutual exclusion protocols.

Verification Procedure. For each protocol, we have modeled Fk as the set of states
where process k is in the critical section. We have thereafter computed an under-
approximation Gk of �Fk using the method of Section 4, and thereafter applied the
complementary rule described in Section 6.1 to compute �Gk. To ensure that prede-
cessors are reachable states, we computed the set of (forwards) reachable states, and
restricted the actions to it.

In our experiments we manually chose what rules to apply and when, to test their
expressive power. However, the approach may be fully automated by e.g. applying the
rules alternatingly. As a termination condition one could use that the complementary
rule does not increase the set �F , no matter which action it is applied to.

As an example, we describe how our verification of starvation freedom for Szyman-
ski’s algorithm works. Three successive applications of Corollary 1 establish starvation
freedom for almost all the system states where process k is waiting. However, Corol-
lary 1 cannot prove starvation freedom for system states where there are processes at
both line 1 and line 2. The reason for this is that the actions of line 2 may disable the
actions on line 1, thereby destroying commutativity. By using also one application of
Theorem 2, starvation freedom is proven for all the system states where process k is
waiting, as desired.
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Results. The verification results of our implementation are presented in Table 1. We
have computed the sets of states from which starvation freedom for process k is guar-
anteed, as a set which depends on k. In all cases, the computed live states contain all the
terminating states. For example, the live states of Szymanski’s algorithm are: “whenever
process k is at line 2”. The column “Time” contains time measured from our implemen-
tation. The experiments were run on a PC with a 2.4 GHz processor and 1 GB of RAM.
For the first three protocols, we need apply only Corollary 1. For the last three last pro-
tocols, we need also Theorem 2. Dijkstra’s algorithm takes significantly longer time to
verify because it contains an action where a global variable is set. Computing the effect
of arbitrarily many executions of such an action is relatively expensive in our current
implementation [7].

Table 1. Experimental results

Model Token Pass Token Ring Bakery Szymanski Burns Dijkstra
Time 9 s 14 s 36 s 7 min 15 s 7 min 30 s 55 min 11 s

Comparison with Related Work. Several works have considered verification of individual
starvation freedom for parameterized mutual exclusion protocols. In papers [31,11] the
Szymanski protocol and the Bakery protocol are verified in 95.87 seconds and 9 seconds
respectively, using manually supplied abstractions. The works [22,23] verify the Bak-
ery protocol using automatically generated ranking functions, but do not report running
times. We have previously verified the Bakery protocol in 44.2 seconds using repeated
reachability [28], on the same system. To our knowledge, starvation freedom for the al-
gorithms of Burns and Dijkstra has not been successfully automatically verified before.

Techniques exist for quicker accelerations, which should significantly improve the
performance ([1,30]). There is a need for quick automatic accelerations, which also
cover global variables and compositions of actions.

7 Conclusions

We have presented a method for proving liveness and termination properties of fair
concurrent programs using backwards reachability analysis. The method uses neither
computation of transitive closure nor explicit construction of ranking functions and
helpful directions, and relies instead on showing certain commutativity properties be-
tween different actions of the program. The advantage of our method is that reachability
analysis can typically be expected to be simpler to perform than computation of tran-
sitive closures or ranking functions. We expect that it should be possible to use and
develop powerful techniques for backwards reachability analysis for many classes of
parameterized and infinite-state programs. The technique is in general incomplete, but
its power can be increased by performing repeated applications and by applying com-
plementary techniques afterwards. The examples in the paper indicate that the method
should be applicable to several classes of infinite-state systems. In particular, we have
shown that our technique is able to prove starvation-freedom for several parameterized
mutual exclusion protocols, for which automated techniques have previously been too
expensive.
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Abstract. Propositional temporal logic is not suitable for expressing properties
on the evolution of dynamically allocated entities over time. In particular, it is not
possible to trace such entities through computation steps, since this requires the
ability to freely mix quantification and temporal operators.

In this paper we study Quantified Computation Tree Logic (QCTL), which
extends the well-known propositional computation tree logic, PCTL, with first
and (monadic) second order quantification. The semantics of QCTL is expressed
on algebra automata, which are automata enriched with abstract algebras at each
state, and with reallocations at each transition that express an injective renam-
ing of the algebra elements from one state to the next. The reallocations enable
minimization of the automata modulo bisimilarity, essentially through symmetry
reduction. Our main result is to show that each combination of a QCTL for-
mula and a finite algebra automaton can be transformed to an equivalent PCTL
formula over an ordinary Kripke structure, while maintaining the symmetry re-
duction. The transformation is structure-preserving on the formulae. This gives
rise to a method to lift any model checking technique for PCTL to QCTL.

1 Introduction

Ever since its conception in the 80’s, model checking has been based on modal exten-
sions of propositional logic. That is to say, the properties that can be formulated and
checked have as their smallest building blocks a finite set of atomic propositions, each
of which is satisfied by a subset of the states of the model (Kripke structure, transition
system, automaton) being checked. This means that, for the purpose of model checking,
the information in each of the states is abstracted to the subset of propositions satisfied
there.

Since the propositions themselves can be defined in any manner whatsoever (as long
as only finitely many of them are considered at the same time) this setup can be used
also in settings where the states have rich associated domains — for instance, the state
snapshots of a software system. A good example of this principle arises in software
models with a fixed set of variables over a finite set of values, such as can be written in,
for instance, Spin’s input language Promela [15]: there the states are essentially valu-
ations of those variables, and typical propositions are (in)equations over the variables.
As a more sophisticated example, one can define propositions that are actually closed
first-order formulae interpreted over the states; this allows the expression of existential
and universal properties even in a setting where the size of the state domains (such as
the number of variables or entities) is not fixed. As an example, one may think of a
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c© Springer-Verlag Berlin Heidelberg 2006



Model Checking Quantified Computation Tree Logic 111

property like “the buffer can always eventually become empty” interpreted in a model
where values are added to and removed from cells of a buffer of variable (bounded)
size; here the proposition “the buffer is empty” actually corresponds to the first-order
property “no cell in the buffer contains a value”.

(Note that a property such as this one is independent of the size of the buffer; this is
why quantification is essential to be able to formulate it. When the model is fixed, so that
the maximum size of the state domains is known, any closed first-order state formula
can be expanded to an equivalent quantifier-free one by flattening the quantifiers to a
finite disjunction or conjunction ranging over all existing values.)

This setup can also be explained in terms of a two-layered logic: at the bottom we
have a language to express those properties of individual states that are considered in-
teresting for verification purposes; on top of that we define a modal logic, in which the
properties of the lower level are treated as propositions. There are, however, system-
level properties that are relevant to the correctness of a system and yet cannot be ex-
pressed in this two-layered setup. Typically, these are properties where the behaviour of
individual entities over time is at issue. An example that will be used throughout this pa-
per is “values are removed from the buffer in the same order they are inserted” (or “the
buffer has FIFO-behaviour”). Here it is important not only that a buffer cell contains
some object, but also that the same object was (or was not) contained by some buffer
cell in the next or previous state. In order to express this, we need to track the identity of
the object over multiple states, which can only be done through quantification outside
the modal operators; hence, the two-layer hierarchy no longer suffices.

From this observation, it follows that there is interest in logics in which quantifica-
tion and modalities can be freely mixed — a point we have argued before in [11, 10, 19],
and has been made independently by Yahav et al. in [21]. In contrast to the latter, we
pursue a model checking approach. In our work cited above this was limited to multisets
resp. singly-linked lists, which however were unbounded in size; in the current paper
we study arbitrary algebraic structures (like [21]), albeit (in our case) for finite state,
or in other words, bounded models only. As modal logic we take Quantified Computa-
tion Tree Logic (QCTL), which adds first and (monadic) second order quantification to
Propositional Computation Tree Logic (PCTL, see [6]). The contribution of this paper
is to show that:

1. Using second order quantification, QCTL formulae can not only be used to track
entities over time, but also to express (de)allocation schedules, such as the fact that
entities are deleted in their order of creation.

2. Any combination of a property in QCTL together with a finite model to be checked
(in which the size of the state domains is variable) can be transformed to a com-
bination of an expanded, quantifier-free formula and an expanded model, such that
the model checking question has the same answer in both combinations.

3. This can be made to work on models that are minimized up to bisimilarity (using
reallocations between states) without losing the reduction due to that minimization.

Regarding the latter point: for our models (which we call algebra automata since
the state domains are algebras of some fixed signature) we use an idea from history-
dependent automata (Montanari and Pistore [16, 17]): each transition carries a reallo-
cation function from the entities in its source to thoses in its target state. This allows
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states with symmetrical domains to be merged, and thus can help to keep models small:
[17] shows that history-dependent automata can be minimized with respect to bisimi-
larity. Depending on the amount of symmetry in the system, minimization can result in
a logarithmically smaller model in terms of the number of states and transitions, while
keeping the algebra sizes constant — at the price of the reallocations themselves.

In the terminology of quantified modal logic (see, e.g., Fitting [12, 13], Basin et
al. [2]), our models have variable domains and non-rigid designators, and our trans-
formation has a strong analogy to Skolemization — the introduction of a new constant
(non-rigidly designating) for every quantified logical variable. The idea is essentially
that of case splitting for existential quantifiers, modified to take (de)allocation and re-
allocations into account and to retain the state space reduction due to minimization.

The transformation theorem of this paper implies that existing tools and techniques
for PCTL model checking (see, e.g., [7]) can be used directly for QCTL, once the prop-
erty and model are both given. The complexity of the transformation of the automaton
depends on the maximal nesting depth of quantifiers in the formula, d, and the max-
imum size of the algebras in the individual states, a: the transformation results in a
worst-case blow-up exponential in d and a, or just linear in a if the formula contains
first-order quantification only. On the formula the transformation results in blow-up lin-
ear in the number of temporal operators and quantifiers. Note that this complexity is no
better than was to be expected by a simple combinatorial argument based on the bound-
edness of the model, but is still interesting in the light of the aforementioned potential
for symmetry reduction.

Sect. 2 defines and discusses the logic, Sect. 3 defines its semantics and Sect. 4
defines the transformation and proves the main result. Sect. 5 discusses some improve-
ments, including the addition of (Büchi) fairness. We draw conclusions and discuss
related work in Sect. 6. For space reasons, most proofs had to be omitted; however, see
http://www.cs.utwente.nl/˜rensink/papers/concur2006-full.pdf.

2 The Logic

The structures that we will model and reason about in this paper are built on a set of
names Name. The same names are used for functions and predicates in the model and
for logical variables. Names will be interpreted by strict partial functions Entα⊥ ⇀ Entτ⊥
for some set of entities Ent (where⊥ /∈ Ent stands for undefinedness and Ent⊥ = Ent∪
{⊥}), with α ∈ Nat (the arity) and τ ∈ {0, 1} (the type). In fact for the sake of con-
ciseness we assume that every name n ∈ Name has a fixed arity αn and type τn, which
are respected by the interpretation. We use Namei,j with i ∈ Nat and j = 0, 1 for the
subset of names with arity i and type j. The entities, which from the point of the formal-
ism are uninterpreted, can in practice be made to stand for arbitrary data and reference
values; for instance, in software models they can stand for stack frames or heap objects.

The intuition is that if τn = 0 then n denotes a partial function to a singleton set
(since Ent0 = {ε} consists of the empty sequence only), which in turn corresponds
to the characteristic function for a predicate with arity αn (or a monadic second-order
variable if used in the logic); the predicate is taken to hold in a given state if and only
its value is defined. If, moreover, αn = 0 then n corresponds to a proposition. On the
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other hand, if τn = 1 then n is a (partially defined) operator with arity αn; If, moreover,
αn = 0 then n corresponds to an ordinary constant (in the model) or first-order variable
(in the logic).

As meta-variables over Name, we typically use p to range over predicates (including
propositions), f for functions, and c for constants; for the general case we use x, y.

We now introduce the logic studied in this paper, QCTL. The syntax is given by
the following grammar, which defines terms (meta-variables t, u) and formulae (meta-
variables φ, ψ):

t ::= f(u)
φ ::= t | t ≡ u | ∃xφ | φ ∧ ψ | ¬φ | EXφ | E(φ U ψ) | A(φ U ψ)

In our examples, we assume that negation binds strongest, and quantification as well as
EX bind weakest.

– A term t = f(u) stands for the application of f ∈ Name to a vector of sub-terms u,
with |u| = αf . If αf = 0 then u = ε, in which case we usually omit the brackets
and write only f .
The notion of type can be extended from names to terms in a natural way, by spec-
ifying τt = τf if t = f(u); t is well-typed if for all ui ∈ u, τui = 1 and ui is
again well-typed. Since functions are generally partial, terms may evaluate to ⊥.

– A formula φ = t expresses that (the interpretation of) t is defined; i.e., t does not
evaluate to ⊥. (Note that, due to the fact that our interpretations can be partial, we
are not in classical logic.) In particular, if τt = 0 (meaning that t = p(u) for some
predicate p) then this is the usual interpretation of predicates. On the other hand,
¬t with τt = 1 denotes that the entity denoted by t no longer exists — presumably
because it has been deallocatied in a transition leading up to the current state.

– φ = t≡u expresses equality of the interpretations of t and u, where it is assumed
that τt = τu = 1. Equality will be interpreted strictly, meaning that t = u will
be false if either t or u (or both) evaluate to ⊥. Non-strict equality is expressed by
(t ∨ u)⇒ t ≡ u.

– φ = ∃xψ is existential quantification over x in ψ; it will be deemed valid if an
appropriate (defined) value can be found for x such that ψ then holds. We limit
this to first-order and monadic second-order quantification (x ∈ Name0,1 or x ∈
Name1,0, respectively).
In the interpretation of the logic, to be defined below, a sub-formula x in the context
of a quantified formula ∃xψ (i.e., the usage of a logical first-order variable as a
formula) stands for the fact that the entity denoted by x is still “alive”, i.e., has
not been de-allocated. For second-order variables p, the sub-formula p(x) in the
context of ∃pψ denotes that x is among the (surviving) entities in the set p.

The other clauses correspond to the usual connectives from computation tree logic.
Briefly:

– EXφ expresses that φ holds in some state directly reachable from the current state;
– E(φ U ψ) expresses that there is a run of the system starting in the current state, in

which ψ holds at some point, and φ holds at all earlier points;
– A(φ U ψ) expresses that for all runs of the system starting in the current state, ψ

holds at some point, and φ holds in all earlier points.
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We will also freely use the derived formulae ∀xφ, φ∨ψ, AXφ (the dual of EXφ), AFφ
and EFφ (defined as A(tt U φ) and E(tt U φ), respectively) and their duals EGφ and
AFφ. We also define the free names of a formula φ, denoted fn(φ), as usual; we use
fni,j(φ) (= fn(φ) ∩Namei,j) to denote the subset of names with arity i and type j.

An important special class of formulae are the propositional ones. These are formu-
lae for which the first- and second-order features of the logic are essentially unused: the
only names are propositions (i.e., with α = τ = 0) and no quantification is used.

Definition 1 (propositional formulae). A formula φ is called propositional if it is
quantifier-free and fn(φ) ⊆ Name0,0.

Example 1. Assume List ,Cell ,Data,S ∈ Name1,0, x , y ∈ Name0,1, next, val ∈
Name1,1 and connect ∈ Name2,0. The following are example properties of QCTL:

1. AG∀x (Cell(x )⇔ Data(val (x ))), expressing a type invariant, viz. that in all reach-
able states, val is defined only for, and for all, Cell -type entities, and always yields
a Data-type entity.

2. ∀x (Data(x )⇒ AF¬x ), expressing that all currently existing Data-type entities
are eventually de-allocated.

3. ∀S EF∃x (Data(x ) ∧ ¬S (x )), expressing that in all system behaviours, some new
Data-type entity is eventually allocated. (Note that S is a second-order variable;
¬S (x ) expresses that x is not in the set S , meaning that the entity denoted by x did
not exist in the state where S was bound.)

4. AG∀x , y(List(x )∧Cell(y)∧connect(x , y)⇒ (AG y)∨A(connect(x , y)U¬y)),
expressing that cells can become disconnected from a List-type entity only when
they are de-allocated.

5. AG∀S (∀x Data(x )⇔S (x ))⇒ AG∀x ,y S (x ) ∧Data(y) ⇒ S (y) ∨ A(y U ¬x),
expressing that Data-type entities are allocated and de-allocated in first-in-first-out
order. To understand this, note that the sub-formula ∀x Data(x )⇔ S (x ) specifies
that the logical second-order variable S is equivalent (in the state where S is bound)
to the predicate Data . Furthermore, A(y U¬x ) expresses that y lives at least as long
as x. Thus, ∀x ,y S (x )∧Data(y) ⇒ S (y)∨A(y U¬x ) expresses that, for all Data-
type entities x and y, if x existed in the (past) state where S was bound but y did
not — meaning that y was created after x — then y will survive x .

We introduce some further syntactic sugar. In the following let x ∈ Name0,1, S ∈
Name1,0 and T ∈ Name1,τ for some τ , and let t be a term with τt = 1.

– ∃x:T φ stands for ∃xT (x) ∧ φ;
– ∀x:T φ stands for ∀xT (x)⇒ φ;
– Γx≡t φ stands for ∃xx≡t ∧ φ.
– ΓS≡T φ stands for ∃S (∀xS(x)⇔ T (x)) ∧ φ.
– ΓS φ stands for ∃S (∀xS(x)) ∧ φ.

Thus, in ∃x:T φ, the first-order variable x is bound to some entity of “type” T (i.e., on
which T is defined), whereas in Γx≡t φ it is bound precisely to the current value of the
term t (which has to be defined). Likewise, in ΓS≡T φ, the second-order variable S is
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bound to the set of all values of type T ; finally, ΓS φ binds S to the set of all currently
existing values. The last three properties can be read as “let . . . equal . . . in φ.”

Using this syntactic sugar, for instance, the property in Ex. 1.5 above becomes

AG ΓS≡Data AG ∀x :S , y:Data(S (y) ∨ A(y U ¬x )) (1)

Valuations. To interpret the logic we need to express what the names stand for; in other
words, we need the concept of a valuation. Valuations are defined in terms of entities:
if E ⊆ Ent is some set of entities andN ⊆ Name a set of names, then a valuation ofN
over E is a function V :N → E∗ ⇀ E0,1 such that for all x ∈ N , V (x):Eαx ⇀ Eτx;
in words, V assigns to every name a partial function of the appropriate arity and type.
The set of valuations ofN overE is denoted Val[N,E]. Valuations are strictly extended
to terms, in the natural way:

V (f(u)) =
{
V (f)(V (u1) · · ·V (uαf )) if V (ui) �= ⊥ for all 1 ≤ i ≤ αf
⊥ otherwise.

We callN the domain of V , denoted dom(V ). Note that we may actually have V (x) =
⊥ for x ∈ N0,1; in this case, the variable x is in the domain of V despite the fact that
V assigns “undefined” to it.

Another way to understand the concept of a valuationV ∈ Val[N,E] is that it defines
a partialN -algebra over the domain E (N being the signature of the algebra).

If V ∈ Val[N,E] andW ∈ Val[M,E], then V {W} equalsW wherever it is defined,
and V otherwise. Furthermore, V |−x denotes V minus the value for x. Formally:

V {W} : y �→
{
W (y) if y ∈ dom(W )
V (y) otherwise.

V |−x : y �→ V (y) if x �= y.

It follows that dom(V {W}) = N ∪M and dom(V |−x) = N \ {x}.

3 Algebra Automata

To express the semantics of QCTL we define an automata model that includes a fixed
set of model names, as well as a separate domain of values at each state, with a cor-
responding valuation of the model names. In fact, the domain and valuation together
constitute an algebra for the model names (considered as a signature). Furthermore, we
use an idea from History-Dependent Automata proposed by Montanari and Pistore [17],
namely to allow reallocations of values between states.

Definition 2. Let Ent be a set of entities. An algebra automatonA over Ent is a tuple
〈N,S,D,A,→, I〉 where

– N ⊆ Name is a finite set of names;
– S is a set of states;
– D:S→ 2Ent associates with every s ∈ S a domainD(s) of values “existing” in s;
– A:S→ Val[N,Ent] associates with every s ∈ S an algebraA(s) ∈ Val[N,D(s)];
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Fig. 1. First-in-first-out list

– → ⊆ S × (Ent ⇀ Ent) × S is an indexed binary relation between states, where
the indices are partial injective functions that map the domain of the source state
to the domain of the target state; thus, s →λ s

′ implies λ:D(s) ⇀ D(s′). Every
state has at least one outgoing transition;

– I ⊆ S is a set of initial states.

A is called finite if S is finite andD(s) is finite for all s ∈ S.

The index λ in a transition s →λ s
′ stands for a reallocation (or renaming) of entities.

That is, an entity e ∈ D(s) that does not have an image in λ is deallocated (dies)
during the transition; otherwise, the entity remains in existence but is known in s′ as
λ(e). Entities e′ ∈ D(s′) that are not in the range of λ are allocated (created, born).
Note that λ is not required to preserve the algebraic structure of the state: indeed the
structure may change, e.g., references or values may be reassigned, as in the transitions
λBC and λDC in the following example.

Example 2. Let e ∈ Name0,0, f ∈ Name0,1 and n ∈ Name1,1 stand for empty, the first
and next elements in a list; then ?? shows an algebra automaton with N = {e, f ,n}
which models the behaviour of a list (of maximum length 3) of which the elements
are allocated and deallocated in a first-in-first-out manner. The rounded rectangles are
states, containing valuations V ∈ Val[N,Nat] (so the numbered nodes represent the en-
tities): proposition e holds in the state where it is inscribed, whereas the constant V (f )
and the partial function V (n) are given as arrows. The reallocations λ are shown as
dashed arrows, implicitly associated with the transitions in the corresponding direction.

From [17] we recall the important property that history-dependent automata can be min-
imized with respect to bisimilarity, defined appropriately to abstract from the entities
while maintaining the algebraic structure up to isomorphism. That is, a bisimulation be-
tween algebra automata A1 and A2 is a family of symmetric relations
{Rf ⊆ S1 × S2}f :Ent→Ent, such that (s1, s2) ∈ Rf implies

– f is an isomorphism from A1(s1) to A2(s2);
– s1 −→λ s

′
1 implies s2 −→μ s

′
2 for some s′2 such that (s′1, s

′
2) ∈ Rg with g ◦ λ = μ ◦ f ;

– s2 −→μ s
′
2 implies s1 −→λ s

′
1 for some s′1 such that (s′1, s

′
2) ∈ Rg with g ◦λ = μ ◦ f .

We call A1 and A2 bisimilar, denoted A1 ∼ A2, if there exists such a bisimulation
{Rf}f , such that Rid is a total relation between I1 and I2.

Essentially, minimization w.r.t.∼ comes down to symmetry reduction: all states with
isomorphic algebras can be folded together, maintaining the connection with the entities
in neighbouring states through the reallocations. In the automaton of Fig. 1, which is
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already minimized, this can be seen from the fact that the reallocations λCD and λDC

between are not inverse to one another. Unfolding this example automaton so that all
reallocations become (partial) identities results in a quadratic blowup (in the number of
states). In the worst case the blowup is exponential in the size of the algebra — or in
other words, minimization w.r.t. ∼ can result in a logarithmically smaller automaton.

The well-known model of Kripke structures appears as an important special case,
where all the names are propositions (i.e., in Name0,0) and there are no entities. We call
such automata propositional.

Definition 3 (propositional automata). An algebra automaton is called propositional
if N ⊆ Name0,0 andD(s) = ∅ for all s ∈ S.

A key fact used in this paper (see Th. 2 below) is that for the special case of proposi-
tional automata and propositional formulae, efficient solutions to the model checking
problem are well known from the literature (cf. [7]).

3.1 Semantics of QCTL

We now express the semantics of QCTL in terms of algebra automata. For this purpose
we first need the notion of a run of such an automaton. Note that we have applied a
common trick by enforcing every state to have at least one outgoing transition; this
makes the presentation technically easier.

Definition 4 (paths runs). LetA be an algebra automaton. A path throughA is a finite
or infinite alternating sequence σ = s0 λ1 s1 λ2 s2 · · ·, ending on a state if the sequence
is finite, such that for all λi in the sequence, si−1 →λi si is a transition in A. The path
is called a run if it is infinite.

The set of runs of A is denoted runs(A). If σ = s0 λ1 s1 λ2 · · · is a run then
– For all i ≥ 0, σ|si denotes the state at position i in the run, i.e., si;
– For all i > 0, σ|λi denotes the reallocation at position i in the run, i.e., λi;
– For all i ≥ 0, σ|λ≤i denotes the reallocation up to position i in the run, i.e., λi ◦
λi−1 ◦ · · · ◦ λ1. This is interpreted to yield idD(s0) if i = 0.

The semantics of QCTL is expressed by a relation A, s, V |= φ where φ is a QCTL-
formula, A is an algebra automaton, s ∈ S is a state of A and V ∈ Val[M,D(s)] is a
valuation, with fn(φ) ⊇ M ∪ NA. We write A, V |= φ if A, s, V |= φ for all s ∈ I .
Moreover, we may omit V if dom(V ) = ∅, and A if it is clear from the context. The
modelling relation is defined by induction on the structure of φ, as follows:

A, s, V |= t :⇔ A(s){V }(t) �= ⊥
A, s, V |= t ≡ u :⇔ A(s){V }(t) = A(s){V }(u) (�= ⊥)
A, s, V |= ∃x φ :⇔ A, s, V {W} |= φ for someW ∈ Val[{x}, D(s)]
A, s, V |= EXφ :⇔ A, s′, λ ◦ V |= φ for some s→λ s

′

A, s, V |= E(φ U ψ) :⇔ there is a σ ∈ runs(A) with σ|s0 = s such that
A, σ|si , σ|λ≤i ◦ V |= ψ for some i ≥ 0 and
A, σ|sj , σ|λ≤j ◦ V |= φ for all 0 ≤ j < i;

A, s, V |= A(φ U ψ) :⇔ for all σ ∈ runs(A) with σ|s0 = s:
A, σ|si , σ|λ≤i ◦ V |= ψ for some i ≥ 0 and
A, σ|sj , σ|λ≤j ◦ V |= φ for all 0 ≤ j < i.
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The following property (the proof of which is straightforward and omitted here) is im-
portant in the light of the discussion above regarding minimization up to bisimilarity:

Theorem 1. If A ∼ B, thenA, V |= φ iff B, V |= φ for all QCTL-formulae φ.

We can now formulate the “key fact” about model checking propositional formulae,
referred to above:

Theorem 2 (See [7]). Given a finite algebra automatonA and a propositional formula
φ, A |= φ can be decided in time linear in the size of φ and the size of A.

Example 3. Without proof, we assert that the automaton of Fig. 1 satisfies the formulae

AG ∀x n(x )⇒ Γy≡n(x ) A(y≡n(x ) U ¬x ) (2)

AG ΓS AF ∃x ¬S (x ) (3)

AG∀x AF¬x (4)

AG ΓS AG∀x :S ∀y S (y) ∨ A(y U ¬x) (5)

AG EF e . (6)

Property (2) expresses that the n-pointers in the automaton are immutable in the sense
that whenever the term n(x ) is defined for a given entity x , it will go on designating the
same value until x itself is deallocated. Property (4) is a simplified form of Ex. 1.2 ex-
pressing that every entity is always eventually deallocated. Likewise, (3) is a simplified
form of Ex. 1.3 expressing that a fresh entity is always eventually allocated. Property
(5) is a simplified version of (1) expressing that entities are created and destroyed in a
first-in-first-out schedule.

Finally, (6) expresses that the state where the list is empty always remains reachable.
This is in fact a propositional formula and so can be model checked with existing meth-
ods (see Th. 2). Note that algebra automata include no fairness criterion, and so it is not
true that the empty list is always eventually reached (i.e., the property AG AF e is not
satisfied). See, however, Sect. 5 where we discuss the extension of the model with just
such a fairness criterion.

The following theorem states an intuitively straightforward property, heavily used in
practice, namely that quantifier-free formulae can be treated as if they were proposi-
tional, by defining propositions for all basic formulae t and t ≡ u and abstracting the
models accordingly.

Theorem 3. Let A be an algebra automaton and let φ be a formula with fn(φ) ⊆
N . If φ is quantifier-free, then there is a propositional formula φ′ and a propositional
automatonA′, with size(φ′) = size(φ), SA′ = SA and→A′ = {(s, ∅, s′) | s→λ s

′},
such thatA |= φ if and only if A′ |= φ′.

Proof. We sketch the proof. The idea is to introduce a propositional name nβ ∈ Name0,0

for every base sub-formula ψ in φ, where a base formula is of the form ψ = t or
ψ = t≡u. φ′ equals φ with all base formulae ψ replaced by the corresponding names
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nψ; A′ is constructed from A by re-using the states, setting D′(s) = ∅ for all s ∈ S,
re-using the transitions while stripping away the reallocations λ, and defining

A′(s):nψ �→
{
ε if ψ = t and A(s)(t) �= ⊥
ε if ψ = t≡u and A(s)(t) = A(s)(u) �= ⊥
⊥ otherwise.

The proof obligation is implied by the following property, which can be proved by
induction on the structure of φ: For all s ∈ S, A, s |= φ if and only if A′, s |= φ′. ��

4 Skolemization

The essential idea in model checking a QCTL formula φ over a given algebra automa-
tion A is to turn the bound logical variables in φ into new (non-rigidly designating)
model constants — a principle known as Skolemization — and to simulate the binding
of a logical variable during the evaluation of the formula by a random assignment to
the corresponding model constant. We can then equivalently model check a transformed
formula φ−, where all quantifications are changed into next-step modalities, over the
extended automaton. Since φ− is quantifier-free, due to Th. 3 we can apply existing
theory to solve the transformed model checking problem.

In fact it is not enough to add the variables to the model and simulate their assign-
ment: in addition we have to be able to distinguish between the transitions of the original
automaton and the new “assignment transitions”. This will be done by using assignment
flags, which are proposition names αx ∈ Name0,0 for all variables x to be Skolemized,
as well as one distinguished flag ᾱ, which stands for no assignment and behaves as the
negated disjunction of the αx. In the remainder we assume that the assignment flags are
globally given and distinct from all other names in the automaton and the formula to be
checked. Furthermore, for a given set of variablesX we use αX = {αx | x ∈ X}∪{ᾱ}
to denote the set of all assignment flags. We also use β, γ to range over αX .

Definition 5. Let A be an algebra automaton, and X ⊆ Name. The X-Skolemization
of A, denotedA+X , is given by 〈N ′, S′,→′, D′, A′, I ′〉 with

N ′ = N ∪X ∪ αX
S′ = {(s,W, ᾱ) |W ∈ Val[X,D(s)]} ∪

{(s,W, αx) |W ∈ Val[X,D(s)], x ∈ X,W (x) �= ⊥}
→′ = {((s,W, ᾱ), λ, (s′, λ ◦W, ᾱ)) | s→λ s

′} ∪
{((s,W, ᾱ), idD(s), (s,W ′, αx)) | (s,W, ᾱ) ∈ S′,W ′|−x =W |−x} ∪
{((s,W, αx), idD(s), (s,W, ᾱ)) | (s,W, ᾱ) ∈ S′}

D′ = {((s,W, β), D(s)) | (s,W, β) ∈ S′}
A′ = {((s,W, β), A(s){W}{ε/β}) | (s,W, β) ∈ S′}
I ′ = {(s,W, ᾱ) | s ∈ I, dom(W ) = ∅} .

The principle of the construction is to allow, in every state, to “guess” a random value
and assign it to one of the new variables in the set X . Each state of the extended au-
tomaton is a triple consisting of the corresponding state of the original automaton, a
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combined assignment W , and an assignment flag β indicating which (if any) of the
Skolemized variables has been assigned a new value since the previous state. That is,
either β = ᾱ if the valuation was unchanged, or β = αx for some x ∈ X if a new
value for x was guessed in the transitions leading up to the state. There are three types
of transitions: those reflected from the original automaton, those reflecting random as-
signment steps, and those leading back from an assignment state to a “normal” state.
In the first type, β = ᾱ in source and target state and the guessed valuation W is kept
constant (modulo the reallocation); in the second type, the state is unchanged, β = αx
(for some x ∈ X) in the target state and W may change (only) at x; in the third type,
β = αx in the source state, and the state and guessed valuation are kept constant.

The corresponding transformation of the formulae is defined as follows:

t− = t

(t ≡ u)− = t ≡ u
(¬φ)− = ¬φ−

(φ ∨ ψ)− = φ− ∨ ψ−

(∃xφ)− = EX(αx ∧ EXφ−)
(EXφ)− = EX(ᾱ ∧ φ−)

E(φ U ψ)− = E((ᾱ ∧ φ−) U (ᾱ ∧ ψ−))
A(φ U ψ)− = A(φ− U (ᾱ⇒ ψ−))

The intuition is that quantification is operationalised by a transition of the extended
automaton, which guesses a value for the quantified variable — followed by another
transition that returns to a “regular” state. The quantification operator itself is likewise
turned into a pair of next-step operators. In order to distinguish “regular” from “assign-
ment” next-steps, we test for the absence or presence of an assignment flag.

The following is the main theorem of this paper:

Theorem 4. Let φ be an arbitrary formula; let X denote the set of names bound in φ.
For any algebra automatonA with fn(φ) ⊆ N , the following equivalence holds:

A |= φ if and only if A+X |= φ− .

Proof. The theorem follows from the following, stronger property, which holds for all
s ∈ S and V ∈ Val[Y,D(s)]:

A, s, V |= φ if and only if A+X , (s, V, ᾱ) |= φ− .

This is proved by induction on the structure of φ. ��
Example 4. Let φ denote property (4), andA the algebra automaton of Ex. 2, simplified
to a list of maximum length 2. Fig. 2 showsA+{x}: the dotted arrows are the assignment
transitions, and the λ’s are indicated by pairs of entities, from the source resp. the target
state. The skolemized formula is

φ− = AG(AX(αx ⇒ EX AF(ᾱ⇒ ¬x )))

Clearly, checking φ− overA+{x} is a case of PCTL model checking. The states where
ᾱ⇒ ¬x holds are shaded in the figure.



Model Checking Quantified Computation Tree Logic 121

2 2
3 3

2 2
3 3

2 2
3 3

2 2
3 3

2 2
3 3

3 1

1 11 1

1 1

3 1

1 2

1 2

3 1

f,x

f,x
f

f

f f

x

x

e

n f,x

f,xn n

n

n

1

1 2

3

2

3

2

3

1

2

3

2

3
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Fig. 2. Skolemization of part of the automaton of Fig. 1 w.r.t. x ∈ Name0,1

The size of A+X can be computed as follows: for modelling the possible choices of a
first-order variable we need |D(s)| new states for each s ∈ SA; for a second-order vari-
able this is 2|D(s)|. The number of “original” transitions between the new states grows
with the same factor, and the number of “assignment” transitions is triple the number
of new states. Thus Skolemizing a single variable blows up the automaton linearly (for
first-order) resp. exponentially (for second-order) in the maximum domain size. This is
repeated for every variable bound in φ, making the blow-up exponential in the number
of variables. (Note that the domais themselves are not affected.)

Theorem 5 (complexity). Let A be an algebra automaton with maximum algebra size
a; let X ⊆ Name0,1 ∪ Name1,0 and let d1 = |X0,1| and d2 = |X1,0|. If B = A+X ,
then |SB| ≤ s · |SA| and |→B| ≤ s · |→A| with s = O((d1 + d2) · ad1 · 2a·d2).

Skolemization of the formula also increases its size, but by a constant factor only.

Theorems 2, 3, 4 and 5 together give rise to the following worst-case time complexity:

Corollary 1. A QCTL formula can be model checked over a finite algebra automaton
in time linear in the number of states and transitions, exponential in the size of the
formula and exponential in the maximum size of the state domains.

5 Improvements

As defined above, skolemization only takes a set of (typed) names as input. By taking
more information about the formula to be checked into account, the definition can be
improved in several ways, resulting in a smaller automaton.

Collectively Bound Names. In Def. 5 the skolemized automaton receives assignment
transitions everywhere. Yet they are used only to mimic quantification in the formula,



122 A. Rensink

say φ, that we want to model check. Through an analysis of φ, we can omit many of the
assignment transitions or their target states that can clearly never be taken or reached,
and thus achieve an appreciable reduction of the skolemized automaton.

A simple observation which can already cause a large reduction is that we only need
to assign to sets of variables that occur together in some sub-formula. Define the col-
lectively bound namesN (φ) ⊆ 2Name for arbitrary φ ∈ QCTL as follows:

– N (φ) = {∅} whenever φ is quantifier-free;
– N (¬φ) = N (EXφ) = N (φ);
– N (φ ∨ ψ) = N (E(φ U ψ)) = N (A(φ U ψ)) = N (φ) ∪N (ψ);
– N (∃x φ) = {Y ∪ {x} | Y ∈ N (φ)}.

In model checking φ−, all the states of A+X that are actually encountered are of the
form (s, V, β) with {x ∈ X | V (x) �= ⊥} ⊆ M for some M ∈ N (φ). It follows that
we may omit all states that are not of this form, and still obtain the same answer to
the model checking question for φ−. This obviously affects the size of the resulting
automaton, since the space over which the valuations V range is now possibly much
smaller. In terms of Th. 5, the factor s is now of the order∑

M∈N (φ),d1=|M0,1|,d2=|M1,0| (d1 + d2) · ad1 · 2a·d2 .

Quantification Order. If we take the above analysis of the formula one step further,
it becomes clear that assignment transitions need only ever be taken in the order in
which we encounter quantifiers in φ, when traversing the syntax tree of φ top-down. For
instance, in (2) this order is x followed by y , whereas in (5) it is S–x–y . This means
that we may cut out transitions that attempt to assign the variables in any different
order. Since we may also cut out non-reachable parts of the automaton, this may cause
a further reduction.

For instance, in Fig. 2 the transitions leading from the bottom ᾱ-states back to the
αx-states would be removed by this optimization (without, however, a reduction in the
number of states).

Assignment. A further optimization, causing a generally unpredictable but potentially
large improvement, is to define a special treatment of the binders introduced as syntactic
sugar in Sect. 2: ∃x:T φ and its dual, but especially Γx≡t φ, ΓS≡T φ and ΓS φ. Namely,
in these cases the possible values assigned to the logical variables are not arbitrary
values but satisfy some very strict constraints; in fact, in the latter three cases they are
bound precisely to uniquely defined values.

In terms of Def. 5, if x is bound by such a special syntactic form then the assignment
states for x, i.e., the states (s, V, αx) in A+X , should all satisfy the corresponding con-
straint on V ; i.e., V (T )(V (x)) �= ⊥ for ∃x:T φ, V (x) = V (t) for Γx≡t φ, etc. Thus,
the number of resulting assignment states (for a given s) is no longer |D(s)| or 2|D(s)|,
but much smaller and some cases just 1! Unfortunately, we cannot conclude from this
that the whole skolemized automaton will always be that much smaller. This kind of
constrained assignment may ruin the symmetry that has originally allowed states to be
collapsed (while keeping track of entities through reallocations), and hence may par-
tially or wholly undo the symmetry reduction discussed in Sect. 3.
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Non-temporal Quantification In Th. 3 we have recalled how quantifier-free formulae
may be reduced to PCTL. As recounted in the introduction, the same principle still
works for quantified formulae, as long as all sub-formulae ∃xψ have the property that
ψ is without temporal operators. We may take advantage of this by defining yet another
optimization, in which all temporal-operator-free sub-formulae are reduced to proposi-
tional names, assigned the appropriate value by an extended valuation for the states.

As an example, regard property (3) (Page 118). The sub-formula ψ = ∃x ¬S (x ) is
free of temporal operators and hence a candidate for this optimization. The resulting
skolemized property becomes

AG(ᾱ⇒ EX(αS ∧ EX AF(ᾱ⇒ nψ)))

and the skolemized automaton needs to contain assignments to S only.

Fairness. Skolemization can still be applied if the algebra automata are extended with
a fairness condition. This involves constructing a corresponding fairness condition for
the skolemized automata, where the correspondence should be such that there is the
same relation between the fair runs ofA and those ofA+X as there is between the runs
as originally defined in Def. 4. We show the necessary construction without proof.

Assume an algebra automaton A in addition has a component F ⊆ 2S, and that
runs(A) is restricted to those sequences σ such that {i | σ|si ∈ F} = ∞ for all F ∈ F .
ThenA+X should receive a corresponding componentF ′ defined by

F ′ = { {(s, V, β) ∈ S | s ∈ F} | F ∈ F} .

In words, F ′ consists of those sets that project onto the fair sets of F . Note that there
are, in fact, many fair runs inA+X that do not project to fair runs ofA, because they just
cycle around through the assignment states; however, the stripped formulae themselves
prevent these “spurious” runs from making a difference to their validity, just as in the
case without fairness.

With this adaptation, the proof of Th. 4 goes through just as before. Since, according
to [7], model checking PCTL is linear in the size of F , and this size is not affected by
the skolemization defined above, Corollary 1 can also be extended with a dependency
on the fairness criterion that is linear in the size of F .

6 Conclusions

We have presented an effective technique for checking QCTL, which combines monadic
second-order quantification with the temporal operators of CTL, on finite models with
arbitrary (bounded) algebraic structure on the states and reallocations on the transi-
tions. The reallocations allow models to be minimized up to bisimilarity (appropriately
defined), resulting in a best-case logarithmic reduction in the size of the automata.

It is interesting to note that the technique used in our proof extends to other temporal
logics in a limited way only. In order for the encoding of ∃x φ as EX(αx ∧ EXφ′) to
be valid, it seems crucial that φ is a state formula: if it is interpreted in the context of a
path then this context is lost in the encoding. This means that the technique is useless
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for LTL, whereas it can still be used in the fragment of PCTL∗ where quantification is
just allowed on state formulae (of the form Eφ or, dually, Aφ).

On the other hand, it should be possible to extend Skolemization to a setting where
the temporal modalities are defined through fixpoints, as in the μ-calculus [9]. Here the
fact that we can repeatedly assign to the same variable may turn out to be crucial.

The proof theory of quantified modal logic has been studied in depth in the con-
text of philosophical logic. An overview can be found in [14]; some more references
were given in the introduction. Results on automated theorem proving (which is a much
harder problem than the one studied here, since it is not restricted to finite models) are
presented in Castellini and Smaill [4, 5]. Some decidability results on words over infi-
nite alphabets can be found in [18, 3]. Finally, in [1] Baldan et al. present a translation
of a quantified temporal logic to a Petri net logic, and so obtain an automatic way to
approximate its verification.

As we pointed out in the introduction, a source of more closely related work is Yahav
et al. [21]. Their Evolution Temporal Logic, which is a quantified extension of Linear
Temporal Logic, is motivated by the same considerations as QCTL, namely to express
properties that track entities over time. Through abstraction they can conservatively
verify unbounded models, though they do not include reallocations.

As far as we are aware, however, the model checking question was not studied be-
fore, at least not for models with arbitrary algebraic structure on the states and quanti-
fied temporal logic. For models with unbounded domains (and consequently an infinite
number of states, in a suitable finite representation) but very limited structure, some re-
sults on model checking were presented in [11, 10]. The first of these shows decidability
of model checking for unstructured domains, i.e., just sets of entities; the second gives a
safe approximation in the case where the domains are singly-linked lists. Finally, model
checking for bounded domains and propositional temporal logic has been addressed in
many software model checking tools; for instance, Bandera (e.g., [8]).

As future work, we plan to implement the algorithm presented here in the GROOVE
tool for graph transformation-based verification [20], thereby realizing one important
step of the programme, set out in [19], for model checking graph grammars.
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Abstract. Impossible futures equivalence is the semantic equivalence
on labelled transition systems that identifies systems iff they have the
same “AGEF” properties: temporal logic properties saying that reach-
ing a desired outcome is not doomed to fail. We show that this equiva-
lence, with an added root condition, is the coarsest congruence containing
weak bisimilarity with explicit divergence that respects deadlock/livelock
traces (or fair testing, or any liveness property under a global fairness
assumption) and assigns unique solutions to recursive equations.

1 Introduction

This paper deals with a class of system requirements, and related notions of
process equivalence, that we introduce by the following tale.

Pete’s mobile phone allows a number to be redialed as long as connection attempts are
unsuccessful. The phone’s manual charts this functionality (Fig. 1, left hand side; ok and nok
are internal actions that cannot be observed or interacted with). After having lost several
valuable business opportunities, Pete finds out that his redial module contains a bug. During
the redial process, data can become corrupted so that all connection attempts fail from then
on. Pete contacts his vendor for damages, who denies responsibility, since all code has been
certified by a company named TEI (Testing Equivalences Inc). Upon contacting TEI, their
spokesman says: “We indeed have discovered the feature you complain about. Our technical
people have even charted the functionality implemented (Fig. 1, right hand side, dashed arc
omitted). However you have nothing to complain about, because we have verified that the
two systems are equivalent with respect to ready simulation. This is our finest equivalence,
highly recommended by concurrency specialists [4].” Our hero is considering his next step.
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Fig. 1. Charts of Pete’s mobile phone
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The specification in his manual led Pete to believe that his phone satisfies the
requirement: every redial attempt may succeed. Of course, the attempts may fail,
but attempts that are doomed to fail are not acceptable. In CTL [7], when taking
observable histories of states as atomic propositions, Pete’s requirement may be
formulated as, for all k∈IIN, AG((tf)k has occurred⇒ EF (tf)ktc has occurred).
We call such requirements AGEF properties. Pete’s requirement is not preserved
by testing equivalences such as ready simulation [4] or failures equivalence [6].

AGAF properties are (conditional) liveness requirements, stating that (de-
pending on past activity) some condition will eventually hold. In Pete’s case,
such a requirement would be: if I keep hitting the redial button, I will eventually be
connected. The implementation in Fig. 1 does not satisfy this AGAF property,
but it is open to debate whether the specification satisfies it. In order to deduce
that requirement, a fairness assumption is needed [9], e.g.: in a recurring state, a
specific option cannot be avoided infinitely often. This assumption allows to dis-
tinguish the processes in Fig. 1, even without testing the AGEF property. We
show that under a sufficiently strong fairness assumption any AGAF property
can be reformulated as a conjunction of AGEF properties. Since the validity
of AGEF properties does not depend on fairness, it appears preferable to di-
rectly verify the AGEF requirements rather than assume fairness and verify the
AGAF requirement. Fair testing equivalence [5] preserves the subset of testable
AGEF properties, including the reformulated AGAF properties. Absence of ini-
tial deadlock and livelock is an example of a testable AGEF property. However,
many reasonable requirements such as Pete’s not-doomed-to-fail requirement are
in fact non-testable AGEF properties. If there is e.g. a possibility that the cor-
rupted data in Pete’s phone can become uncorrupted by redialling frantically, as
indicated by the dashed arc in Fig. 1, the erroneous implementation is fair testing
equivalent to the specification. However, Pete will still be far from satisfied.

In this paper we study the impossible futures (IF) equivalence of [13,14] that
preserves all AGEF properties. We prove that any process equivalence that is a
congruence w.r.t. the operators of calculi like CCS and CSP either preserves all
AGEF properties, all testable properties only, or no proper AGEF property at all.
Moreover, any equivalence that preserves just the testable AGEF properties and
is coarser than weak bisimilarity with explicit divergence (↔Δ

rw) does not respect
the recursive specification principle (RSP), stating that solutions of guarded
recursive equations are unique. This proof principle is of great importance in
equational system verification [2]. So, among the semantic equivalences coarser
than ↔Δ

rw,1 IF is the coarsest congruence allowing both the preservation of any
chosen proper AGEF property and equational system verification.

2 Labelled Transition Systems

Let Σ∗ denote the set of finite sequences over a given set Σ. Write ε for the
empty sequence, σρ for the concatenation of sequences σ and ρ, and a for the
1 We were unable to extend our results to equivalences incomparable with both ↔Δ

rw

and IF, preserving some AGEF property. However, no such equivalences are known.
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sequence consisting of the single element a ∈ Σ. Write σ ≤ ρ if σ is a prefix of
ρ, i.e. ∃ν ∈ Σ∗ · σν = ρ, and write σ < ρ if σ ≤ ρ and σ �= ρ.

We presuppose a countable action alphabet A, not containing the “silent” ac-
tion τ and set Aτ = A∪{τ}. We assume that our set A consists of complementary
pairs; each a ∈ A has a complement ā such that ¯̄a = a.

Definition 1. A labelled transition system (LTS) is a pair (P,→), where P is a
set (of processes or states) and → ⊆ P×Aτ × P is a set of transitions.

Assuming a fixed transition system (P,→), we write p a−→ p′ for (p, a, p′) ∈ →.
p

a−→ p′ means that process p can evolve into p′, while performing the action a.

Definition 2. The ternary relation =⇒ ⊆ P × A∗ × P is the least relation

satisfying p
ε=⇒ p,

p
τ−→ p′

p
ε=⇒ p′

,
p

a−→ p′, a �= τ

p
a=⇒ p′

, and
p

σ=⇒ p′
ρ

=⇒ p′′

p
σρ

=⇒ p′′
.

We write p σ=⇒ for ∃p′ · p σ=⇒ p′ and p ∗=⇒ p′ for ∃σ · p σ=⇒ p′.
Let T (p) = {σ ∈ A∗ | p σ=⇒} be the set of traces of p, and A(p) = {a ∈ A | a

or ā occurs in a trace of p} the alphabet of p.

In this paper we present particular processes that are instrumental in proving
our results (cf. Figs. 2, 3). Therefore our results apply only to transition systems
in which those processes exist. To ensure this, we assume that (P,→)

1. is closed under action prefixing, meaning that for any p ∈ P and a∈Aτ there
is a process ap such that ap c−→ q iff a = c and q = p, and

2. is closed under countable summation, meaning that for every countable set
of processes P ⊆ P there is a process

∑
P such that for all a∈A we have∑

P
a−→ q iff there exists p ∈ P such that p a−→ q.

Alternatively we may assume that (P,→) contains finite-state processes only,
and is closed under action prefixing and finite summation (cf. Remark 1 in
Sect. 4). We also postulate the Fresh Atom Principle [11], allowing fresh actions
in proofs.

When writing expressions with action prefixing and summation, we let 0 stand
for
∑
∅ and p+ q for

∑
{p, q}, and prefixing binds stronger than sum. We write

a for a0 and, when σ = a1 . . . an, write σp for a1 . . . anp and σ̄ for ā1 . . . ān.

3 Coarsest Congruence Relations on Processes

Semantic equivalences on processes are used to assess whether an implementa-
tion has the same functionality as its specification, viz. Fig. 1. The equivalence
of two processes should guarantee that if one has a certain desirable property,
then so has the other. In the context of an LTS (P,→), properties can be mod-
elled as unary predicates ϕ ⊆ P. A semantic equivalence relation ∼ ⊆ P × P
respects or preserves a property ϕ if p ∼ q ⇒ (ϕ(p) ⇔ ϕ(q)). Thus, a semantic
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equivalence should respect all relevant properties of the systems on which it is
applied. Naturally, what is relevant depends to a large extent on the intended
application, and consequently many semantic equivalences have been proposed
in the literature [10]. This paper focusses on system requirements that we call
AGEF and AGAF properties; they will be defined in Section 4.

A transition system (P,→) is often equipped with process algebraic operators
f : Pn → P. Throughout this paper, we shall assume that (P,→) is equipped
with the parallel composition ( | ) and restriction \H for H ⊆ A of CCS [12].

Definition 3. The CCS parallel composition operator is a binary operator ( | )
defined on P in such a way that, for all p, q, r∈P and for all a∈Aτ , p | q a−→ r iff

1. there exists p′ ∈ P such that p a−→ p′ and r = p′ | q; or
2. there exists q′ ∈ P such that q a−→ q′ and r = p | q′; or
3. a = τ and ∃p′, q′∈ P and b ∈A such that p b−→ p′, q b̄−→ q′ and r = p′ | q′.

A restriction operator is a unary operator \H defined on P in such a way that,
for all p, q ∈ P and for all a ∈ Aτ , p \H a−→ q iff a, ā �∈ H and there exists p′ ∈ P
such that p a−→ p′ and q = p′\H .

Component-based design often results in processes of the form (p0 | · · · | pn)\H
when formalised in CCS. If the component pi is replaced by an equivalent com-
ponent qi, we want to be able to conclude that the resulting composition is
equivalent to the original. Due to the state explosion phenomenon, it is often
infeasible to check this explicitly. Therefore, a second requirement on semantic
equivalence relations is that they are congruences for all relevant composition
operators; this in order to allow compositional verification.

Definition 4. A semantic equivalence relation ∼ ⊆ P × P is a congruence for
an operator f : Pn → P, or f is compositional for ∼, if pi ∼ qi for i = 1, ..., n
implies that f(p1, ..., pn) ∼ f(q1, ..., qn).

Often, one requires compositionality of all operators of CCS and CSP; the min-
imum requirement typically involves just the operators | and \H of CCS, or
alternatively the parallel composition and concealment operators of CSP.

Let ∼,≈ ⊆ P×P be equivalence relations. Then ∼ is called finer than ≈ and ≈
coarser than ∼ if ∼ ⊆ ≈. (Note that we use these concepts in a non-strict sense.)
As explained above, we seek semantic equivalences that (1) preserve important
properties of the processes on which they will be applied, (2) are congruences for
the operators that are used to compose processes, and (3) possibly satisfy some
other requirements, such as RSP (see the introduction). When the requirements
are completely clear and not subject to change, amongst multiple equivalences
that meet all requirements, the coarsest of them, if it exists, constitutes the
ultimate criterion for system verification, as it enables more implementations to
be shown correct with respect to a given specification. The main goal of this
paper is to characterise such coarsest equivalences.
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4 AGEF and AGAF Properties

Definition 5. The set I(p) of impossible futures of a process p is the set of pairs
(σ,G) ∈ A∗ × P(A∗) satisfying

∃p′ · p σ=⇒ p′ ∧G ∩ T (p′) = ∅.

Processes p, q are IF-equivalent, notation p ∼I q, iff I(p) = I(q).

Note that (tf, {tc}) ∈ I(q) \ I(p), where p, q are respectively the left- and right-
hand processes of Fig. 1. (The transitions ok and nok are labelled τ .) So p and q
are not IF-equivalent. The statement (σ,G) �∈ I(p) expresses the property

∀p′ · p σ=⇒ p′ ⇒ ∃ρ ∈ G · p′ ρ
=⇒.

Pete’s redialling requirement consists of the conjunction of these properties for
σ = (tf)k and G = {tc}. We call them AGEF properties.

Definition 6. For σ∈A∗ and G ⊆ A∗, let AGEF(σ,G) be the property (subset)
of processes with p ∈ AGEF(σ,G) iff ∀p′ · p σ=⇒ p′ ⇒ ∃ρ ∈ G · p′ ρ

=⇒.

Now a process p satisfies AGEF(σ,G) iff (σ,G) �∈ I(p). Thus, an equivalence on
processes respects all AGEF properties if and only if it is finer than∼I . Note that
AGEF(σ,G∪G′) = AGEF(σ,G) if every ρ ∈ G′ has a prefix ρ′ ∈ G. We therefore
assume w.l.o.g. that the sets G have the prefix property: ∀ρ, ν ∈ G · ρ �< ν.

The name AGEF is derived from a way to express such properties in Compu-
tation Tree Logic (CTL) [7]. CTL is a formalism to specify temporal properties
of systems that are modelled as states in Kripke structures. The latter are transi-
tion systems in which states rather than transitions are labelled. Amongst others,
CTL features the formulas, interpreted on a state s,

AFϕ meaning that every path from s eventually passes a state satisfying ϕ
EFϕ meaning that some path from s eventually passes a state satisfying ϕ
AGϕ meaning that on every path from s all states satisfy ϕ
EGϕ meaning that on some path from s all states satisfy ϕ
� meaning that state s has label �.

Here ϕ is again a CTL formula. CTL formulas can also be combined with propo-
sitional connectives. In order to interpret CTL formulas on a process p in an
LTS L, we convert the part of L that is reachable from p into a Kripke structure
by unwinding it into a tree, and labelling each state with the trace of the unique
path leading to it. This leads to a Kripke structure Lp whose states are the
finite paths π in L starting from p, labelled with the sequence of visible actions
labelling π, and there is a transition π → π′ iff the path π′ can be obtained
from π by adding one transition. We say that p satisfies a CTL formula ϕ iff
the root of the tree-shaped Kripke structure Lp satisfies ϕ.2 Now the property
AGEF(σ,G) is expressed in CTL as AG(σ ⇒ EF

∨
ρ∈G σρ).

2 Other translations from LTSs to Kripke structures have appeared in the literature
[8], leading to different interpretations of CTL on LTSs.
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We also consider conditional liveness requirements or AGAF properties, sta-
ting that something good will eventually happen when a specific past has been
observed. The property AGAF(σ,G) with G �= ∅ states that every run with
visible content σ will be completed to a run with visible content σρ for ρ∈G,
provided no visible action occurs that disables the potential of achieving G. In
contrast, the property AGEF(σ,G) says that any run with visible content σ can
be completed to such a run. A liveness property of the form AGAF(ε,G) states
that something good will happen unconditionally. Pete’s liveness requirement “if
I keep hitting the redial button, I will eventually be connected” is AGAF(ε, P ) with
P = {(tf)ktc | k ∈ IIN}.

We now formulate the fairness principle F : during a system run, a specific set of
states that remains reachable throughout cannot be avoided forever. This amounts
to strong fairness [9] for finite-state processes. We say that a path satisfies F(ψ),
with ψ a set of states, if it is not a infinite path with ψ reachable throughout
and avoiding ψ forever. The requirement AGAF(σ,G) under the assumption F is
written AGAFF(σ,G). The specification of Pete’s phone satisfies AGAFF (ε, P )
but not AGAF(ε, P ). The implementation satisfies neither.

In order to conveniently express AGAF properties in temporal logic, we add
a modality AχF to CTL. Here χ is a property on paths, and AχFϕ holds in
state s, if every (possibly infinite) path from s that is maximal (cannot be
extended) amongst the paths satisfying χ, passes through a state satisfying ϕ.
AGAF(σ,G) with σ∈A∗ and ∅ �= G ⊆ A∗ can be expressed as AG(σ⇒A[G]Fψ),
and AGAFF (σ,G) as AG(σ ⇒ AF(ψ)∧[G]Fψ), where ψ =

∨
ρ∈G σρ and [G] is

the property of a path that all labels σν of its states satisfy ∃ρ∈G · ν ≤ ρ.
Pete’s liveness requirement cannot be expressed as a property of the form

AG(σ⇒AF(ψ)Fψ) with ψ =
∨

ρ∈G σρ. When taking σ = ε and G = P this
property says “eventual connection is guaranteed”, which is easily refuted by
hitting the stop button; taking G = P ∪ {(tf)ks | k ∈ IIN} yields a requirement
that is satisfied by the buggy implementation.

We will show that any AGAFF property can be formulated as a conjunction
of AGEF properties. We write AGEFC with C ⊆ A∗×P(A∗) for the conjunction∧

(σ,G)∈CAGEF(σ,G), and similarly for AGAF C and AGAFF C.
Let σ ∈A∗ and ∅ �= G ⊆ A∗. Then ↑(σ,G) := {(σρ, ρ−1G) | ρ ∈↓G}, where

↓G := {ν∈A∗ | ∃ρ · νρ∈G} \ {ρν | ρ∈G} (the set of proper prefixes of G) and
σ−1G := {ρ | σρ ∈G}. For instance, ↑(a, {b, cd}) = {(a, {b, cd}), (ac, {d})}.

Lemma 1. Let σ∈A∗ and ∅ �= G ⊆ A∗. Then

AGAF(σ,G) ⊆ AGAFF(σ,G) ⊆ AGEF(σ,G),
AGAF(σ,G) = AGAF↑(σ,G) and AGAFF(σ,G) = AGAFF↑(σ,G).

Proof. The inclusions are trivial; something that will happen must surely be
possible. The equalities state e.g. that AGAF(σ,G) implies AGAF(σρ, ρ−1G)
for any ρ∈↓G: a promise remains valid as long as it hasn’t been delivered. ��

Theorem 1. The property AGAFF(σ,G) is equal to AGEF↑(σ,G).
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Proof. By Lemma 1, we find AGAFF(σ,G) = AGAFF↑(σ,G) ⊆ AGEF↑(σ,G).
Let ψ =

∨
ρ∈G σρ. If p ∈ AGEF↑(σ,G) then from every p′ with p

σρ
=⇒ p′ and

ρ ∈↓G, a ψ-state is reachable. Any run from p that starts with σ, avoids states
labelled σν with � ∃ρ∈G · ν≤ρ, and satisfies F(ψ), will eventually reach ψ. ��

By Theorem 1, Pete’s liveness requirement AGAFF (ε, P ) (assuming fairness) is
implied by AGEF↑(ε, P ) = AGEF{((tf)n, P ), ((tf)nt, {c} ∪ fP ) | n ∈ IIN}.

The property AGAF(σ,G) can be expressed in CTL as AGEF↑(σ,G)∧AG(σ⇒
AF
∨

ρ�∈↓Gσρ). We therefore do not need the modality AχF for stating AGAF
properties with or without F .

In [5] it is defined when a process p should pass a test. A test is given by a
test process t, whose alphabet may contain an extra action � that cannot occur
in the alphabet of the process p. The test consists of running p and t in parallel
using the CSP parallel composition operator ‖A that forces all actions of p and t
to synchronise, except for the action �. The occurrence of � denotes a successful
outcome of the test. We give an alternative formulation using the CCS operators:
The process p should pass the test, notation p shd t, if (p | t)\(A \ {�}) satisfies
AGEF(ε, {�}). Processes p, q are fair testing equivalent [5], notation p =shd q,
iff p shd t⇔ q shd t for all tests t.

Definition 7. A property ϕ on transition systems is (should-) testable if there
exists a test t such that for all processes p one has p shd t iff p satisfies ϕ.

A property is called trivial if it either always holds or always fails. As p shd �
for any p and p shd 0 for no p, all trivial properties are testable. The trivial
AGEF properties are AGEF(σ,G) with ε ∈ G, and AGEF(ε, ∅).

Proposition 1. A nontrivial AGEF property AGEF(σ,G) is testable iff for each
sequence bρ in G also its prefix b is in G.

Proof. “If”: We assume ε �∈ G and G has the prefix property (∀ρ, ν ∈ G · ρ �< ν).
So G consists of singleton traces only. Let σ = a1 . . . am. We define the processes
Ti (0 ≤ i ≤ m) by Ti = āi+1Ti+1 + � for 0 ≤ i < m and Tm =

∑
{b̄� | b ∈ G}.

Fig. 2 displays the processes Ti (0 ≤ i ≤ m) for finite G = {b1, . . . , bn}.

ā1 ām
T0 T1 TmTm−1

b̄1 b̄n�
�

�

�

Fig. 2. The test process T0

Now p satisfies AGEF(σ,G) iff p shd T0. Namely, if (σ,G) ∈ I(p), i.e. p does not
satisfy AGEF(σ,G), then there exists p′ with p σ=⇒ p′ such that ∀ρ ∈ G · p′ � ρ=⇒,
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so p |T0
ε=⇒ p′ |Tm � �=⇒. Conversely, if (σ,G) �∈ I(p), then for any (strict or not)

prefix ν of σ and any p′ with p ν=⇒ p′ the � can be done.
“Only if”: Suppose G contains a sequence bρ but not b. Set p := σ(bρ + b)

and q := σbρ+ σb if σ �= ε and p := τ(bρ+ b) and q := τbρ+ τb otherwise. Then
p, q are fair testing equivalent [5], whereas (σ,G) ∈ I(q) \ I(p). So AGEF (σ,G)
is not testable. ��

Theorem 2. All properties of the form AGEF↑(σ,G) are testable.

Proof. Use the same test as above, but with Tm replaced by the deterministic
process TG with T (TG) = {ρ ∈ A∗ | ∃ν · ρν ∈ G} ∪ {ρ� | ρ ∈ G}. ��
Remark 1. When working in the context of a finite-state LTS, we only consider
AGEF and AGAF properties with finite sets G. This way the test processes used
above will be finite. That the correspondence between AGEF properties and ∼I
is unaffected by this change follows by

Lemma 2. If (σ,G) ∈ I(q) \ I(q) and q is a finite-state process, then there is a
finite G′ with (σ,G′) ∈ I(q) \ I(q).

Proof. The set R = {r | q σ=⇒ r} is finite and for each r ∈R we can choose a
ρr∈G such that r

ρr=⇒. Hence, (σ, {ρr | r ∈ R}) ∈ I(p) \ I(q). ��
A safety property says that something bad will not happen. Formalising “bad” as
a predicate B ⊆ A∗ on the visible content of system runs, a safety property has
the form B ∩ T (x) = ∅, and can be written as

∧
σ∈BAGEF(σ, ∅). Considering

that the class of testable properties is closed under conjunction (for p shd τt+τt′

iff p shd t and p shd t′), Prop. 1 implies that safety properties are testable. A
property AGEF(σ,G) or AGEF↑(σ,G) is called proper if it is neither trivial, nor
a safety property, i.e. if ε �∈ G �= ∅.

5 Four Levels of Respect for AGEF Properties

In this section we show that only four types of congruences exist: those that
respect all AGEF properties, those that respect all testable AGEF properties but
no others, those that respect all safety properties but no other non-trivial AGEF
properties, and those that do not respect a single non-trivial AGEF property.
Examples in each of the four classes are weak bisimilarity [12], fair testing equi-
valence [5], trace equivalence—defined as p =T q iff T (q) = T (q)—and failures
equivalence [6] (where the absence of traces occurring past a divergence is not
recorded), respectively. In this section “congruence” means congruence for the
CCS parallel composition and restriction operators; we could also have used the
CSP parallel composition and concealment operators. The results in this section
are not needed further on, although we will reuse the proof of Lemma 3.

We say that a congruence ∼ is non-IF if there exist processes p, q with p ∼ q
such that I(p) �= I(q). For a non-IF congruence there exists an AGEF property
that it does not preserve; we shall now prove that in fact it does not preserve
any non-testable AGEF property.
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Fig. 3. The process U0

Lemma 3. If ∼ is a non-IF congruence, then for all c∈A there exist processes
pc, qc with A(pc) = A(qc) = {c}, such that pc ∼ qc and (ε, {cc}) ∈ I(pc) \ I(qc).

Proof. The congruence ∼ is non-IF, so there exist processes p, q and σ,G such
that p ∼ q and (σ,G) ∈ I(p)\I(q). Note that ε �∈ G: if ε ∈ G then (σ,G) �∈ I(p).

Let σ = a1 . . . am and define H := A(p) ∪ A(q). We first establish the lemma
for all actions c �∈ H , and then consider the case c ∈H . Let Ui (0 ≤ i ≤ m),
V and W be defined by Ui = τV + āi+1Ui+1 for 0 ≤ i < m, Um = τV + τcW ,
V = c(τc + τ) and W =

∑
ρ∈G ρ̄(τc + τ) (Fig. 3 displays the processes Ui

(0 ≤ i ≤ m), V and W for the case that G = {ρ1, . . . , ρn}). As we assume our
alphabet A, and hence G ⊆ A∗, to be countable, the sum W is countable too. If
q is a finite-state process, by Lemma 2 we may even assume it to be finite. Let
pc = (U0 | p)\H and qc = (U0 | q)\H . By construction, A(pc)=A(qc)={c}. Since
p ∼ q and ∼ is a congruence for | and \H , we have (U0 | p)\H ∼ (U0 | q)\H .
There exists a p′ with p σ=⇒ p′ and p′ � ρ=⇒ for all ρ ∈ G. Therefore, we have
(U0| p)\H ε=⇒ (cW | p′)\H and (cW | p′)\H � cc=⇒. Hence, (ε, {cc}) ∈ I((U0 | p)\H).
However, as ∀q′ · (q σ=⇒ q′)⇒ (∃ρ∈G · q′ ρ=⇒), we have (ε, {cc}) �∈ I((U0 | q)\H).
This proves our lemma for all actions c �∈ H .

To obtain the required results for c ∈ H , first choose d �∈ H (appealing to the
Fresh Atom Principle [11] if A \H is empty). By the above, there exist pd and
qd with A(pd) = A(qd) = {d} such that pd ∼ qd and (ε, {dd}) ∈ I(pd) \ I(qd).
Now, since c ∈ A \ {d}, the required pc and qc are obtained by running the same
arguments again, taking p := pd, q := qd, σ := ε, G := {dd} and H := {d}. ��

From this lemma we deduce that no non-testable AGEF property is preserved
by a non-IF congruence.

Theorem 3. Let ∼ be a non-IF congruence. Then for any non-testable property
AGEF(σ,G) there are processes p, q such that p ∼ q and (σ,G) ∈ I(p) \ I(q).
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Proof. Let (σ,G) be a non-testable AGEF property. Pick bρ∈G such that ε, b �∈
G. Let c be an action that does not occur in σbρ. By Lemma 3 there are processes
p and q with A(p) = A(q) = {c}, p ∼ q and (ε, {cc}) ∈ I(p) \ I(q). As ∼ is a
congruence for | and \H , we have (p |σbc̄c̄ρ)\{c} ∼ (q |σbc̄c̄ρ)\{c}.

Whenever (q |σbc̄c̄ρ)\{c} σ=⇒r, the process r must be of the form (q′ | bc̄c̄ρ)\{c}
with q ε=⇒ q′. Since (ε, {cc}) �∈ I(q), we have q′ cc=⇒ and hence (q′ | bc̄c̄ρ)\{c} bρ

=⇒.
Thus (σ,G) �∈ I((q |σbc̄c̄ρ)\{c}).

Since (ε, {cc}) ∈ I(p), we have p ε=⇒ p′ for a process p′ with p′ � cc=⇒. Hence
(p |σbc̄c̄ρ)\{c} σ=⇒ (p′ | bc̄c̄ρ)\{c}, and (p′ | bc̄c̄ρ)\{c} ν=⇒ only if ν = ε or ν = b.
It follows that (σ,G) ∈ I((p |σbc̄c̄ρ)\{c}). ��

Next, we prove that a congruence ∼ either preserves all testable properties
(AGEF or otherwise) or does not preserve any proper AGEF property, nor any
proper liveness property under the global fairness assumption F .

Lemma 4. If ∼ is a congruence that does not respect all testable properties,
then for all c∈A there exist processes pc, qc with A(pc) = A(qc) = {c}, such that
pc ∼ qc and (ε, {c}) ∈ I(pc) \ I(qc).

Proof. Let ϕ be a testable property that is not preserved by ∼. As ϕ is testable,
there is a test process t such that ∀p∈P one has p shd t iff p satisfies ϕ. As ϕ is not
preserved by ∼, there are processes p, q such that p ∼ q and ϕ(q) but not ϕ(p).
Hence q shd t but p �shd t. Let p� = (p | t)\(A\{�}) and q� = (q | t)\(A\{�}).
Then q satisfies AGEF(ε, {�}) but p does not, so (ε, {�}) ∈ I(p�) \ I(q�).
A(p�) = A(q�) = {�}. As ∼ is a congruence for | and \H , we have p� ∼ q�.
The result for actions c �= � is obtained in a manner similar to the one used in
the proof of Lemma 3. ��

Theorem 4. Let ∼ be a congruence that does not respect all testable properties.
Then for any proper AGEF property AGEF(σ,G) there are processes p and q
such that p ∼ q and p �∈ AGEF(σ,G) ⊇ AGEF↑(σ,G) ) q.

Proof. Let (σ,G) be given, satisfying ε �∈ G �= ∅, and take ρ ∈G. Let c be an
action that does not occur in the sequence σρ. By Lemma 4 there are processes
p and q with A(p) = A(q) = {c}, p ∼ q and (ε, {c}) ∈ I(p) \ I(q). Since ∼
is a congruence for | and \H , we have (p |σc̄ρ)\{c} ∼ (q |σc̄ρ)\{c}. As in the
proof of Theorem 3, we find that (σ,G) ∈ I((p |σc̄ρ)\{c}) \ I((q |σc̄ρ)\{c}) and
moreover p �∈ AGEF(σ,G) ⊇ AGEF↑(σ,G) ) q. ��

Finally we show that a congruence that fails to respect a safety property does
not respect any nontrivial AGEF property.

Lemma 5. If ∼ is a congruence that does not respect all safety properties, then
for all c ∈ A there exist processes pc, qc with A(pc) = A(qc) = {c}, such that
pc ∼ qc and c ∈ T (pc) \ T (qc).

Proof. The congruence ∼ violates a safety property
∧

σ∈GAGEF(σ, ∅), so there
must be an σ∈G and processes p and q with p ∼ q and (σ, ∅) ∈ I(p) \ I(q), i.e.
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σ ∈ T (p)\T (q). Note that σ �= ε: if σ = ε then (σ, ∅) ∈ I(q). By placing p and q
in a context ( | σ̄c)\H with c �∈ H := A(p) ∪ A(q) we obtain processes pc, qc as
required. The result for c∈H is obtained just as in the proof of Lemma 3. ��
Theorem 5. Let ∼ be a congruence that does not respect all safety properties.
Then for any nontrivial property AGEF(σ,G) there are processes p and q with
p ∼ q and (σ,G) ∈ I(p) \ I(q), i.e. q ∈ AGEF(σ,G) and p �∈ AGEF(σ,G).

Proof. The case σ = ε follows from Theorem 4, as safety properties are testable
and nontrivial properties AGEF(ε,G) are proper. So assume σ �= ε. Let c be an
action that does not occur in σ. By Lemma 5 there are processes p, q with p ∼ q,
A(p) = A(q) = {c} and c ∈ T (p)\T (q). Since ∼ is a congruence for | and \H , we
have (p | c̄σ)\{c} ∼ (q | c̄σ)\{c}. Now (σ,G) ∈ I((p | c̄σ)\{c}) \ I((q | c̄σ)\{c}). ��

6 The Recursive Specification Principle

The Recursive Specification Principle (RSP) [3] says that systems of guarded
recursive equations have unique solutions. Our aim is to characterise ∼I as the
coarsest congruence that respects a proper AGEF property and satisfies RSP.
To this end, we only need a simplification of RSP, called RSP∗, saying that
equations of the form X = σX + p with σ ∈ (Aτ )∗ \ {τ}∗ have unique solutions.
We denote the unique solution of such an equation as σ∗p. Alternatively, we
could introduce σ∗ as an operator on processes, with σ∗p a−→ p′ iff p a−→ p′ or
(σ = aρ and p′ = ρ(σ∗p)).

Definition 8. An equivalence relation∼ satisfies RSP∗ if for all σ ∈ (Aτ )∗\{τ}∗
and processes p, q

p ∼ σp+ q ⇒ p ∼ σ∗q .
Fair testing congruence [5] does not satisfy RSP∗, since t = a∗0 + a∗ab is fair
testing congruent to at+ ab but not to a∗ab.

7 Impossible Futures Congruence

Just like weak bisimulation equivalence [12] and most other weak equivalences,
impossible futures equivalence ∼I (defined in Sect. 4) fails to be a congruence for
the CCS choice operator +. We apply the usual fix to this problem: the addition
of a root condition. Just like for failures or fair testing equivalence, a one-bit
root condition is sufficient: we merely need to distinguish processes that can do
an initial τ -step from those that can not.

Definition 9. Processes p, q are IF-congruent (notation p =I q) iff p ∼I q ∧
(p τ−→)⇔ (q τ−→).

Theorem 12 in [5] (Theorem 4.8 in the journal preprint) shows that =I is finer
than fair testing equivalence, which is itself finer than trace equivalence. In [14],
it is shown that =I is coarser than weak bisimulation congruence. Since a+ τb
and τ(a+b)+τb are IF congruent but not weakly bisimilar, =I is strictly coarser.
We now show that =I is a congruence and satisfies RSP∗.
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Proposition 2. =I is a congruence satisfying RSP (and hence RSP∗).

Proof. The argument in [14] can be adapted and extended to yield the required
result. For example, RSP follows from a standard deductive argument [3] based
on the auxiliary finite projection operator and the induction principle AIP. ��

Below, we show that =I is the coarsest of all equivalences that (1) respect a
proper AGEF property, (2) are congruences for the CCS parallel composition,
restriction, choice and prefixing, (3) satisfy RSP∗, and (4) are coarser than an
equivalence ↔max . We show that in (1) it does not matter which AGEF property
we take, so it could for instance be the property AGEF(ε,A), saying that the
system can always do a first visible action, i.e. has no initial livelock or deadlock.
Instead of (1) we may also require that the equivalence respects a proper prop-
erty AGAFF(σ,G) = AGEF↑(σ,G), i.e. a conditional liveness property assuming
global fairness. We do not know whether our result is valid without (4), but we
use it in our proofs. Below, we establish our result with rooted weak bisimilar-
ity in the rôle of ↔max . In CCS, weak bisimilarity is the equivalence of choice
for e.g. comparing specifications and implementations. This equivalence is not a
congruence for all CCS operators, but it becomes so after extending it with a
root condition, yielding rooted weak bisimilarity (observational congruence) [12].

Definition 10. A relation R ⊆ P×P is called a weak bisimulation if it satisfies
for all processes p, q with p R q and for all σ ∈ A∗:
− for all p′ with p σ=⇒ p′ there exists q′ such that q σ=⇒ q′ and p′ R q′,
− for all q′ with q σ=⇒ q′ there exists p′ such that p σ=⇒ p′ and p′ R q′.
Processes p, q are called weakly bisimilar (notation p↔w q) if there exists a weak
bisimulation R such that p R q. They are called rooted weakly bisimilar (notation
p↔rw q) if they satisfy the additional root conditions :
− for all p′ with p τ−→ p′ there exists q′ such that q ε=⇒ τ−→ q′ and p′ R q′,
− for all q′ with q τ−→ q′ there exists p′ such that p ε=⇒ τ−→ p′ and p′ R q′.

Write τa(p) for (p | ā∗0)\{a}. The operator τa renames action a into τ (and
disables ā). By construction of rooted weak bisimulations, one can deduce the
following equivalences for a ∈ Aτ , σ ∈ {a, τ}∗ \ {τ}∗ and processes p:

T1 : aτp ↔rw ap KFAR : τa(σ∗p) ↔rw ττa(p).

KFAR [3] identifies divergent processes (capable of an infinite sequence of τ
steps) and non-divergent ones. We prove a lemma for later use.

Lemma 6. Let p, q, r be processes with p ε=⇒ τ−→ r↔w q. Then p↔rw p+ τq.

Proof. Let R be ↔w augmented with the pair (p, p+ τq). This is a weak bisim-
ulation satisfying the root conditions. ��

A process equivalence ∼ is called a w-congruence iff it is a congruence w.r.t. the
CCS parallel composition, restriction, choice and prefixing, and is coarser than
↔rw . We proceed to characterise IF congruence as the coarsest w-congruence
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Table 1. The relation R

simple term merge term condition
τc(τc + τ ) (U0 | q)\H true
c(τc + τ ) (Uk | q′)\H 0 ≤ k ≤ m ∧ q

a1...ak=⇒ q′

c(τc + τ ) (V | q′)\H q
∗=⇒ q′

τc + τ (τc + τ | q′)\H q
∗=⇒ q′

c (c | q′)\H q
∗=⇒ q′

0 (0 | q′)\H q
∗=⇒ q′

c(τc + τ ) (cW | q′)\H q
σ=⇒ q′

τc + τ (W | q′)\H q
σ=⇒ q′

τc + τ (ϑ̄(τc + τ ) | q′)\H ∃ν = ε · νϑ ∈ G ∧ q
σ=⇒ ν=⇒ q′ ϑ=⇒

0 (ϑ̄(τc + τ ) | q′)\H ∃ν = ε · νϑ ∈ G ∧ q
σ=⇒ ν=⇒ q′  ϑ=⇒

that satisfies RSP∗ and preserves some arbitrary proper AGEF property. Recall
that a congruence ∼ is called non-IF iff there exist processes p, q with p ∼ q
such that I(p) �= I(q). We start with some lemmas.

Lemma 7. If ∼ is a non-IF w-congruence, then for any c ∈ A

τc(τc + τ) ∼ τc(τc + τ) + τc

Proof. Start with the proof of Lemma 3, up to (U0 | p)\H ∼ (U0 | q)\H . Next
we define the relation R in Table 1. This relation is a weak bisimulation, which
can be verified by checking all steps. The crucial argument is that for each q′

satisfying q σ=⇒ q′ there exists a ρ ∈G such that q′
ρ

=⇒. The relation satisfies
the root conditions, so

τc(τc + τ)↔rw (U0 | q)\H.

As (σ,G) ∈ I(p), there must be a process p′ such that p σ=⇒ p′ and ∀ρ∈G·p′ � ρ=⇒.
It is trivial to construct a weak bisimulation showing that (cW | p′)\H ↔w c

and hence (U0 | p)\H ε=⇒ τ−→ (cW | p′)\H ↔w c. Using Lemma 6, this implies
that (U0 | p)\H↔rw (U0 | p)\H + τc. Therefore, as ∼ is a congruence, we have
τc(τc + τ)↔rw (U0 | q)\H ∼ (U0 | p)\H↔rw (U0 | p)\H + τc ∼ (U0 | q)\H + τc
↔rw τc(τc+ τ) + τc. Since ∼ is transitive and coarser than ↔rw we obtain the
desired result for c∈A\H . For c∈H , we proceed as in the proof of Lemma 3. ��

Lemma 8. If ∼ is a non-IF w-congruence, then for all processes P,Q and a∈A,

τa(τP +Q) ∼ τa(τP +Q) + τaP. (1)

Proof. Pick c �∈ A(P )∪A(Q)∪{a} and place the processes equated by Lemma 7
in the context ( | τac̄(τP + c̄(τP +Q))\{c}). ��

We now use RSP∗ to show equivalence of processes with and without deadlock.

Lemma 9. Let ∼ be a non-IF w-congruence satisfying RSP∗. Then for any
process Q we have τ(τQ + τ) ∼ τQ.
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Proof. Choose Q and a �∈ A(Q). Set P = a∗0 and R = (τa)∗(τQ+ τ.P ), so

(2) P ∼ aP (3) R ∼ τP + τQ+ τaR.

Since τaR = τa(τP + τQ+ τaR), (1) yields τaR ∼ τaR+ τaP . Hence,

τaR + τQ ∼ τaR + τaP + τQ 2∼ τaR+ τP + τQ 3∼ R.

Since R ∼ τaR + τQ, RSP∗ yields R ∼ (τa)∗τQ. So, since ∼ is a congruence,

τ.(τQ+ ττ0)↔rw τa((τa)∗(τQ+ τ(a∗0))) ∼ τa((τa)∗τQ)↔rw ττQ

applying KFAR and τa(Q) = Q. Using T1, we obtain τ(τQ+ τ) ∼ τQ. ��

Fair testing [5] is a non-IF w-congruence that preserves all testable AGEF prop-
erties. However, non-IF w-congruences satisfying RSP do not preserve any proper
AGEF property, nor any nontrivial property AGAFF(σ,G) = AGEF↑(σ,G).

Theorem 6. Let ∼ be a non-IF w-congruence satisfying RSP∗. Then for any
proper AGEF property AGEF(σ,G) there are processes p and q such that p ∼ q
and p �∈ AGEF(σ,G) ⊇ AGEF↑(σ,G) ) q.

Proof. Let (σ,G) be proper, i.e. ε �∈ G �= ∅, and pick ρ ∈ G. Set Q = ρ. By
Lemma 9, the fact that ∼ is a congruence for the prefix operator, and by identity
T1, we have p = σ(τQ + τ) ∼ σQ = q. Clearly, (σ,G) ∈ I(p) \ I(q) and
p �∈ AGEF(σ,G) ⊇ AGEF↑(σ,G) ) q. ��

This theorem also gives a partial answer to van Glabbeek’s first problem in [1]:
what is the coarsest congruence ∼ satisfying RSP and respecting deadlock/livelock
traces?

Definition 11. A sequence σ ∈ A∗ is a deadlock/livelock trace of a process p if
∃p′ · p σ=⇒ p′ ∧ T (p′) = {ε}. A process equivalence ∼ respects deadlock/livelock
traces iff p ∼ q implies that p and q have the same deadlock/livelock traces.

Note that σ is a deadlock/livelock trace of p iff (σ,A) ∈ I(p). This is the negation
of a proper AGEF property, so from Theorem 6 we deduce that =I is the coars-
est w-congruence satisfying RSP and respecting deadlock/livelock traces. The
answer is partial, since there exist congruences that respect deadlock/livelock
traces but are not coarser than ↔rw , such as branching bisimilarity [10]. So
the existence of (non-w) congruences respecting deadlock/livelock traces and
satisfying RSP that are incomparable with =I is conceivable.

The results in this section can be generalised to a divergence sensitive setting.
Divergence of a process is the possibility to perform an infinite sequence of τ
steps. By only allowing to relate divergent processes to divergent processes, one
defines weak bisimulation congruence with explicit divergence (notation ↔Δ

rw)
[10]. We now relax the requirement in Theorem 6 that∼must be a w-congruence.
Instead of requiring ∼ to be coarser than ↔rw we merely require it to be coarser
than ↔Δ

rw, i.e. we use ↔Δ
rw for ↔max . The proof, which is omitted due to lack

of space, requires a slight extension of RSP∗, still implied by RSP.
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Theorem 7. =I is the coarsest congruence coarser than ↔Δ
rw, satisfying RSP

and respecting deadlock/livelock traces.

This is a useful addition, because many equivalences in the linear time – branch-
ing time spectrum of [10], such as the CSP failures equivalence [6], fail to be
coarser than ↔rw , although virtually all are coarser than ↔Δ

rw. Moreover, the
few equivalences from [10] that are not coarser than ↔Δ

rw are certainly finer
than ∼I or do not respect deadlock/livelock traces; thus no known equivalence
is ruled out by the restriction “coarser than ↔Δ

rw”.

8 Conclusion

We have discussed the connection between AGAF properties, expressing (con-
ditional) lifeness requirements, AGEF properties, expressing not-doomed-to-fail
requirements, and impossible futures congruence, which we have characterised,
under a mild side-condition, as the coarsest congruence that allows verifica-
tion of testable AGEF properties—or AGAF properties under a global fairness
assumption—and assigns unique solutions to guarded recursive equations. Thus,
where such properties are deemed important, equational system verification [2]
requires a semantic equivalence at least as fine as impossible futures congruence.

The fact that we have used the operators of CCS bears no relevance. We could
have used any process calculus that allows action prefix, choice, communication
merge, restriction and abstraction, such as CSP, ACP, LOTOS and many others.
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Abstract. In earlier work, we have shown that two variants of weak fair-
ness can be expressed comparatively easily in the timed process algebra
PAFAS. To demonstrate the usefulness of these results, we complement
work by Walker [11] and study the liveness property of Dekker’s mu-
tual exclusion algorithm within our process algebraic setting. We also
present some results that allow to reduce the state space of the PAFAS
process representing Dekker’s algorithm, and give some insight into the
representation of fair behaviour in PAFAS.

1 Introduction

This paper was inspired by the work of Walker [11] who aimed at automatically
verifying six mutual exclusion algorithms – including Dekker’s. Walker trans-
lated the algorithms into the process algebra CCS [9] and then verified with the
Concurrency Workbench [1] that all of them satisfy the safety property that the
two competing processes are never in their critical sections at the same time.

The liveness property that a requesting process will always eventually enter
the critical section is more difficult to verify, since one has to assume some
fairness, which is not so easy to do in a process algebraic setting; with respect
to the verification of liveness, Walker was less successful.

Costa and Stirling [6,7] have studied some notions of fairness in a process
algebra. While their formalisation captures the intuition of fairness faithfully,
it is technically involved and leads to processes with infinite state spaces – at
least for processes that have an infinite computation. In [2,3], we have defined
fair runs in the spirit of Costa and Stirling and characterised them in the timed
process algebra PAFAS [5] as those runs that take infinitely long; here, processes
that are finite state in a standard process algebra without time still have a finite
transition system in the setting where fairness can be studied. The present paper
complements the work by Walker, taking the liveness of Dekker’s algorithm as
a case study to demonstrate how our approach to fairness can be used.

Attempting the verification of the liveness property, Walker used the following
version in [11] – which could be expressed as a modal mu-calculus formula and
checked with the Concurrency Workbench:
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Whenever at some point in a run the process Pi requests the execution of its
critical section, then in any continuation of that run from that point in which
between them the processes execute an infinite number of critical sections, Pi
performs its critical section at least once.

The fairness (or progress) assumed here is that infinitely often a critical section
is entered. This assumption allows a run where one process enters its critical
section repeatedly, while the other requests the execution of its critical section,
but then – for no good reason at all – refuses to take the necessary steps to
actually enter it. Thus, it is maybe not so surprising that four of the six mutual
exclusion algorithms – including Dekker’s – fail to satisfy this property. Walker
then discusses how fairness could be assumed to enable a proof of liveness, but the
ideas discussed could not be expressed for use of the Concurrency Workbench.

Here, we will model Dekker’s algorithm in the CCS-type process algebra
PAFAS and study whether all fair runs satisfy the liveness property. Actually,
we consider two versions of PAFAS. The first one is suitable for (weak) fairness
of actions, i.e. in a fair run each enabled action must be performed or disabled
eventually; if this action is a synchronisation, then the action is already disabled
if one partner of this synchronisation offers a different instance of the action.
As a consequence, repeated accesses to a variable can block another access, and
for this reason some fair runs of Dekker’s algorithm violate liveness; this is not
so different from Walker’s result, but we can point to a realistic reason for the
failure, namely the blocking of a variable. We provide two fair runs, one in which
one process repeatedly enters its critical section while the other is stuck, and one
where both processes are stuck.

It is equally realistic to assume that access to a variable cannot be blocked
indefinitely. In the second version of PAFAS, we deal with (weak) fairness of
components, i.e. in a fair run each enabled component must be performed or
disabled eventually. Thus, if a process wants to read a binary variable, it will
offer two read-actions (one for each value); if none of these is performed, then
in every future state one or the other will be enabled, i.e. the process will be
enabled indefinitely; fairness now implies that the process actually will read
the variable eventually. Assuming fairness of components, we will show that
Dekker’s algorithm indeed satisfies the liveness property. In this proof, we have
to take into account all possible derivatives reachable from Dekker along fair
computations. In particular, we will consider those states where one process has
just performed a request to enter a critical section, and show that from those
states the respective process does eventually enter the critical section.

Modelling fairness involves a certain blow-up of the state space, so for a proof
by hand the number of states we had to deal with was rather large. Consequently,
to manage the proof, we had to rely on structural properties of the processes,
which may be of interest independently of the main aims of this paper. Previ-
ously, we have characterised fair runs as those action sequences that arise from
timed computations with infinitely many unit time steps by deleting these time
steps. Our first result states that we can restrict attention to a particular subclass
of such timed computations and still cover all fair runs. A considerable reduction
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of states comes from switching some components to “permanently lazy”, i.e. to
require fairness only for the other components. In our case study, the “perma-
nently lazy components” correspond to the variables; so this is a very realistic
change, since it seems natural that only the processes are active, while a variable
never forces to be read or to be written. In general, switching some components
to permanently lazy gives an overapproximation for the fair runs, and it is clearly
sufficient to prove a desired property for this possibly larger set of runs. Finally,
we take advantage of symmetries in the Dekker algorithm. The two processes
that compete for the execution of their critical section, indeed, have a symmetric
structure so that their derivatives follow a symmetric pattern. Thus, we check
liveness of a generic fair-reachable derivative to deduce the same property of the
symmetric one; see [4] for many details omitted here. These observations have
allowed a proof by hand. We believe, however, that they are not specific to this
work but really add some general knowledge to the theory of PAFAS useful to
be embedded within an automatic tool for the verification based on fairness.

2 Fairness and PAFAS

We now recall PAFAS, its timed behaviour and the fairness notions we consider,
namely fairness of actions and components. Instead of using the very involved
direct formalisations of fairness in the spirit of [6,7], we define the two types of
fair traces on the basis of our characterisations with everlasting timed execution
sequences in the two respective versions of PAFAS.

2.1 Fairness of Actions and PAFAS

We use the following notation: A is an infinite set of basic actions. An additional
action τ is used to represent internal activity, which is unobservable for other
components. We define Aτ = A ∪ {τ}. Elements of A are denoted by a, b, c, . . .
and those of Aτ are denoted by α, β, . . . Actions in Aτ can let time 1 pass before
their execution, i.e. 1 is their maximal delay. After that time, they become urgent
actions written a or τ ; these have maximal delay 0. The set of urgent actions is
denoted by Aτ = {a | a ∈ A} ∪ {τ} and is ranged over by α, β, . . . . Elements of
Aτ ∪Aτ are ranged over by μ. X is the set of process variables, used for recursive
definitions. Elements of X are denoted by x, y, z, . . . Φ : Aτ → Aτ is a general
relabelling function if the set {α ∈ Aτ |∅ �= Φ−1(α) �= {α}} is finite and Φ(τ) = τ .
Such a function can also be used to define hiding: P/A, where the actions in A
are made internal, is the same as P [ΦA], where the relabelling function ΦA is
defined by ΦA(α) = τ if α ∈ A and ΦA(α) = α if α /∈ A.

Definition 1. (timed process terms) The set P̃1 of initial (timed) process terms
is generated by the following grammar

P ::= nil
∣∣ x ∣∣ α.P ∣∣ P + P

∣∣ P‖AP ∣∣ P [Φ]
∣∣ rec x.P

where nil is a constant, x ∈ X , α ∈ Aτ , Φ is a general relabelling function and
A ⊆ A possibly infinite. We assume that recursion is guarded (see below).
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The set P̃ of (general) (timed) process terms is generated by the following
grammar:

Q ::= P
∣∣ α.P ∣∣ Q+Q

∣∣ Q ‖A Q ∣∣ Q[Φ]
∣∣ rec x.Q

where P ∈ P̃1, x ∈ X , α ∈ Aτ , Φ is a general relabelling function and A ⊆ A
possibly infinite. We assume that the recursion is guarded, i.e. for recx.Q variable
x only appears in Q within the scope of a prefix μ.() with μ ∈ Aτ ∪Aτ . A term
Q is guarded if each occurrence of a variable is guarded in this sense. A timed
process term Q is closed, if every variable x in Q is bound by the corresponding
recx-operator; suchQ in P̃ and P̃1 are simply called processes and initial processes
resp., and their sets are denoted by P and P1 resp.1

Initial processes are just standard processes of a standard process algebra. Gen-
eral processes are defined here such that they include all processes reachable
from the initial ones according to the operational semantics to be defined below.

We can now define the set of activated actions in a process term. Given a
process term Q, A(Q,A) will denote the set of the activated (or enabled) actions
of Q when the environment prevents the actions in A.

Definition 2. (activated basic actions) Let Q ∈ P̃ and A ⊆ A. The set A(Q,A)
is defined by induction on Q.

Nil, Var: A(nil, A) = A(x,A) = ∅

Pref: A(α.P,A) = A(α.P,A) =

{
{α} if α /∈ A
∅ otherwise

Sum: A(Q1 +Q2, A) = A(Q1, A) ∪ A(Q2, A)
Par: A(Q1 ‖B Q2, A) = A(Q1, A ∪A′) ∪ A(Q2, A ∪A′′)

where A′ = (A(Q1)\A(Q2)) ∩B and A′′ = (A(Q2)\A(Q1)) ∩B
Rel: A(Q[Φ], A) = Φ(A(Q,Φ−1(A)))
Rec: A(rec x.Q,A) = A(Q,A)

The activated actions of Q are defined as A(Q, ∅) which we abbreviate to A(Q).

Definition 3. (urgent activated action) Let Q ∈ P̃ and A ⊆ A. The set U(Q,A)
is defined as in Definition 2 when A(_) is replaced by U(_) and the Pref-rule is
replaced by the following one:

Pref: U(α.P,A) = ∅ U(α.P,A) =

{
{α} if α /∈ A
∅ otherwise

The urgent activated actions of Q are defined as U(Q) = U(Q, ∅)

The operational semantics exploits two functions on process terms: clean(_) and
unmark(_). Function clean(_) removes all inactive urgencies in a process term
1 In [5], we prove that P1 processes do not have time-stops; i.e. every finite process

run can be extended such that time grows unboundedly. This result was proven for
a different operational semantics than that defined in this paper but a similar proof
applies also in the current setting.
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Q ∈ P̃. When a process evolves and a synchronized action is no longer urgent or
enabled in some synchronization partner, then it should also lose its urgency in
the others; the corresponding change of markings is performed by clean, where
again set A in clean(Q,A) denotes the set of actions that are not enabled or ur-
gent due to restrictions of the environment. Function unmark(_) simply removes
all urgencies (inactive or not) in a process term Q ∈ P̃. We provide the formal
definition of the former function. The second one is as expected.

Definition 4. (cleaning inactive urgencies) Given a process term Q ∈ P̃ we de-
fine clean(Q) as clean(Q, ∅) where, for a set A ⊆ A, clean(Q,A) is defined as:

Nil, Var: clean(nil, A) = nil, clean(x,A) = x

Pref: clean(α.P,A) = α.P clean(α.P,A) =

{
α.P if α ∈ A
α.P otherwise

Sum: clean(Q1 +Q2, A) = clean(Q1, A) + clean(Q2, A)
Par: clean(Q1 ‖B Q2, A) = clean(Q1, A ∪A′) ‖B clean(Q2, A ∪A′′)

where A′ = (U(Q1)\U(Q2)) ∩B and A′′ = (U(Q2)\U(Q1)) ∩B
Rel clean(Q[Φ], A) = clean(Q,Φ−1(A))[Φ]
Rec: clean(rec x.Q,A) = rec x. clean(Q,A)

The Functional Behaviour of PAFAS Process. The transitional semantics
describing the functional behaviour of PAFAS processes indicates which basic
actions they can perform.

Definition 5. (Functional operational semantics) The following SOS-rules de-
fine the action transition relations α−→⊆ (P̃ × P̃) for α ∈ Aτ . As usual, we write
Q

α−→ Q′ if (Q,Q′) ∈ α−→ and Q α−→ if there exists a Q′ ∈ P̃ such that (Q,Q′) ∈ α−→,
and similar conventions will apply later on.

Prefa1
α.P

α−→ P
Prefa2

α.P
α−→ P

Suma

Q1
α−→ Q′

Q1 +Q2
α−→ Q′

Para1
α /∈ A, Q1

α−→ Q′
1

Q1‖AQ2
α−→ clean(Q′

1‖AQ2)
Para2

α ∈ A, Q1
α−→ Q′

1, Q2
α−→ Q′

2

Q1‖AQ2
α−→ clean(Q′

1‖AQ′
2)

Rela
Q

α−→ Q′

Q[Φ]
Φ(α)−−−→ Q′[Φ]

Reca
Q{rec x.unmark(Q)/x} α−→ Q′

rec x.Q α−→ Q′

Additionally, there are symmetric rules for Para1 and Suma for actions of Q2.
For an initial process P0, we say that a finite or infinite sequence α0α1 . . . of
actions from Aτ is a trace of P0, if there is a sequence P0

α0−→ P1
α1−→ . . . of

action transitions, possibly ending with a process Pn.

The Temporal Behaviour of PAFAS Process. Now, we consider transitions
corresponding to the passage of one unit of time. The function urgent marks all
enabled actions of a process as urgent when a time step is performed. Before the
next time step, all such actions must occur or get disabled.
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Definition 6. (time step, timed execution sequences) For P ∈ P̃1, we write
P

1−→ Q when Q = urgent(P ), where urgent(P ) abbreviates urgent(P, ∅) and
urgent(P,A) is defined as:

Nil, Var: urgent(nil, A) = nil, urgent(x,A) = x

Pref: urgent(α.P,A) =

{
α.P if α /∈ A
α.P otherwise

Sum: urgent(P1 + P2, A) = urgent(P1, A) + urgent(P2, A)
Par: urgent(P1 ‖B P2, A) = urgent(P1, A ∪A′) ‖B urgent(P2, A ∪A′′)

where A′ = (A(P1)\A(P2)) ∩B and A′′ = (A(P2)\A(P1)) ∩B
Rel: urgent(P [Φ,A) = urgent(P,Φ−1(A))[Φ]
Rec: urgent(rec x.P,A) = rec x. urgent(P,A)

For an initial process P0, we say that a sequence of transitions γ = P0
1−→

Q0
λ1−→ . . . with λi ∈ Aτ ∪ {1} is a timed execution sequence if it is an infinite

sequence of action transitions and time steps (starting with a time step)2. A
timed execution sequence is everlasting in the sense of having infinitely many
time steps if and only if it is non-Zeno; a Zeno run would have infinitely many
actions in a finite amount of time.

Fairness of Actions and Timing. We can now define the (weakly) fair traces
in terms of non-Zeno execution sequences.

Definition 7. (fair traces) Let P0 ∈ P1 and α0, α1, α2, . . . ∈ Aτ . A trace of P0
is fair (w.r.t. fairness of actions) if it can be obtained as the sequence of actions
in a non-Zeno timed execution sequence. In detail:

1. A finite trace α0α1 . . . αn is fair if and only if there exists a timed execution
sequence Pi0

1−→ Qi0
v0−→ Pi1

1−→ Qi1
v1−→ Pi2 . . . Pim−1

1−→ Qim−1

vm−1−−−→
Pim

1−→ Qim
1−→ Qim . . ., where Pi0 = P0 and v0 v1 . . . vm−1 = α0 α1 . . . αn;

2. an infinite trace α0α1α2 . . . is fair if and only if there exists a timed execution
sequence Pi0

1−→ Qi0
v0−→ Pi1

1−→ Qi1
v1−→ Pi2 · · ·Pim

1−→ Qim
vm−−→ Pim+1 · · · ,

where Pi0 = P0 and v0 v1 . . . vm . . . = α0 α1 . . . αi . . ..

This is a characterisation for fair traces obtained in [2] on the basis of a more
intuitive, but very complex definition of fair traces in the spirit of [6,7].

2.2 Fairness of Components and PAFASc

In this section, we concentrate on weak fairness of components. We have found
a suitable variation of PAFAS and its semantics which allows us to characterize
Costa and Stirling’s fairness of components again in terms of a simple filtering
2 Note that a maximal sequence of such transitions/steps is never finite, since for

γ = Q0
λ0−→ Q1

λ1−→ . . .
λn−1−−−→ Qn, we have Qn

α−→ or Qn
1−→ (see Proposition 3.13

in [2]).
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of system executions. Conceptually, we proceed analogously to Section 2.1, but
a number of technical changes are needed. Since we associate time bounds to
components in the present section, we may also mark - besides prefixes - the
other dynamic operator + as urgent: a process P + Q becomes P + Q after a
time step. This variant of PAFAS is called PAFASc henceforth.

Definition 8. (timed process terms) Let P̃1 be the set of initial timed process
terms as given in Definition 1. The set P̃c of (component-oriented) timed process
terms is generated by the grammar:

Q ::= P
∣∣ α.P ∣∣ P + P

∣∣ Q‖AQ ∣∣ Q[Φ]
∣∣ rec x.Q

where P ∈ P̃1, x ∈ X , α ∈ Aτ , Φ is a general relabelling function, and A ⊆ A
possibly infinite. Again, we assume that recursion is always guarded. The set of
closed timed process terms in P̃c, simply called processes is denoted by Pc.

Function A(_) on process terms, returns the activated (or enabled) actions of a
process term.

Definition 9. (activated basic actions) Let Q ∈ P̃c and A ⊆ A. The set A(Q,A)
can be defined as in Definition 2 when rule Sum is replaced as follows:

Sum: A(P1 + P2, A) = A(P1 + P2, A) = A(P1, A) ∪ A(P2, A)

The Operational Behaviour of PAFASc Processes. A new definition of
function clean(_) is needed

Definition 10. (cleaning inactive urgencies) For a processQ∈ P̃c, defineclean(Q)
as clean(Q, ∅), A ⊆ A, clean(Q,A) is defined as in Definition 4 where rules Sum
and Par are replaced by:

Sum: clean(P1 + P2, A) = P1 + P2

clean(P1 + P2, A) =

{
P1 + P2 if A(P1) ∪ A(P2) ⊆ A
P1 + P2 otherwise

Par: clean(Q1 ‖B Q2, A) = clean(Q1, A ∪A′) ‖B clean(Q2, A ∪A′′)
where A′ = (A(Q1)\A(Q2)) ∩B and A′′ = (A(Q2)\A(Q1)) ∩B

Definition 11. (Functional operational semantics) The functional operational
semantics for P̃c-terms is as in Definition 5 where −→ is replaced by �−→ and rule
Suma (and symmetrically its symmetric rules) are replaced by:

Suma1
P1

α�−→ P ′
1

P1 + P2
α�−→ P ′

1

Suma2
P1

α�−→ P ′
1

P1 + P2
α�−→ P ′

1

and function clean is the one in Definition 10. Consequently, traces out of an
initial process P0 consider �−→ (instead of −→).



Checking a Mutex Algorithm in a Process Algebra with Fairness 149

The Temporal Behaviour of PAFASc Process. As in Section 2.1, we define
timed execution sequences to be infinite sequences of action transitions and time
steps starting at some initial process P0 (again a maximal sequence of such
transitions/steps starting is never finite) and the property non-Zeno, where:

Definition 12. (time step, timed execution sequence) For P ∈ P̃1, we write
P

1�−→ Q when Q = urgent(P ), where urgent(P ) abbreviates urgent(P, ∅) and
urgent(P,A) is defined as in Definition 6 but rule Sum is replaced as follows:

Sum: urgent(P1 + P2, A) =

{
P1 + P2 if (A(P1) ∪ A(P2))\A �= ∅
P1 + P2 otherwise

Fairness of Components and Timing. As in Section 2.1, we can now de-
fine (weak) fairness w.r.t. components in terms of non-Zeno timed execution
sequences. In fact, fair traces (w.r.t. fairness of components) can be defined just
as in Definition 7 by replacing each action transition α−→ and time step 1−→ with
its counterpart in the component-oriented timed operational semantics, i.e. α�−→
and 1�−→. To keep things short, we do not report here the formal definition.

3 Dekker’s Algorithm and Its Liveness Property

In this section we briefly describe Dekker’s mutex algorithm. There are two
processes P1 and P2, two boolean-valued variables b1 and b2, whose initial values
are false , and a variable k, which may take the values 1 and 2 and whose initial
value is arbitrary. The ith process (with i = 1, 2) can be described as follows,
where j is the index of the other process:

while true do
begin

〈noncritical section〉;
bi = true;
while bj do if k = j then begin

bi := false; while k = j do skip; bi := true;
end;
〈critical section〉;
k := j; bi := false;

end;

Informally, the b variables are “request” variables and k is a “turn” variable:
bi is true if Pi is requesting entry to its critical section and k is i if it is Pi’s turn
to enter its critical section. Only Pi writes bi, but both processes read it.

3.1 Translating the Algorithm into PAFAS Processes

In our translation of the algorithm into PAFAS, we use essentially the same cod-
ing as given by Walker in [11]. Each program variable is represented as a family
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of processes. For instance, the process B1(false) denotes the variable b1 with
value false. The sort of the process B1(false) is the set {b1rf , b1rt , b1wf , b1wt}
where b1rf and b1rt represent the actions of reading the values false and true
from b1, b1wf and b1wt represent, respectively, the writing of the values false
and true into b1. Let B = {false, true} and K = {1, 2}.

Definition 13. (program variables) Let i ∈ {1, 2}. We define the processes
representing program variables as follows:

Bi(false) = birf .Bi(false) + (biwf .Bi(false) + biwt .Bi(true))
Bi(true) = birt .Bi(true) + (biwf .Bi(false) + biwt .Bi(true))
K(i) = kri.K(i) + (kw1 .K(1) + kw2 .K(2))

Let B = {birf , birt , biwf , biwt | i ∈ {1, 2}} ∪ {kr1 , kr2 , kw1 , kw2} be the union
of the sorts of all variables and ΦB the relabelling function such that ΦB(α) = τ
if α ∈ B and ΦB(α) = α if α /∈ B. Given b1, b2 ∈ B, k ∈ K and using ‖ as a
shorthand for ‖∅, we define PV(b1, b2, k) = (B1(b1) ‖ B2(b2)) ‖ K(k).

Definition 14. (the algorithm) The processes P1 and P2 are represented by the
following PAFAS processes; the actions reqi and csi have been added to indicate
the request to enter and the execution of the critical section by the process Pi.

P1 = req1.b1wt .P11 + τ.P1 P2 = req2.b2wt .P21 + τ.P2
P11 = b2rf .P14 + b2rt .P12 P21 = b1rf .P24 + b1rt .P22
P12 = kr1 .P11 + kr2 .b1wf .P13 P22 = kr2 .P21 + kr1 .b2wf .P23
P13 = kr1 .b1wt .P11 + kr2 .P13 P23 = kr2 .b2wt .P21 + kr1 .P23
P14 = cs1.kw2 .b1wf .P1 P24 = cs2.kw1 .b2wf .P2

Now we define the algorithm as Dekker = ((P1 ‖ P2) ‖B PV(false , false, 1))[ΦB ].
The sort of Dekker is the set Ad = {reqi, csi | i = 1, 2}.

3.2 Liveness Property of Dekker’s Algorithm

As discussed in the introduction, a mutex algorithm satisfies its liveness property
if whenever at any point in any computation a process Pi requests the execution
of its critical section, then, in any continuation of that computation, there is a
point at which Pi will perform its critical section. We can expect this property
to hold only under some fairness assumption; so for the formal property we want
to check, we replace ‘computation’ by ‘fair trace’ (in one of our two interpreta-
tions). In other words, a mutex algorithm satisfies its liveness property if any
occurrence of reqi in a fair trace is eventually followed by csi, i = 1, 2. Due to
our definition of fair trace, this amounts to checking that each non-Zeno timed
execution sequence is live according to the following definition.

Definition 15. (live execution sequences) Let P0 ∈ P1, λ0, λ1, . . . ∈ (Ad∪{τ}∪
{1}). A timed execution sequence γ from P0 with γ = P0

1−→ Q0
λ0−→ Q1

λ1−→ . . .

(γ = P0
1�−→ Q0

λ0�−→ Q1
λ1�−→ . . .) is not live if there exists j ∈ N0 such that λj =

reqi and csi is not performed in the execution sequence Qj+1
λj+1−−−→ Qj+2

λj+2−−−→
. . . (Qj+1

λj+1�−→ Qj+2
λj+2�−→ . . . respectively). Otherwise, we say that γ is live.
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4 Fairness of Actions and Liveness

This section shows that fairness of actions is not sufficiently strong to ensure the
liveness property. We present two fair traces with respect to fairness of actions,
which violate the liveness property, i.e. two non-Zeno timed execution sequences
in PAFAS (cf. Section 2.1) which are not live. We now describe how program
variables and the processes P1 and P2 evolve by letting one time unit pass.

Definition 16. (urgent program variables) According to Definitions 13 and 6,
urgent program variables can be defined as follows:

Bi(false) = birf .Bi(false) + (biwf .Bi(false) + biwt .Bi(true))
Bi(true) = birt .Bi(true) + (biwf .Bi(false) + biwt .Bi(true))
K(i) = kri.K(i) + (kw1 .K(1) + kw2 .K(2))

Let us denote with B = {false, true} and with K = {1, 2}. Then, given b′1, b′2 ∈
B ∪ B and k′ ∈ K ∪K, we define PV(b′1, b

′
2, k

′) = ((B1 ‖B2) ‖K), where:

Bi =

{
Bi(b) if b′i = b ∈ B
Bi(b) if b′i = b ∈ B

K =

{
K(k) if k′ = k ∈ K
K(k) if k′ = k ∈ K

As an example, we have that PV(true, false, 2) = (B1(true) ‖ B2(false)) ‖ K(2).

The urgent versions of processes P1 and P2, denoted by P 1 and P 2 resp., are as
in Definition 14 where initial actions are urgent. We use P ij (i = 1, 2 and j =
1, 2, 3, 4) to denote the urgent versions of their derivatives (ex. P 12 = kr1 .P11 +
kr2 .b1wf .P13). As a consequence of the above definitions (and by the action-
oriented operational semantics) we have that Dekker can let one time unit pass
evolving into Dekker = ((P 1 ‖ P 2) ‖B PV(false , false, 1))[ΦB ]. Our first example
shows how an infinite τ -loop can result in the starvation of both processes.

Example 1. Let us consider the following timed computation from Dekker :

Dekker 1−→ Dekker = ((P 1 ‖ P 2) ‖B PV(false , false, 1))[ΦB ]
req1−−−→ req2−−−→ τ4

−→
P0 = ((P11 ‖ b2wf .P23) ‖B PV(true, true, 1))[ΦB ] 1−→
Q0 = ((P 11 ‖ b2wf .P23) ‖B PV(true, true, 1))[ΦB] τ2

−→
P0 = ((P11 ‖ b2wf .P23) ‖B PV(true, true, 1))[ΦB ]

Repeating the last three transitions, we get a non-Zeno timed execution se-

quence that is not live, i.e. Dekker can perform a fair trace Dekker
req1 req2 τ4

−−−−−−−−→
P0

τ2

−→ P0
τ2

−→ P0 . . . that violates liveness since no process will ever enter its
critical section. Intuitively speaking, once in P0, repeated reading of variables
b2 and k blocks indefinitely P2 which will never set its request variable b2 to
false. On the other hand, P1 cannot enter its critical section and, hence, can-
not proceed until the value of b2 is true. Thus, both processes are stuck. The
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next example shows a different kind of computation which also causes a viola-
tion of liveness; along such a computation, one process is stuck while the other
repeatedly executes its critical section. Consider the following computation:

Dekker 1−→ Dekker = ((P 1 ‖ P 2) ‖B PV(false , false, 1))[ΦB ]
req1 req2 τ2 cs1 τ−−−−−−−−−−−→

P0 = ((b1wf .P1 ‖ b2wt .P21) ‖B PV(true, false, 2))[ΦB ] 1−→
((b1wf .P1 ‖ b2wt .P21) ‖B PV(true, false , 2))[ΦB]

τ req1 τ2 cs1 τ−−−−−−−−−→
P0 = ((b1wf .P1 ‖ b2wt .P21) ‖B PV(true, false, 2))[ΦB ]

Again, the trace performed in Dekker
req1 req2 τ2 cs1 τ−−−−−−−−−−−→ P0

τ req1 τ2 cs1 τ−−−−−−−−−→ P0 . . .
is fair but violates liveness since P2 never enters its critical section. Here, P1
repeatedly executes its critical section, again preventing P2 to set its request
variable b2 to true. As a consequence, P2 cannot enter its critical section even if
the value of turn variable k is two.

5 Fairness of Components and Liveness

This section proves that any fair trace of Dekker according to fairness of compo-
nents satisfies the liveness property. We present three ideas to reduce the number
of states we have to deal with.

5.1 Permanently Lazy Components

The state space of a process in PAFASc is considerably larger than in an un-
timed process algebra because process components switch from lazy to urgent.
We can achieve a considerable reduction, if we prevent this by declaring some
components as permanently lazy. As an application, we regard the three program
variables as one component of Dekker ; declaring it as permanently lazy results
in a process denoted by Dekker [PV]. A non-Zeno timed execution sequence of
the original process can be simulated by one of the new process. Thus, instead
of proving that all non-Zeno timed execution sequences of Dekker are live, it is
sufficient to prove that all non-Zeno timed execution sequences of Dekker [PV]
are live. We have also a good intuitive reason to request it to be true. Since fair-
ness is required for all components, a program variable can, intuitively speaking,
enforce to be read or written - provided there is always some component that
could do so. But our intuition for variables is that they are passive, that we
really only want fairness towards P1 and P2. Assuming this kind of fairness is
indeed enough. We now extend PAFASc with a new operator, which can only
be applied to a top-level component.

Definition 17. (permanently lazy processes) Given P ∈ P̃1, we define the per-
manently lazy version of P , written [P ], to be the process with the same syn-
tactical structure of P (and, hence, the same functional behaviour) but which
permanently ignores the passage of time. The timed operational semantics of [P ]
can be defined by the following rules:
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ActL
P

α�−→ P ′

[P ] α�−→ [P ′]
TimeL

[P ] 1�−→ [P ]

The set P̃�1 of initial processes with one permanently lazy top-level component
is generated by:

S ::= P ‖A [P ]
∣∣ S[Φ]

where P ∈ P̃1, A ⊆ A (possibly infinite) and Φ is a general relabelling function.
Similarly, the set P̃� of (general) processes with one permanently lazy top-level
component is generated by the following grammar:

R ::= Q ‖A [P ]
∣∣ R[Φ]

where Q ∈ P̃c, P ∈ P̃1, A ⊆ A (possibly infinite) and Φ is a general relabelling
function.

We define the operational semantics for processes with one permanently lazy
top-level component.

Definition 18. (Functional operational semantics) The following SOS-rules de-
fine the transition relations α�−→⊆ (P̃� × P̃�) for α ∈ Aτ , the action transitions.

Lpara1
α /∈ A, Q α�−→ Q′

Q ‖A [P ] α�−→ clean(Q′ ‖A [P ])
Lpara2

α /∈ A,P �−→α P
′

Q‖A [P ] α�−→ clean(Q ‖A [P ′])

Lsyncha

α ∈ A, Q α�−→ Q′, P �−→α P
′

Q ‖A [P ] �−→α clean(Q′ ‖A [P ′])
Lrela

R
α�−→ R′

R[Φ] �−→Φ(α) R
′[Φ]

where clean(Q ‖A [P ]) = clean(Q,A′) ‖A [P ] and A′ = (A(Q)\A(P )) ∩A.

Definition 19. (time step) For S ∈ P̃�1, we write that S 1�−→ R when R =
urgent(S) where function urgent(S) is defined as follows:

Par: urgent(P1 ‖B [P2]) = urgent(P1, A
′) ‖B [P2] where A′ = (A(P1)\A(P2)) ∩A

Rel: urgent(S[Φ]) = urgent(S)[Φ]

Definition 20. Let Q ∈ P̃ and R ∈ P̃�. We write that Q * R if either Q =
Q1 ‖A Q2 and R = Q1 ‖A [unmark(Q2)] or Q = Q1[Φ] and R = R1[Φ] with
Q1 * R1.

Proposition 1. Let P ∈ P̃1, S ∈ P̃�1 with P * S and v ∈ (Aτ )∗. Then P 1�−→
Q

v�−→ P ′ ∈ P̃1 implies S 1�−→ R
v�−→ S′ with P ′ * S′ (S simulates each non-Zeno

timed execution sequence of P ).

This proposition states that all non-Zeno timed execution sequences of Dekker
can be simulated by non-Zeno timed execution sequences of Dekker [PV].
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5.2 F-Steps

We can group the transitions of a non-Zeno timed execution sequence into infi-
nitely many steps of the form S

1�−→ R
v�−→ S′, where v ∈ (Aτ )∗ and S′ is the

next process to perform a time step. Such a step is minimal in a sense, if S′ is the
first process in the transition sequence R v�−→ S′ that could perform a time step,
i.e. the first initial process. We call such minimal steps f-steps and the processes
reachable by them fair-reachable. We will show in this subsection that we only
have to consider timed execution sequences built from infinitely such f-steps.

Definition 21. (f-executions) A transition sequence S 1�−→ R
v�−→ S′ with

S, S′ ∈ P�1 and v ∈ (Aτ )∗ is an f-step if S′ is the only initial process in the
transition sequence R v�−→ S′ (allowing R = S′ if v is the empty sequence).
An f-execution from S0 ∈ P�1 is any infinite sequence of f-steps of the form:
γ = S0

1�−→ R0
v0�−→ S1

1�−→ R1
v1�−→ S2 . . . We call the processes S1, S2, . . .

fair-reachable from S0.

F-executions are special non-Zeno timed execution sequences. To show that
checking them for liveness suffices, we need the following proposition.

Proposition 2. For each non-Zeno timed execution sequence from S0 ∈ P�1,
γ = S0

1�−→ R0
v0�−→ S1

1�−→ R1
v1�−→ S2 . . . there exists a corresponding f-

execution γ′ = S′
0

1�−→ R′
0

v′
0�−→ S′

1
1�−→ R′

1
v′
1�−→ S′

2 . . ., where S′
0 = S0, v0v1 . . . =

v′0v
′
1 . . . and each step S′

i
1�−→ R′

i

v′
i�−→ S′

i+1 is minimal.

5.3 Symmetry of Fair-Reachable Processes

Half of the processes which are fair-reachable from Dekker [PV] are denoted by
D1, . . . , D47; see Table 1 and [4] for a full list of the processes. We also consider
all possible symmetries and use Sy to denote the process which is symmetric to
Dy with respect to the local state of P1 and P2 and the value of the variables b1,
b2 and k. For each y ∈ [1, 47], Sy = S(Dy) where function S(_) on processes is
given below. Moreover, S(Sy) = Dy for any y.

Table 1. Fair-Reachable Processes

D1 = ((b1wt .P11 ‖ b2wt .P21) ‖B [PV(false, false, 1)])[ΦB ]
...

D23 = ((b1wf .P1 ‖ P21) ‖B [PV(true, true , 2)])[ΦB ]
...

D47 = (P13 ‖ b2wt .P21) ‖B [PV(false, false, 2)])[ΦB ]

Definition 22. (symmetric processes) Let P1, P11,. . .P14, P2, P21,. . .P24 be pro-
cesses as given in Definition 14. Let moreover x ∈ [1, 4] and {i, j} = {1, 2}. Then:
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S(Pi) = Pj S(Pix) = Pjx
S(biwt.Pi1) = bjwt.Pj1 S(biwf.Pi3) = bjwf.Pj3
S(kwj.biwf.Pi) = kwi.bjwf.Pj S(biwf.Pi) = bjwf.Pj

Now, let b1, b2 ∈ B, k ∈ K and S = ((S1 ‖ S2) ‖B [PV(b1, b2, k)])[Φ] be action-
reachable from Dekker [PV]. We can define the symmetric process of S as follows:

S(S) = ((S(S2) ‖ S(S1)) ‖B [PV(b2, b1, (k mod 2) + 1)])[ΦB]

We say that two processes S and S′ action-reachable from Dekker [PV] are
symmetric, written S ≈ S′, if either S′ = S(S) or S = S(S′).

Definition 23. (symmetric sequences of actions) Given v ∈ (Ad ∪ {τ})∗, the
string S(v) is defined, by induction on the length of v, as follows: S(ε) = ε,
S(τ v′) = τ S(v′), S(reqi v

′) = reqj v
′ and S(csi v′) = csj v′ where i, j ∈ {1, 2}

Proposition 3 states that symmetric processes have symmetric behaviours: they
perform symmetric f-steps and evolve into processes which are still symmetric.

Proposition 3. Let S ≈ S′ and v ∈ (Ad∪{τ})∗. Then: S′ 1�−→ R′ v�−→ S′
0 ∈ P̃�1

implies S 1�−→ R
S(v)�−→ S0 ∈ P̃�1 with S0 ≈ S′

0, and one is an f-step if and only if
the other one is.

Let D0 = Dekker [PV], D = {D0, . . . D47} and S = {S0, . . . S47}. The following
proposition shows that all processes fair-reachable from Dekker [PV] are in D∪S.

Proposition 4. Let S ∈ D ∪ S and v ∈ (Ad ∪ {τ})∗. S 1�−→ R
v�−→ S′ ∈ P̃�1

implies S′ ∈ D ∪ S.

5.4 Progressing Processes

We distinguish terms in D ∪ S depending on how many processes are waiting
to perform their critical section, i.e. depending on how many actions csi are
still pending. The action csi is pending, for a given S ∈ D ∪ S, if there exist
sequences of basic actions v, w ∈ (Ad ∪ {τ})∗ such that Dekker [PV]

v reqi w�−→ S
and csi /∈ w. Trivially, each process may have at most two pending actions and
hence D∪ S = R1 ∪ R2 ∪ R1,2, where R1 (R2) is the set of fair-reachable states with
only cs1 (cs2, resp.) pending and R1,2 is the set of fair-reachable states with both
cs1 and cs2 pending.

We may check if a given fair-reachable process S belongs to R1, R2 or R1,2 by
considering its syntactical structure and, in particular, the local states of P1 and
P2 in S. In detail, we distinguish the following subsets of fair-reachable processes:
D1 = D∩R1 = {D2, D5, D9, D14, D22, D32}, D2 = D∩R2 = {D3, D7, D11, D12, D16,
D21, D23, D29, D30, D31, D33, . . . , D36, D40} and D1,2 = D ∩ R1,2 = {D1, D4, D6,
D8, D10, D18, D19, D20, D24,..., D28, D37, D38, D39, D41, D42,. . ., D47}. Processes
D0, D13, D15 and D17 have no pending sections. Since S ∈ R1, S ∈ R2 and
S ∈ R1,2 imply S(S) ∈ R2, S(S) ∈ R1 and S(S) ∈ R1,2, respectively, we also have:
S1 = S ∩ R1 = S(D2), S2 = S ∩ R2 = S(D1) and S1,2 = S ∩ R1,2 = S(D1,2). Finally,
S0, S13, S15 and S17 have no pending actions.
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Definition 24. (progressing processes) We say that a string v = α1 . . . αn ∈
(Ad ∪ {τ})∗ contains the action csi (i ∈ {1, 2}), writen csi ∈ v, if αj = csi for
some j ∈ [1, n]. Trivially, cs1, cs2 ∈ v if both cs1 ∈ v and cs2 ∈ v.

A given S ∈ D ∪ S implies the execution of the action csi, denoted by S � csi,
if each f-execution from S contains the action csi; S� cs1, cs2 if both S� cs1 and
S � cs2. Finally, we say that S ∈ R1 (symmetrically for S ∈ R2 and S ∈ R1,2) is
making progress (progressing) if S � cs1 (S � cs2, S � cs1, cs2, respectively).

Proposition 5. Let S, S′ ∈ D∪S with S ≈ S′. Then: (i) S� csi implies S′ � csj
with {i, j} ∈ {1, 2}; (ii) if S is making progress then also S′ is making progress.

Now, we prove that all processes in D and hence, by Proposition 5-(ii), all
processes in D ∪ S are progressing. We need the following statement.

Proposition 6. A given Dy � csi if for any f-step from Dy of the form Dy
1�−→

R
v�−→ S ∈ P̃�1 we have either csi ∈ v or S � csi.

Iterative application of Proposition 6 allows us to state which processes can
perform specific actions.

Lemma 1. All processes in D ∪ S are making progress.

Proposition 7. Each f-execution from Dekker [PV] is live.

As an immediate consequence of the relationships between fair traces of Dekker
and f-executions of Dekker [PV], we have the main result of this section:

Theorem 1. Each fair trace of Dekker satisfies the liveness property.
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Abstract. Traditionally, the various semantics of the process algebra
Csp are formulated in denotational style. For many Csp models, e.g.,
the traces model, equivalent semantics have been given in operational
style. A Csp semantics in axiomatic style, however, has been considered
problematic in the literature.

In this paper we present a sound and complete axiomatic semantics for
Csp with unbounded nondeterminism over an alphabet of arbitrary size.

This result is connected in various ways with our tool Csp-Prover: (1)
the Csp dialect under discussion is the input language of Csp-Prover;
(2) all theorems presented have been verified with Csp-Prover; (3) Csp-
Prover implements the given axiom system.

1 Introduction

Among the various frameworks for the description and modelling of reactive
systems, process algebra plays a prominent role. Here, the process algebra Csp
[2,8] has successfully been applied in various areas, ranging from train control
systems over software for the international space station to the verification of
security protocols.

Traditionally, Csp semantics such as the traces model, the failures-divergences
model, or the stable-failures model, are formulated in denotational style, c.f. [8].
However, the success of the model checker FDR [6], which clearly is the standard
proof tool for Csp, relies on the formulation of operational semantics equivalent
to the given denotational ones.

A similar success story with theorem proving for Csp, see, e.g., [1,4,5,9,10] for
various approaches, will require an axiomatic (or algebraic) formulation of the
Csp models. A complete axiomatic semantics for Csp, however, is considered
problematic in the literature. There are issues concerning normalisation. The
best known results apply for finitely nondeterministic Csp over a finite alphabet
of communications only [8]. Consequently, all the implementations listed above
are based on a denotational semantics. While this is satisfactory from a the-
oretical point of view (every true proposition over the denotational semantics
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can be proven within the theorem prover — up to the incompleteness of the
underlying logic1), the actual proof-practise relies on an known to be incomplete
set of algebraic laws and proof rules derived from the denotational semantics
implemented.

In this paper we present a sound and complete axiomatic semantics for Csp
with unbounded nondeterminism over an alphabet of arbitrary size. Here, we
consider full Csp, where the generic internal choice operator has been replaced
by a restricted one (this is necessary in order to obtain a set of processes rather
than a class), and where recursion is replaced by infinite nondeterminism over
depth-finite processes. We show in Theorem 1 that this language is expressive
with respect to the stable-failures domain.

The considered Csp dialect is the input language of our tool Csp-Prover
[3,4,5]. Csp-Prover is an interactive theorem prover which supports refinement
proofs over various denotational semantics of the process algebra Csp. In the
context of this paper, we use Csp-Prover to verify that our axiom system is sound
(in this process we found some of the Csp laws established in the literature to
be incorrect — see Section 3) as well as to show that the two transformations
involved in the completeness proof are semantics preserving.

The paper is organised as follows: First, we introduce our Csp dialect and
show that it is expressive. In Section 3 we present a sound axiom system AF
for stable-failures equivalence. The proof that the axiom system AF is complete
involves two steps: (1) sequentialisation, see Section 4, and (2) normalisation of
sequential processes, see Section 5. Finally, we briefly discuss how to verify the
theorems given in this paper with Csp-Prover.

2 The CSP-Dialect

This section summarises syntax and semantics of the input language of Csp-
Prover. Especially, we show that it is expressive and that it can deal with infi-
nitely many mutual recursive processes.

2.1 Syntax

Fig. 1 shows the syntax of Csp implemented in Csp-Prover: given an alphabet
of communications Σ and the data type of natural numbers Nat , we form a set
Sel(Σ) of selectors to be explained below. ProcΣ denotes the set of the processes
whose alphabet is Σ.

The set Sel(Σ) of selectors used in the replicated internal choice is defined as
the disjoint sum of the powerset over Σ and the set of the natural numbers:

Sel(Σ) = {(set)A | A ⊆ Σ} $ {(nat)n | n ∈ Nat}

Note that replicated internal choice takes a subset of Sel(Σ) as its parameter.

1 The traditional formulation of the denotational Csp semantics involves higher-order
concepts such as chain-completeness or metric-completeness.
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P ::= Skip %% successful terminating process
| Stop %% deadlock process
| Div %% divergence
| a → P %% action prefix
| ? x : A → P(x) %% prefix choice
| P � P %% external choice
| P � P %% internal choice
| !! s : S • P(s) %% replicated internal choice
| if b then P else P %% conditional
| P |[X ]| P %% generalized parallel
| P \ X %% hiding
| P [[r ]] %% relational renaming
| P o

9 P %% sequential composition
| P ↓ n %% depth restriction

where A,X ⊆ Σ, S ⊆ Sel(Σ), b is a condition, r ∈ P(Σ × Σ), and n ∈ Nat .

Fig. 1. Syntax of basic Csp processes in Csp-Prover

One difference from conventional Csp is that we replace the generic internal
choice �P by a replicated internal choice !! s : S • P(s), i.e., instead of having
internal choice over an arbitrary class of processes P ⊆ ProcΣ , internal choice
is restricted to run over an indexed set of processes P(s) : Sel(Σ) ⇒ ProcΣ
only, where the index set S is a subset of Sel(Σ). The other difference is that we
introduce restriction ↓ as a basic operator. Restriction plays an important role
in full-normalisation. In the stable-failures model, restriction cannot be defined
in terms of the other basic operators, see [8].

The following shortcuts have proven to be useful:

!set A : A • P(A) = !! s : {(set)A | A ∈ A} • P((set)−1(s))
!nat n : N • P(n) = !! s : {(nat)n | n ∈ N } • P((nat)−1(s))

! x : A • P(x ) = !set X : {{x} | x ∈ A} • P(contents(X ))

where A ⊆ P(Σ), N ⊆ Nat , A ⊆ Σ, and contents({x}) = x . Moreover, if the
range of the selector is the universe, the universe is often omitted, for example
we write !nat n • P(n) instead of !nat n : Nat • P(n).

2.2 Semantics

In this paper, we concentrate on the denotational stable-failures model F of Csp.
Its domain FΣ is given as the set of all pairs (T ,F ) that satisfy certain healthi-
ness conditions, where T ⊆ Σ∗� and F ⊆ Σ∗� × P(Σ�)2, see [8] for the details.
The semantics of a process P is denoted by [[P ]]F , where the map [[·]]F : ProcΣ →
FΣ is expressed in terms of two functions: [[P ]]F = (traces(P), failures(P)). Our
definitions of traces and failures are identical to those given in [8]. However, we

2 Σ� := Σ ∪ {�}, Σ∗� := Σ∗ ∪ {t � 〈�〉 | t ∈ Σ∗}.
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need to add semantical clauses for our two new operators, namely replicated
internal choice3 and depth restriction:

traces(!! s : S • P(s)) =
⋃
{traces(P(s)) | s ∈ S} ∪ {〈〉}

failures(!! s : S • P(s)) =
⋃
{failures(P(s)) | s ∈ S}

traces(P ↓ n) = traces(P) ↓ n
failures(P ↓ n) = failures(P) ↓ n

where the restriction functions over traces and failures are given as follows:

T ↓ n = {t ∈ T | length(t) ≤ n}
F ↓ n = {(t ,X ) ∈ F | length(t) < n ∨ (∃ t ′. t = t ′ � 〈�〉, length(t) = n)}

Note that on the domain, which general internal choice and replicated internal
choice share, they have the same semantics, see the semantical clauses for general
internal choice in the stable-failures model as defined in [8] (note P �= ∅):

traces(�P) =
⋃
{traces(P) | P ∈ P}

failures(�P) =
⋃
{failures(P) | P ∈ P}

Process equivalence =F and process refinement +F over the stable failures model
are then defined as usual:

P =F Q ⇔ traces(P) = traces(Q) ∧ failures(P) = failures(Q),
P +F Q ⇔ traces(P) ⊇ traces(Q) ∧ failures(P) ⊇ failures(Q).

2.3 Expressiveness

At first glance, the above defined input language of Csp-Prover seems to be
weaker than full Csp as the generic internal choice operator �P is missing.
However, we can show our language to be expressive.

First, we define a function ProcT (n) on sets of traces and a function ProcF(n)
on the domain FΣ , inductively on n as follows:

ProcT (0)(T )=Div
ProcT (n+1)(T )=((! x : head(T ) • (x → ProcT (n)(tail(T , x )))) � Div)

� (if (〈�〉 ∈ T ) then Skip else Div)
ProcF(0)(T ,F )= !set A : accept(T ,F ) • (? x : A→ Div)

ProcF(n+1)(T ,F )=(! x :head(F ) • (x→ProcF(n)(tail(T , x ), tail(F , x )))) � Div

where head , tail , and accept are defined as

head(T ) = {x ∈ Σ | ∃ t . 〈x 〉� t ∈ T}
head(F ) = {x ∈ Σ | ∃ t X . (〈x 〉� t ,X ) ∈ F}

tail(T , x ) = {t | 〈x 〉� t ∈ T}
tail(F , x ) = {(t ,X ) | (〈x 〉� t ,X ) ∈ F}

accept(T ,F ) = {(Σ −Y ) | (〈〉,Y ) ∈ F ∧ � ∈ Y ∧ (∀ x /∈ Y . 〈x 〉 ∈ T )}.
3 To make the implementation easier we allow the empty set ∅ as a set S of selectors.

Consequently we need to add {〈〉} to the set of traces. However, this makes sense
only in models with a refinement top.



162 Y. Isobe and M. Roggenbach

Intuitively, A ∈ accept(T ,F ) is the set of communications which are not refused
by F and can be performed by T . Next, define a function ProcF as follows:

ProcF (T ,F ) = (!nat n • ProcT (n)(T )) � (!nat n • ProcF(n)(T ,F ))

With these functions defined, we show that [[·]]F is surjective on FΣ :

Theorem 1. For all (T ,F ) ∈ FΣ, [[ProcF (T ,F )]]F = (T ,F ).

Proof sketch. We prove by induction on n : if t ∈ traces(ProcT (n)(T )) or
t ∈ traces(ProcF(n)(T ,F )) for some n, then t ∈ T . Then we show by induc-
tion on the length of t : if t ∈ T then t ∈ traces(ProcT (length(t))(T )). Hence,
traces(ProcF (T ,F )) = T . Equality for failures follows by a similar argument. �

2.4 Recursive Processes

Infinite processes can be effectively expressed by fixed points. For example, a
buffer Buffer , which iteratively receives a real number r from the channel in
and sends it to a channel out together with an increasing natural number id ,
can be defined by using a solution f of the following system of equations4:

f (Empty (id)) =F in ? r → ( f (Full (r , id)))
f (Full (r , id)) =F out (r , id) → ( f (Empty (id + 1)))

where Empty and Full are names, and f is a function whose domain is

Dom(f ) = {Empty (id) | id ∈ Nat} ∪ {Full (r , id) | r ∈ Real , id ∈ Nat}

and whose range is the set of all processes. Any solution f is a fixed point
(Fix fun) of the function fun : (Dom(f ) ⇒ ProcΣ) ⇒ (Dom(f ) ⇒ ProcΣ)
given as:

fun(f )(Empty (id)) := in ? r → ( f (Full (r , id)))
fun(f )(Full (r , id)) := out (r , id) → ( f (Empty (id + 1)))

Therefore, the process Buffer , which initially has no data and whose initial id
is zero, is given as (Fix fun)(Empty (0)).

Csp offers two standard approaches to deal with fixed-points: complete par-
tial orders (cpo) with Tarski’s fixed point theorem or complete metric spaces
(cms) with Banach’s fixed point theorem. The limits (Fix fun) and (Fix ! fun)
of the converging sequences in Tarski’s and Banach’s fixed point theorems can
be defined in our Csp-dialect as follows:

(Fix fun)(x ) := !nat n • ((fun(n)(λ y.Div))(x ))
(Fix ! fun)(x ) := !nat n • (((fun(n)(λ y.Any))(x )) ↓ n)

where Div plays the role of the bottom element in the cpo approach and Any
stands for any process, which corresponds to the arbitrary initial point of Ba-
nach’s theorem. Then, as expected, the following properties hold:
4 in ? r → P(r) is a syntactic sugar for ? x : {in(r) | r ∈ Real} → P(in−1(x)).



A Complete Axiomatic Semantics for the CSP Stable-Failures Model 163

1. Let fun ∈ ProcFunΣ. Then (Fix fun)(x ) =F (fun (Fix fun))(x ) for all x ; fur-
thermore, for any f with (∀x .f (x )=F fun(f )(x )) holds f (x ) +F (Fix fun)(x ).
Thus, (Fix fun) is the greatest fixed point on +F , in other words, it is the
least fixed point in the semantic domain.

2. Let fun ∈ ProcFunΣ be guarded and without hiding operator. Then we have
(Fix ! fun)(x ) =F (fun (Fix ! fun))(x ) for all x ; furthermore, for every f , if
(∀ x . f (x ) =F fun(f )(x )) then f (x ) =F (Fix ! fun)(x ). Thus, (Fix ! fun) is
the unique fixed point on =F .

Here, ProcFunΣ is the set of functions fun such that for all x , (λ f . fun(f )(x ))
is a process-function. Each process-function P(f ) is a process that may contain
a process-function variable f , see, e.g., the above example Buffer .

Thus, both ways of Csp of dealing with systems of recursive equations, the
cpo approach using Tarski’s fixed point theorem as well as the cms approach
using Banach’s fixed point theorem, are expressible in the input language of
Csp-Prover.

3 Axiom System

In this section, we present a sound axiom system AF for the Csp stable-failures
model. The completeness of AF is shown later in the Sections 4 and 5.

We write AF , P = Q if the equality of two processes P and Q can be
proven by equational and inductive reasoning from the axiom system AF . Fig. 2
summarizes changes from the axiom system for finite processes given in [8]. The
superscript ∗ denotes modified laws, the superscript + denotes added laws.

Our axiom system AF replaces the usual unwinding laws for recursive pro-
cesses such as (μX .P(X )) = P(μX .P(X )) by new axioms (Tarski-fix) and
(Banach-fix). While the unwinding laws have proven to be handy for verifying
practical systems with Csp-Prover, at the same time they cause problems with
normalization: see the discussion on infinite unwinding of divergent processes
such as (μX .X ) in [8], p. 273. Our laws (Tarski-fix) and (Banach-fix), however,
transforms recursive processes to unbounded nondeterministic processes. Such
processes can then be analyzed via induction on n. We give an example of how
to normalise a divergent process at the end of Section 5.

Secondly, we found that the well-known laws (|[X ]|-�-split) and (|[X ]|-�-input)
(P.288–289 in [8]) are not correct:

(P � P ′) |[X ]| (Q � Q ′)
= (P |[ X ]| Q) � ((P ′ |[X ]| (Q � Q ′)) � ((P � P ′) |[X ]| Q ′)), (|[X ]|-�-split)

(P � P ′) |[X ]| (?x : A → Q(x))
= (?x : (A − X ) → ((P � P ′) |[X ]| Q(x)))

� ((P |[X ]| (?x : A → Q(x))) � (P ′ |[X ]| (?x : A → Q(x)))). (|[X ]|-�-input)

For example, instantiate the processes in (|[X ]|-�-split) as follows: P = a → Stop,
P ′ = Stop, Q = Stop, Q ′ = b → Stop, and X = ∅, where a �= b. In this case, the
semantics of the left hand side of (|[X ]|-�-split) does not contain the failure (〈a〉, b)
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(Fix fun)(x) = !nat n • ((fun(n)(λ y .Div))(x)) (Tarski-fix)+

(Fix ! fun)(x) = !nat n • (((fun(n)(λ y .P))(x)) ↓ n) (Banach-fix)+

if P = (?x : A → P ′(x)) � P ′′ and Q = (?x : B → Q ′(x)) � Q ′′ then
P |[X ]| Q
= (?x : ((X ∩ A ∩ B) ∪ (A − X ) ∪ (B − X )) →

if (x ∈ X ) then (P ′(x) |[X ]| Q ′(x))
else if (x ∈ A ∩ B) then ((P ′(x) |[X ]| Q) � (P |[X ]| Q ′(x)))

else if (x ∈ A) then (P ′(x) |[X ]| Q) else (P |[X ]| Q ′(x)))
� ((P ′′ |[X ]| Q) � (P |[X ]| Q ′′)) (|[X ]|-�-split)∗

if P = (?x : A → P ′(x)) � P ′′ and Q = ?x : B → Q ′(x) then
P |[X ]| Q
= (?x : ((X ∩ A ∩ B) ∪ (A − X ) ∪ (B − X )) →

if (x ∈ X ) then (P ′(x) |[X ]| Q ′(x))
else if (x ∈ A ∩ B) then ((P ′(x) |[X ]| Q) � (P |[X ]| Q ′(x)))

else if (x ∈ A) then (P ′(x) |[X ]| Q) else (P |[X ]| Q ′(x)))
� (P ′′ |[X ]| Q) (|[X ]|-�-input)∗

!! s : ∅ • P(s) = Div (!!-emptyset)+

if S 	= ∅ and (∀ s ∈ S . P(s) = Q) then !! s : S • P(s) = Q (!!-const)∗

!! s : (S1 ∪ S2) • P(s) = (!! s : S1 • P(s)) � (!! s : S2 • P(s)) (!!-union-�)∗

!! s : S • (? x : A(s) → P(s, x))
= !set X : {A(s) | s ∈ S}•

(? x : X → (!! s : {s ∈ S | x ∈ A(s)} • P(s, x))) (!!-input-!set)+

if ∀ s ∈ S .Q(s) ∈ {Skip,Div} then
!! s : S • (P(s) � Q(s)) = (!! s : S • P(s)) � (!! s : S • Q(s)) (!!-�-Dist)+

if Q ∈ {Skip,Div} then
(!set X : X • (? x : X → P(x))) � Q = (? x :

⋃
X → P(x)) � Q (!!-input-Dist)+

P ↓ 0 = Div (↓-zero)+

(P ↓ n) ↓ m = P ↓ min(n,m) (↓-min)+

P = !nat n • (P ↓ n) (!nat-↓)+

(!! s : S • P(s)) ↓ n = !! s : S • (P(s) ↓ n) (↓-Dist)+

(P1 � P2) ↓ n = (P1 ↓ n) � (P2 ↓ n) (↓-dist)+

(P1 � P2) ↓ n = (P1 ↓ n) � (P2 ↓ n) (↓-�-dist)+

Skip ↓ (n + 1) = Skip (skip-↓)+

Div ↓ n = Div (div-↓)+

(? x : A → P(x)) ↓ (n + 1) = ? x : A → (P(x) ↓ n) (↓-step)+

? x : A → P(x) = ((? x : A → P(x)) � Div) � (? x : A → Div) (?-div)+

!! s : S • (!set X : X (s) • (? x : X → Div))
= !set X :

⋃
{X (s) | s ∈ S} • (? x : X → Div) (!!-!set-div)+

if X ⊆ Y and (∀Y ∈ Y. ∃X ∈ X .X ⊆ Y ⊆ A) then
((? x : A → P(x)) � Q) � (!set X : X • (? x : X → Div))
= ((? x : A → P(x)) � Q) � (!set X : Y • (? x : X → Div)) (?-!set-⊆)+

Fig. 2. The axiom system AF (differences from [8])
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because (Stop � (b → Stop)) can perform b even after P has performed a. On
the other hand, the semantics of the right hand side of (|[X ]|-�-split) contains the
failure (〈a〉, b) because it has a subexpression ((a → Stop) |[∅ ]| Stop). Therefore,
the law (|[X ]|-�-split) does not hold. Similarly, there is a counter example (e.g.
P = Stop, P ′ = b → Stop, A = {a}, Q(a) = Stop, and X = ∅) for the law
(|[X ]|-�-input). Hence, we modified the laws (|[X ]|-�-split) and (|[X ]|-�-input) as
shown in Fig. 2. The modified laws are less generic than the original ones, but
they are expressive enough to gain completeness.

Thirdly, we added laws (!!-· · ·) for replicated internal choice !! s : S • P(s),
as shown in Fig. 2, by modifying the laws for the (generic) internal choice �.
The laws (!!-input-!set), (!!-�-Dist), and (!!-input-Dist) are used for replacing
replicated internal choice by (external) prefix choice, considering the effects of
Skip or Div . These laws were added instead of the following law for the binary
internal choice (P.289 in [8]): (P � Skip) � (Q � Skip) = (P � Q � Skip).

Furthermore, we added the laws (↓-· · ·) for the restriction operator as shown
in Fig. 2. The most important law is (!nat-↓) which is used for finitising the
depth of infinite processes.

Finally, we added the laws (?-div), (!!-!set-div), and (?-!set-⊆) for normalising
sequential processes. The law (?-!set-⊆) is used to satisfy the condition (N3) of
full normal forms, stated in Definition 2 in Section 5.

The presented axiom system AF is sound:

Theorem 2. Let P ,Q ∈ ProcΣ. Then AF , P = Q implies P =F Q.

4 Full Sequentialisation

In this section, we define a method to fully sequentialise a process. The purpose of
this transformation is to remove hiding. Hiding operators can cause a problem
when normalising processes with the help of depth restriction operators: P ↓
n =F Q ↓ n does not necessarily imply (P \ X ) ↓ n =F (Q \ X ) ↓ n due to
hidden communications.

First, we define the set SeqProcΣ of processes in full sequential forms. Pro-
cesses in full sequential form are built using the various Csp choice operators
and the basic processes Skip, Stop and Div only. More formally:

Definition 1. The set SeqProcΣ is defined as the smallest set satisfying
1. (? x : A→ P(x )) � Q ∈ SeqProcΣ ,

if P(x ) ∈ SeqProcΣ for all x ∈ A and Q ∈ {Skip, Div , Stop}.
2. !! s : S • P(s) ∈ SeqProcΣ ,

if P(s) ∈ SeqProcΣ for all s ∈ S , where S �= ∅.
If P ∈ SeqProcΣ , we say that P is in full sequential form.
As the set A in the first condition is allowed to be the empty set, we have for
example (? x : ∅ → Div) � Skip ∈ SeqProcΣ .

Next, we define for each Csp operator op a sequentialising function fop . Ap-
plying fop to a Csp process P which has op as its out-most operator, the function
will transform this process into a semantically equivalent Csp process fop(P) in
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(Pr)seq = (? x : ∅ → Div) � Pr (Pr ∈ {Skip,Div ,Stop})
a →seq P1 = (? x : {a} → P1) � Stop

? x : A →seq P(x) = (? x : A → P(x)) � Stop

!! s : S •seq P ′(s) =
(Div)seq ; S = ∅
!! s : S • P ′(s) ; otherwise

P1 �seq P2 = !nat n : {0, 1} • (if (n = 0) then P1 else P2)

P1 �seq Pr = !! s : S1 • (R′
1(s) �seq Pr) (Pr ∈ {P2,R2})

R1 �seq P2 = !! s : S2 • (R1 �seq R′
2(s))

R1 �seq R2 = (? x : (A1 ∪A2) →
if (x ∈ A1 ∩A2) then P ′

1(x) �seq P ′
2(x)

else if (x ∈ A1) then P ′
1(x) else P ′

2(x))
� if (Q1 = Skip ∨ Q2 = Skip) then Skip

else if (Q1 = Div ∨ Q2 = Div) then Div else Stop
Pr1 �seq Pr2 = (Pr1 �seq (Stop)seq ) �seq Pr2 (Pri ∈ {Pi ,Ri})

P1 |[X ]|seq Pr = !! s : S1 • (R′
1(s) |[ X ]|seq Pr) (Pr ∈ {P2,R2,Skip,Div})

R1 |[X ]|seq P2 = !! s : S2 • (R1 |[X ]|seq R′
2(s))

R1 |[X ]|seq Skip = ((? x : (A1 −X ) → (P ′
1(x) |[X ]|seq Skip)) � Q1)

R1 |[X ]|seq Div = ((? x : (A1 −X ) → (P ′
1(x) |[X ]|seq Div)) � Div)

R1 |[ X ]|seq R2 = if (Q1 = Stop ∧ Q2 = Stop) then R1 |[X ]|stepseq R2

else (R1 |[X ]|stepseq R2)
�seq (if (Q1 = Stop) then (R1 |[X ]|seq Q2)

else if (Q2 = Stop) then (R2 |[X ]|seq Q1)
else (R1 |[X ]|seq Q2) �seq (R2 |[X ]|seq Q1))

R1 |[X ]|stepseq R2 = ? x : ((X ∩A1 ∩A2) ∪ (A1 − X ) ∪ (A2 −X )) →
(if (x ∈ X ) then (P ′

1(x) |[X ]|seq P ′
2(x))

else if (x ∈ A1 ∩A2)
then ((P ′

1(x) |[X ]|seq R2) �seq (R1 |[ X ]|seq P ′
2(x)))

else if (x ∈ A1)
then (P ′

1(x) |[X ]|seq R2) else (R1 |[ X ]|seq P ′
2(x)))

� Stop
P1 \seq X = !! s : S1 • (R′

1(s) \seq X )
R1 \seq X = if (Q1 = Stop) then

if (A1 ∩X = ∅)
then ((? x : A1 → (P ′

1(x) \seq X )) � Q1)
else ((? x : (A1 − X ) → (P ′

1(x) \seq X )) � Q1)
�seq (! x : (A1 ∩X ) •seq (P ′

1(x) \seq X ))
else (((? x : (A1 − X ) → (P ′

1(x) \seq X )) � Q1)
�seq (! x : (A1 ∩X ) •seq (P ′

1(x) \seq X )))

In this figure, it is assumed that
P(x) ∈ SeqProcΣ for all x ∈ A,
P ′(s) ∈ SeqProcΣ for all s ∈ S ,
Pi = !! s : Si •R′

i(s) ∈ SeqProcΣ for each i ∈ {1, 2}, and
Ri = (? x : Ai → P ′

i (x)) � Qi ∈ SeqProcΣ for each i ∈ {1, 2}.

Fig. 3. Sequentialising functions (part)
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full sequential form, provided its subprocesses are already in full sequential form.
Here, we actually prove a stronger proposition, namely AF , P = fop(P). For
example, we have AF , P |[ X ]| Q = fpar (P |[ X ]| Q), which according to The-
orem 2 implies P |[ X ]| Q =F fpar (P |[ X ]| Q), and fpar (P |[ X ]| Q) ∈ SeqProcΣ
for P ,Q ∈ SeqProcΣ . For convenience, we use infix notation to write the func-
tions fop , for example we write P |[X ]|seq Q instead of fpar (P |[X ]|Q). Note the
inductive structure of the sequentialising functions presented in Fig. 3.

Finally, we define an overall sequentialisation function Seq :ProcΣ⇒SeqProcΣ
inductively on the syntactic structure of processes:

Seq(P) = (P)seq (P ∈ {Skip, Div ,Stop})
Seq(a → P) = a →seq Seq(P)

Seq(?x : A → P(x)) = ?x : A →seq Seq(P(x))
Seq(P ⊕Q) = Seq(P)⊕seq Seq(Q) (⊕ ∈ {�,�, |[X ]|, o

9})
Seq(!! s : S • P(s)) = !! s : S •seq Seq(P(s)) · · ·

For this function Seq, Theorem 3 holds:

Theorem 3. Seq(P) ∈ SeqProcΣ and AF , P = Seq(P) for all P ∈ ProcΣ .

Proof sketch. First we show that each sequentialising function fop indeed sequen-
tialises processes, e.g., if P ,Q ∈ SeqProcΣ then AF , P |[ X ]|Q = P |[X ]|seq Q
and P |[ X ]|seq Q ∈ SeqProcΣ , by induction on the structures of full sequential
forms P and Q . Equality can often be derived by using the distributive-laws and
step-laws taking into account the special role of Skip and Div . From this, the
result on Seq(P) follows easily. �

5 Full Normalisation

Semantically equivalent processes P =F Q in full sequential form can still be
different syntactically: Let A �= B and R(x , y) = (x →seq y →seq (Skip)seq).
Then ! x : A •seq (! y : B •seq R(x , y)) �= ! x : B •seq (! y : A •seq R(y, x )), are both
in full sequential form, although the two processes have the same semantics;
semantically it does not matter in which order the selector sets are defined.
Therefore, the next step is to study normalisation.

First, we define a new full normal form, which differs slightly from the full
normal form for finite processes presented in [8]:

Definition 2. A process P ∈ ProcΣ is said to be in full normal form if and only
if P has the form ((?x : A → P(x )) � Q) � (!set X : X • (?x : X → Div)) and
the following four conditions (N1), . . . , (N4) are satisfied: (N1) for all x , if x ∈ A
then P(x ) is already in full normal form else P(x ) is Div5, (N2)

⋃
X ⊆ A,

(N3) ∀X . ((∃X0 ∈ X .X0 ⊆ X ⊆ A)⇒ X ∈ X ), and (N4) Q ∈ {Skip, Div}.
The set of full normal forms is denoted by NormProcΣ.

5 ? x : A → P(x) =F ? x : A → Q(x) implies P(x) =F Q(x) for all x ∈ A. However,
for x ∈ Σ\A we do not necessarily have P(x) =F Q(x). Since P(x) and Q(x) are
total functions over Σ, for values outside of A we need to fix them to some constant
as, e.g., Div in order to obtain uniqueness.
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Our definition 2 differs from [8] only in condition (N3). [8] requires all elements
of X to be incomparable. In fact, if X is finite, we can replace our set X in the
full normal form by the incomparable set {

⋂
{X0 ∈ X | X0 ⊆ X } | X ∈ X}

without changing the semantics of the process. However, if X is infinite, the
semantics may change:

⋂
{X0 ∈ X | X0 ⊆ X } is not always contained in X .

Therefore, we require (N3) instead of incomparability.
Next we prove that for processes in NormProcΣ syntactic and semantic equal-

ity are the same:

Theorem 4. For all P ,Q ∈ NormProcΣ , P =F Q if and only if P = Q.

Proof. Almost identical to the proof presented in [8]. �

While for every finitely nondeterministic process P with a finite alphabet, there
is a process P ′ in full normal form such that P =F P ′, this does not hold for
infinitely nondeterministic processes with an arbitrary alphabet as follows.

Theorem 5. There exist P ∈ ProcΣ with P �=F P ′ for all P ′ ∈ NormProcΣ.

Proof. Consider the process Loopa := (Fix funa)(A) with funa(f )(A) := a →
f (A), thus, Loopa satisfies the equation Loopa =F a → Loopa . Note that
(Fix funa) is expressed by infinite nondeterminism over Nat . Assume there exists
some P ′ ∈ NormProcΣ with Loopa =F P ′. Define

P ′′ := ((? x : {a} → (if (x = a) then P ′ else Div)) � Div)
� (!set X : {{a}} • (? x : X → Div))

Consequently P ′ �= P ′′. On the other hand, we can prove that P ′′ ∈ NormProcΣ
and P ′ =F P ′′ — contradiction to Theorem 4. �

To deal with this weakness, we define an extended full normal form.

Definition 3. A process P is in extended full normal form iff P is of the form
!nat n •P ′(n), where the processes P ′(n) are in full normal form and P ′(n) =F
P ↓ n for all n ∈ Nat. We denote the set of extended full normal forms by
XNormProcΣ.

The extended full normal form consists of an infinite nondeterministic choice
between a family of fully normalised processes P(n), where the depth of the
processes P(n) is restricted to n by the restriction operator ↓.

First we give an example of extended full normal form of an infinite process.

Example 1. For n ∈ Nat define the process Inc(n) as (Fix funinc)(n) with
funinc(f )(n) := !nat m : GT (n) • m → f (m) and GT (n) = {m | n < m}.
Inc(n) produces a sequence of natural numbers > n where the increment is
nondeterministically chosen. Let Ninc(n) be the process !nat i •Ninc(i ,n) with

Ninc(0, n) := (Div)norm

Ninc(i + 1, n) := ((?m : GT (n) → (if (n < m) then Ninc(i ,m) else Div)) � Div)
� (!set N : {N | N �= ∅, N ⊆ GT (n)} • (?m : N → Div))
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!!s : S •(0)norm P(s) = (Div)norm

!!s : S •(n+1)
norm P(s) = ((?x : A′ →

if (x ∈ A′) then (!!s : {s ∈ S | x ∈ A(s)} •(n)
norm P ′(s, x))

else Div)
� if (∃ s ∈ S .Q(s) = Skip) then Skip else Div)
� !set X : (complete(A′,X ′)) • (?x : X → Div)

where
(Div)norm = ((?x : ∅ → Div) � Div) � (!set X : ∅ • (?x : X → Div)),

complete(A′,X ′) = {X | ∃X0 ∈ X ′. X0 ⊆ X ⊆ A′},
∀ s ∈ S . P(s) = ((?x : A(s) → P ′(s, x)) � Q(s)) �

(!set X : X (s) • (?x : X → Div)) ∈ NormProcΣ ,
A′ = {A(s) | s ∈ S}, and X ′ = {X (s) | s ∈ S}.

Fig. 4. Normalising function for replicated internal choice

Here, (Div)norm is the full normal form of Div as defined in Fig. 4. Ninc(n) =F
Inc(n) and Ninc(n) ∈ XNormProcNat .

Next we prove that for processes in XNormProcΣ syntactic and semantic equality
are the same:

Theorem 6. For all P ,Q ∈ XNormProcΣ , P =F Q if and only if P = Q.

Proof. Let P ,Q ∈ XNormProcΣ and P =F Q . Thus, for some P ′ and Q ′,
P = !nat n • P ′(n) and Q = !nat n • Q ′(n). Further, for all n, P ′(n) =F P ↓
n =F Q ↓ n =F Q ′(n). Thus, P ′(n) = Q ′(n) by Theorem 4. Hence, P = Q . �

Then we define a function that transforms processes of the form !! s : S • P(s)
into full normal form, see Fig. 4. Note that the function !! s : S •(n)

norm P(s) is
defined inductively on n (and not on the process structure). The reason for this
is that structural induction on processes is not possible over a family of processes
P(s). The following lemma shows that our transformation up to depth n indeed
yields a process in full normal form and is semantics preserving:

Lemma 1. If P(s) ∈ NormProcΣ for all s ∈ S, then for any n, !! s : S •(n)
norm

P(s) ∈ NormProcΣ, and AF , (!! s : S • P(s)) ↓ n = !! s : S •(n)
norm P(s) .

Proof sketch. By induction on n. The transformation by AF is established in
three steps: (1) for the first subexpression ((?x : A(s) → P(s , x )) � Q(s)) of
P(s), the nondeterminism over S can be rewritten to (external) prefix choice by
(!!-input-!set), (!!-�-Dist), and (!!-input-Dist). (2) for the second subexpression
(!set X : X (s)•(? x : X → Div)) of P(s), the two nondeterminism by S and X (s)
can be rewritten to one nondeterminism by (!!-!set-div). (3) Finally, (?-!set-⊆)
is applied for replacing X ′ by complete(A′,X ′). �

Finally, for each n ∈ Nat we define a function Norm(n)(P) inductively on the
structure of P , see Fig. 5. The following lemma shows that the function Norm(n)
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Norm(0)(Pr) = (Div)norm (Pr ∈ SeqProcΣ)
Norm(n+1)(P) = !! s : S •(n+1)

norm Norm(n+1)(R′(s))
Norm(n+1)(R) = (? x : A → (if x : A then Norm(n)(P ′(x)) else Div)

� (if (Q = Skip) then Skip else Div))
� (!set X : (if Q = Stop then {A} else ∅) • (? x : X → Div))

where P = !! s : S • R′(s) ∈ SeqProcΣ ,
R = ((?x : A → P ′(x)) � Q) ∈ SeqProcΣ ,

Fig. 5. Normalising function

transforms a process in full sequential forms whose depth is restricted to n into
full normal form.

Lemma 2. Let P ∈ SeqProcΣ. Then for any n, Norm(n)(P) ∈ NormProcΣ and
AF , P ↓ n = Norm(n)(P).

Proof sketch. By induction on the structure of the full sequential form P . If P
has the form !! s : S • R′(s), it can be normalised by Lemma 1. Otherwise, P is
of the form (? x : A→ P ′(x )) � Q . If Q �= Stop then it can be transformed to a
full normal form by (�-unit) and (!!-emptyset), otherwise by (?-div). �

With the function XNorm defined as

XNorm(P) = !nat n • (Norm(n)(Seq(P))),

we finally obtain the expected theorem:

Theorem 7. Let P ∈ ProcΣ. Then, XNorm(P) ∈ XNormProcΣ and AF ,
P = XNorm(P).

Proof sketch. By the law (!nat-↓), Theorem 3, and Lemma 2, AF , P = !nat n •
(P ↓ n) = !nat n • (Seq(P) ↓ n) = !nat n • (Norm(n)(Seq(P))) = XNorm(P),
and for all n, Norm(n)(Seq(P)) =F XNorm(P) ↓ n. �

From this follows as a corollary that the axiom system AF is sound and
complete for stable-failures equivalence.

Corollary 1. Let P ,Q ∈ ProcΣ . Then, AF , P = Q if and only if P =F Q.

Proof. By Theorems 2, 6, and 7 �

At the end of this section, we give an example to show how to normalise divergent
infinite processes by the axiom system AF .

Example 2. We normalise the divergent infinite process (Fix count)(0) by AF ,
where the function count :: (Nat ⇒ ProcNat )⇒ (Nat ⇒ ProcNat ) is defined as:

count (f ) (n) := (n → f (n + 1)) \ {n}

The process (Fix count)(0) increases the natural number n from the initial value
0 – which is hidden to the outside world. For (Fix count)(0), we can for example
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prove the equality: (Fix count)(0) =F (0 → (1 → (Fix count)(2)) \ {1}) \ {0}.
To do so, first expand the fixed point by the law (Tarski-fix),

AF , (Fix count)(0) = !nat n • ((count (n)(λ y.Div))(0))

Next, we show by induction on n that AF , count (n)(λ y.Div)(m) = Div for
all n,m. The base case (n = 0) is trivial because AF , count (0)(λ y.Div)(m) =
(λ y.Div)(m) = Div . The induction case (n + 1) is proven as follows:

AF , count (n+1)(λ y.Div)(m)
= count(count (n)(λ y.Div))(m)
= (m → (count (n)(λ y.Div))(m + 1)) \ {m}
= (m → Div) \ {m} by induction
= (? x : ∅ → (Div \ {m})) � (! x : {m} • (Div \ {m})) by (hide-step)
= Stop � (! x : {m} • (Div \ {m})) by (stop-step)
= ! x : {m} •Div by (unit-laws)
= Div by (!!-const)

Finally, since AF , Div = (Div)norm ∈ NormProcΣ , we have

AF , (Fix count)(0) = !nat n • (Div)norm ∈ XNormProcΣ ,

where (Div)norm given in Fig. 4 and !nat n • (Div)norm are the full normal form
and the extended full normal form of Div , respectively. �

6 Verification by CSP-Prover

The tool Csp-Prover [3,4] provides a deep encoding of Csp in the generic theo-
rem prover Isabelle [7]. Csp-Prover contains fundamental theorems such as fixed
point theorems on complete metric spaces and complete partial order, the def-
initions of Csp syntax and semantics, and many Csp-laws and semi-automatic
proof tactics for verification of refinement relation. Therefore, Csp-Prover can
be used for

1. Verification of infinite state systems. For example, we applied Csp-Prover to
verify a part of the specification of the EP2 system, which is a new industrial
standard of electronic payment systems, see [4].

2. Establishing new theorems on Csp. For example, Csp-Prover assisted us in
proving the theorems given in this paper.

All proofs (including the examples) given in this paper have been verified
by Csp-Prover. However, Csp-Prover also implements the axiom system AF ,
besides the verification of this paper. Therefore, it is possible to prove the stable-
failures equivalence over processes by syntactical rewriting with Csp-Prover.

In Isabelle, theorems, together with definitions and proof-scripts needed for
their proof, can be stored in theory-files. Currently, Csp-Prover consists of three
packages of theory-files: CSP, CSP T, and CSP F. The package CSP is the reusable
part independent of specific Csp models. For example, it contains fixed point the-
orems on cms and cpo, and the definition of Csp syntax. The packages CSP T and
CSP F are instantiated parts for the traces model and the stable failures model.
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The packages have a hierarchical organisation as: CSP F on CSP T on CSP on
Isabelle/HOL-Complex. The total number of lines of theory-files in CSP, CSP T,
and CSP F are about 12,000 lines, 11,000 lines, and 18,000 lines, respectively.

The theorems for sequentialisation and normalisation given in this paper are
stored in a new package FNF F implemented on CSP F. The total line number of
theory-files in FNF F is about 6,000 lines. All the packages can be downloaded
from the web-site [3] of Csp-Prover.

7 Conclusion

We have shown that the Csp-dialect under discussion has the same expressive
power as full Csp. We also presented a sound and complete axiom system AF of
stable-failures equivalence for processes with unbounded nondeterminism over
an arbitrary (possibly infinite) alphabet. The theorems presented in this paper
have been verified by Csp-Prover.

Our results are of practical relevance for theorem proving for Csp in general:
besides having a complete axiom system available, it is also possible to base proof
rules and tactics on the extended full normal form. On the theoretical side, the
here presented axioms, transformations, and normal forms provide new insight
into the semantics of the process algebra Csp.

Acknowledgement. The authors are grateful to Erwin R. Catesbeiana Jr for
pointing out the incompleteness problem in the first place and for good advice
on how to avoid inconsistencies in the axiom system.
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Abstract. In this paper, we investigate transition systems of a class of
Petri nets suitable for the modelling and behavioural analysis of globally
asynchronous locally synchronous systems. The considered model of Ele-
mentary Net Systems with Localities (ENL-systems) is basically that of
Elementary Net Systems (EN-systems) equipped with an explicit notion
of locality. Each locality identifies a distinct set of events which may only
be executed synchronously, i.e., in a maximally concurrent manner. For
this reason, the overall behaviour of an ENL-system cannot be repre-
sented by an interleaved transition system, with arcs being labelled by
single events, but rather by a suitable notion of a step transition system,
with arcs being labelled by sets of events executed concurrently.

We completely characterise transition systems which can be generated
by Elementary Net Systems with Localities under their intended concur-
rency semantics. In developing a suitable characterisation, we follow the
standard approach in which key relationships between a Petri net and
its transition system are established via the regions of the latter defined
as specific sets of states of the transition system. We argue that this de-
finition is insufficient for the class of transition systems of ENL-systems,
and then augment the standard notion of a region with some additional
information, leading to the notion of a region with explicit input and
output events (or io-region).

We define, and show consistency of, two behaviour preserving trans-
lations between ENL-systems and their transition systems. As a result,
we provide a solution to the synthesis problem of Elementary Net Sys-
tems with Localities, which consists in constructing an ENL-system for
a given transition system in such a way that the transition system of the
former is isomorphic to the latter.

Keywords: Theory of concurrency, Petri nets, elementary net systems,
localities, analysis and synthesis, step sequence semantics, structure and
behaviour of nets, theory of regions, transition systems.

1 Introduction

Several real-life computational systems exhibit dynamic behaviour which could
best be described as following the ‘globally asynchronous locally (maximally)
synchronous’ paradigm. Prominent examples of such systems can be found in
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hardware design, where a VLSI chip may contain multiple clocks responsible
for synchronising different subsets of gates [6], and in biologically motivated
computing, where a membrane system models a cell with compartments, inside
which reactions are carried out in co-ordinated pulses [13]. In these cases, the
activities in different localities can proceed independently, subject to communi-
cation and/or synchronisation constraints. To express such systems in a formal
manner, [9] introduced Place/Transition-nets with localities (PTL-nets), which
are basically PT-nets equipped with the notion a locality. Each locality identifies
a distinct set of transitions which may only be executed synchronously, i.e., in
a maximally concurrent manner. The aim of [9] was then to look at the way in
which the standard concurrency techniques of Petri nets could be used to provide
a similar treatment for the new model. In this paper, we adapt the model of [9]
to the case of Elementary Net Systems (EN-systems), which are a fundamental
class of safe Petri nets, and set ourselves the task of finding a characterisation
of all transition systems generated by such nets.

ENL-Systems

To explain the basic concepts relating to ENL-systems, we consider the net shown
in figure 1(a), which models a concurrent system consisting of one producer
(the left triangle-like subnet), and one consumer process (the right square-like
subnet). The two subsystems are connected by a buffer-like condition b0 which
holds items produced by the producer using the event p2, and consumed by
the consumer using the event c1. The net would be a standard EN-system if we
ignored the integer labels, 1 and 2, shown in the middle of the events. These labels
represent localities to which the various events belong. We can then observe that
events p1 and p2 belong to the same locality, while the remaining events to a
different one.

In general, the way events are assigned to different localities will have a strong
impact on the step sequences generated by an ENL-system, as it is required that
within each locality events are executed in a maximally concurrent way. For
the net in figure 1(a), this does not have any apparent effect since the subnets
corresponding to the two localities are strictly sequential. This changes radically
for the slightly modified example shown in figure 1(b), which models a system
consisting of one producer and two co-located consumers (indicated by the two
tokens in the right subnet).

For example, though under the standard EN-systems’ semantics this net gen-
erates the step sequence {p2}{c1}, the execution model of ENL-systems will
reject it for the following reason: After executing the initial step {p2}, the net
can execute the step {c1, c4} consisting of two co-located events, and so exe-
cuting c1 alone violates the maximal concurrency execution rule within locality
2. A possible way of executing a valid step could then be to add the ‘missing’
event c4, resulting in the legal step sequence {p2}{c1, c4}. Another legal step
sequence, according to the intended semantics, could be {p2}{c1, c4, p1}. Note
that in the latter case the second step {c1, c4, p1} is maximally concurrent in a
global sense, as it cannot be extended any further.
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Fig. 1. ENL-system for the one-producer/one-consumer scenario (a); and for the one-
producer/two-consumers scenario (b)

If all the events of an ENL-system belong to the same locality (and so no
extra labelling is really needed), then the notion of an ENL-system reduces to
that of an Elementary Net System with Maximal Concurrency. In a nutshell,
such a system is an EN-system executed under the maximal concurrency rule,
i.e., in such a way that an executed step cannot be extended any further without
violating the basic constraint embodied in the structure of the net.

ENL-Systems and the Synthesis Problem

Let us consider the EN-system together with its interleaving transition system
shown in figure 2(a,b), and the ENL-system together with its step transition
system shown in figure 2(c,d). Suppose that we are to solve the synthesis prob-
lem for the ENL-systems in the case of the example shown in figure 2. It can be
formulated as a task of finding a method which, given a transition system, con-
structs a net in such a way that its behaviour (expressed as a transition system)
is isomorphic to the given transition system.

This problem was solved for the class of EN-systems in [7], using the notion of
a region which links nodes of transition systems (global states) with conditions
in the corresponding nets (local states). The solution was later extended to the
pure bounded PT-nets [4], general Petri nets [11], safe nets [16] and EN-systems
with inhibitor arcs [5,10,14], by adopting the definition of a region or using some
extended notion of a generalised region [3].

The way the standard region construction works can be explained in the
following way. Let us try to retrieve the original EN-system from the interleaving
transition system in figure 2(b). A region of a transition system is meant to
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(a)

b1
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b4

e f

(b)

cin

c1 c2

c3

e f

f e

(c)

b1

b2

b3

b4

1e 1 f

(d)

cin

c3

{e, f}

Fig. 2. An EN-system (a); its interleaving transition system (b); an ENL-system (c);
and step transition system (d). Note that cin = {b1, b3}, c1 = {b2, b3}, c2 = {b1, b4}
and c3 = {b2, b4}.

encompass precisely those states where a given condition of the EN-system holds.
So, for example, the region corresponding to the condition b1 is the set comprising
of two states, r1 = {cin , c2}. Its defining characteristics is that is has the same
‘crossing relationship’ with both events e and f. Indeed, both e-arcs leave r1,
and both f-arcs do not cross r1’s boundary. There are three further regions
with similar ‘stable’ crossing characteristics: r2 = {c1, c3} (e-arcs enter it and
f-arcs do not cross the boundary), r3 = {cin , c1} (f-arcs leave it and e-arcs do
not cross the boundary) and r4 = {c2, c3} (f-arcs enter it and e-arcs do not
cross the boundary).1 The synthesis procedure then derives an EN-system in
the following way: for each region ri a fresh condition b′i is constructed and its
input and output events are determined by the crossing relationships mentioned
above, e.g., for r1 e is an output event, and f is not joined to it by any arc. In this
particular case, the resulting EN-system is actually isomorphic to the original
one, though in the general case this cannot be guaranteed. But what can be
guaranteed is that the transition systems of the two EN-systems are isomorphic.

One might attempt to apply the same procedure also in the case of the step
transition system in figure 2(d), under the assumption that e and f are co-located
events. However, this is not going to get us back to a desired ENL-system since
there are at most 2 non-trivial regions there, r1 = {cin} and r2 = {c3}, and so
the construction can at best generate 2 conditions. However, we need at least 4
conditions in the resulting ENL-system, to be able to support a pair of concurrent

1 Note that there are two more ‘trivial’ regions, r = {cin , c1, c2, c3} and r′ = ∅, which
are ignored by the synthesis procedure.
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events which were executed at the initial state. In other words, we have too few
standard regions to construct enough conditions if the target is an appropriate
ENL-system.

About This Paper

An intuitive reason why the standard construction failed to work for the step
transition system in figure 2(d) was that the set-of-states notion of region is not
rich enough for the purposes of synthesising ENL-systems.

The modification to the original notion we will propose is based on the explicit
input and output events of a set of states, which is consistent with the underlying
idea of static crossing relationship between events and regions. More precisely,
we will work with io-regions, each such region being a triple: r = (in, r, out),
where r is a set of states, in is a set of events which are responsible for entering
r, and out is a set of events which are responsible for leaving r. Intuitively, we
will require that in each step leaving (or entering) r there is a unique event
belonging to out (resp. to in) responsible for it, and, conversely, executing an
event from out or from in always results in crossing of the boundary of r in an
appropriate way. In the case of the example transition system, we will identify
four io-regions: r1 = (∅, {cin}, {e}) r2 = ({e}, {c3},∅}), r3 = (∅, {cin}, {f}) and
r4 = ({f}, {c3},∅). Now we have enough regions to re-constitute the conditions
of the original ENL-system, namely each ri corresponds to bi. The rest of the
construction is basically the same as in the standard approach.

The paper is organised as follows. In the next section, we introduce step tran-
sition systems and their io-regions. After that we define ENL-transition systems.
In section 3, we introduce formally ENL-systems and show that their transition
systems are ENL-transition systems. We also demonstrate how to construct a
corresponding ENL-system for a given ENL-transition system. In the conclud-
ing section, we compare our approach with other works, and outline how the
modified notion of region could be used to solve the synthesis problem for other
semantics of EN-systems.

2 Step Transition Systems and io-regions

In this section, we set the scene by introducing general step transition systems,
which after further restrictions will be used to provide a behavioural model for
ENL-systems, and the key notion of an io-region of a step transition system.

Let E be a non-empty set of events fixed throughout this paper. We also
assume that there is a locality mapping, L : E → N, associating to each event e ∈
E its locality L(e); implicitly, each non-empty inverse image L−1(n) determines
a set of co-located events.

A step transition system [1,8] is a triple ts
df= (S, T, sin) where:

TS1 S is a non-empty finite set of states.
TS2 T ⊆ S × (2E \ {∅})× S is a finite set of transitions.
TS3 sin ∈ S is the initial state.
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Throughout the rest of this section, the step transition system ts will be fixed.
We will denote by Ets the set of all the events appearing in steps labelling the
transitions of ts, i.e.,

Ets
df=

⋃
(s,u,s′)∈T

u .

We will use s u−→ s′ whenever (s, u, s′) ∈ T , and respectively call s the source
and s′ the target of this transition. We will also say that the step u is enabled
at s, and denote this by s u−→. Moreover, we will denote s −→ s′ if s u−→ s′, for
some u.

We now introduce a central notion whose aim is to link the nodes of a tran-
sition system (global states) with the conditions in the corresponding net (local
states).

Definition 1. A region with explicit input and output events (or io-region) is
a triple r

df= (in, r, out) ∈ 2Ets × 2S × 2Ets such that the following four conditions
are satisfied, for every transition s u−→ s′ of the step transition system ts:

1. If s ∈ r and s′ /∈ r then |u ∩ in| = 0 and |u ∩ out| = 1.
2. If s /∈ r and s′ ∈ r then |u ∩ in| = 1 and |u ∩ out| = 0.
3. If u ∩ out �= ∅ then s ∈ r and s′ /∈ r.
4. If u ∩ in �= ∅ then s /∈ r and s′ ∈ r.

We denote ||r|| df= r, •r
df= in and r•

df= out.

An io-region r is trivial if ||r|| = ∅ or ||r|| = S; otherwise it is non-trivial.

Proposition 1. There are exactly two trivial io-regions: (∅,∅,∅) and (∅, S,∅).

Proof. From definition 1(3,4) and TS2, if r is trivial then it must be the case
that •r = r• = ∅. ��

Proposition 2. r = (in, r, out) is an io-region if and only if r
df= (out, S \ r, in)

is an io-region.

Proof. Follows directly from definition 1. ��

In general, an io-region r cannot be identified only by its set of states ||r||; in other
words, •r and r• may not be recoverable from ||r||. However, if the transition

system is thin, i.e., for every event e ∈ Ets there is a transition s
{e}−→ s′ of ts,

then different io-regions are based on different sets of states.2

Proposition 3. If ts is thin and r �= r′ are io-regions, then ||r|| �= ||r′||.
2 As we have already seen being thin is not, in general, a property of step transi-

tion systems generated by ENL-systems. However, transition systems generated by,
e.g., EN-systems or EN-systems with inhibitor arcs, are thin and then the standard
definition of a region as a set of states is sufficient.
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Proof. Suppose that ||r|| = ||r′||. Since r �= r′, we have that •r �= •r′ or r• �= r′•.
Assume, without loss of generality, that •r �= •r′. Then, again without loss of
generality, we have that •r �= ∅.

Let us take any e ∈ •r. Since ts is thin, there is a transition s
{e}−→ s′ of ts.

By definition 1(4), we have s /∈ ||r|| and s′ ∈ ||r||. Hence, by ||r|| = ||r′||, we also

have that s /∈ ||r′|| and s′ ∈ ||r′||. Thus, by s
{e}−→ s′ and definition 1(2), e ∈ •r′.

As a result, •r ⊆ •r′. By proceeding in a similar way, we may then show that
•r = •r′ and r• = r′•. This, together with ||r|| = ||r′||, produces a contradiction
with r �= r′. ��

The set of all non-trivial io-regions will be denoted by Rts and, for every state
s ∈ S, we will denote by Rs the set of non-trivial io-regions containing s,

Rs
df= {r ∈ Rts | s ∈ ||r||} .

The sets of pre-io-regions, ◦e, and post-io-regions, e◦, of an event e ∈ Ets are
then defined as:

◦e
df= {r ∈ Rts | e ∈ r•} and e◦

df= {r ∈ Rts | e ∈ •r} .

Moreover, the sets of pre-io-regions and post-io-regions of a set of events u ⊆ Ets

are respectively given by:

◦u
df=
⋃
e∈u

◦e and u◦
df=
⋃
e∈u

e◦ .

Proposition 4. If s u−→ s′ is a transition of ts, then

1. r ∈ ◦u implies s ∈ ||r|| and s′ /∈ ||r||.
2. r ∈ u◦ implies s /∈ ||r|| and s′ ∈ ||r||.

Proof. Follows directly from the definitions of ◦u and u◦, as well as defini-
tion 1(3,4). ��

The sets of pre- and post-io-regions of a step involved in a transition of ts are,
in fact, disjoint unions of sets of respectively pre- and post-io-regions of events
it comprises.

Proposition 5. If u is a step appearing in one of the transitions of ts, then

◦u =
⊎
e∈u

◦e and u◦ =
⊎
e∈u

e◦ .

Proof. Let s u−→ s′ and e, f ∈ u be such that e �= f . Suppose that r ∈ ◦e ∩ ◦f
which means that e, f ∈ r•. This means, by definition 1(3), that s ∈ ||r|| and
s′ /∈ ||r||. Thus, by definition 1(1), |u∩ r•| = 1, a contradiction with e, f ∈ u∩ r•.
Hence the first part of the result holds. The second one can be shown in a similar
way. ��



180 M. Koutny and M. Pietkiewicz-Koutny

Proposition 6. If u is a step appearing in one of the transitions of ts, then
◦u ∩ u◦ = ∅.

Proof. Suppose that s u−→ s′ and r ∈ ◦u ∩ u◦. Then, by proposition 4, s /∈ ||r||
and s ∈ ||r||. We thus obtained a contradiction. ��

Proposition 7. If s u−→ s′ then Rs \Rs′ = ◦u and Rs′ \Rs = u◦.

Proof. We show that Rs \ Rs′ = ◦u, as the second part can be shown in a
similar way. By proposition 4, ◦u ⊆ Rs and ◦u∩Rs′ = ∅. Hence ◦u ⊆ Rs \Rs′ .
Suppose that r ∈ Rs \Rs′ , which implies that s ∈ ||r|| and s′ /∈ ||r||. Hence, by
definition 1(1) and s u−→ s′, u ∩ r• �= ∅. Hence r ∈ ◦u and so Rs \Rs′ ⊆ ◦u.
Consequently, Rs \Rs′ = ◦u. ��
To characterise fully transition systems generated by ENL-systems, we will need
the notion of a potential step. The set of all potential steps Uts of ts is defined
as follows:

Uts
df= {u ⊆ Ets | u �= ∅ ∧ ∀e, f ∈ u : (e �= f ⇒ ( ◦e ∪ e◦) ∩ ( ◦f ∪ f◦) = ∅)} .

Proposition 8. If s u−→ s′ then u ∈ Uts.

Proof. Follows from TS2 and propositions 5 and 6. ��

2.1 ENL-Transition Systems

A step transition system ts = (S, T, sin) is an ENL-transition system if it satisfies
the following axioms:

A1 For every s ∈ S \ {sin}, there are (s0, u0, s1), . . . , (sn−1, un−1, sn) ∈ T
such that s0 = sin and sn = s.

A2 For every event e ∈ Ets, both ◦e and e◦ are non-empty.
A3 For all states s, s′ ∈ S, if Rs = Rs′ then s = s′.
A4 Let s ∈ S and u ∈ Uts be such that ◦u ⊆ Rs and u◦∩Rs = ∅, and there

is no u${e} ∈ Uts satisfying L(e) ∈ L(u) and ◦e ⊆ Rs and e◦∩Rs = ∅.
Then s u−→.

A5 If s u−→ then there is no u $ {e} ∈ Uts satisfying L(e) ∈ L(u) and
◦e ⊆ Rs and e◦ ∩Rs = ∅.

The (A1) axiom implies that all the states in ts are reachable from the initial
state. (A2) will ensure that every event in a synthesised ENL-system will have
at least one input condition and at least one output condition. (A3) was used
for other transition systems as well, and is usually called the state separation
property [3,12], and it guarantees that ts is deterministic. (A4) is a variation of
the forward closure property [12] or the event/state separation property [3]. (A5)
ensures that every step in a transition system is indeed a maximal step w.r.t.
localities of the events it comprises.

Proposition 9. If s u−→ s′ and s u−→ s′′ then s′ = s′′.

Proof. Follows from proposition 7 and (A3). ��
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3 ENL-Systems

A net is a tuple net
df= (B,E, F ) such that B and E ⊆ E are finite disjoint sets,

and F ⊆ (B × E) ∪ (E × B). The meaning and graphical representation of B
(conditions), E (events) and F (flow relation) is the same as in the standard
net theory. Moreover, in diagrams, boxes representing events with localities are
shaded with the actual locality being shown in the middle (see figure 1). We
denote, for every x ∈ B ∪ E,

•x
df= {y | (y, x) ∈ F} and x•

df= {y | (x, y) ∈ F} ,

and we call them the pre-elements and post-elements, respectively. The dot-
notation extends in the usual way to sets:

•X
df=
⋃
x∈X

•x and X• df=
⋃
x∈X

x• .

It is assumed that for every e ∈ E, the sets •e and e• are non-empty and disjoint.
An elementary net system with localities (ENL-system) is a tuple

enl
df= (B,E, F, cin )

such that netenl
df= (B,E, F ) is the (underlying) net and cin ⊆ B is the initial

case (in general, any subset of B is a case). We will assume that enl is fixed until
the end of this section.

The concurrency semantics of ENL-systems will be based on steps of simulta-
neously executed events. We first define the set of valid steps of the ENL-system:

Uenl
df= {u ⊆ E | u �= ∅ ∧ ∀e, f ∈ u : (e �= f ⇒ (•e ∪ e•) ∩ (•f ∪ f•) = ∅)} .

A step u ∈ Uenl is enabled at a case c ⊆ B if •u ⊆ c and u• ∩ c = ∅, and there
is no step u $ {e} ∈ Uenl satisfying L(e) ∈ L(u) and •e ⊆ c and e• ∩ c = ∅.

The transition relation of netenl, denoted by →netenl
, is then given as the set

of all triples
(c, u, c′) ∈ 2B × Uenl × 2B

such that u is enabled at c and c′ = (c \ •u) ∪ u•.
The state space of enl, denoted by Cenl, is the least subset of 2B containing cin

such that if c ∈ Cenl and (c, u, c′) ∈ →netenl
then c′ ∈ Cenl. The transition relation

of enl, denoted by→enl, is then defined as→netenl
restricted to Cenl×Uenl×Cenl.

We will use c u−→enl c
′ to denote that (c, u, c′) ∈ →enl. Also, c u−→enl if (c, u, c′) ∈

→enl, for some c′.

Proposition 10. If c u−→enl c
′ then c \ c′ = •u and c′ \ c = u•.

Proof. From c
u−→enl c

′ we have that u is enabled at c (which implies •u ⊆ c
and u• ∩ c = ∅) and c′ = (c \ •u) ∪ u•. One can easily check that these imply
c \ c′ = •u and c′ \ c = u•. ��
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3.1 Transition Systems Generated by ENL-Systems

The construction of a step transition system for a given ENL-system is straight-
forward.

Let enl = (B,E, F, cin ) be an ENL-system. Then

tsenl
df= (Cenl,→enl, cin)

is the transition system generated by enl.

Theorem 1. tsenl is an ENL-transition system.

Proof. Clearly, tsenl is a step transition system. We need to prove that it satisfies
the five axioms defining ENL-transition systems. Before doing this, we will show
that, for every b ∈ B,

rb
df= (•b, {c ∈ Cenl | b ∈ c}, b•)

is a (possibly trivial) io-region of tsenl. Moreover, if ∅ �= ||rb|| �= Cenl then rb is
non-trivial.

To show that definition 1 holds for rb, we assume that c u−→enl c
′ in tsenl, and

proceed as follows:

Proof of definition 1(1) for rb. We need to show that c ∈ ||rb|| and c′ /∈ ||rb||
implies |u ∩ •b| = 0 and |u ∩ b•| = 1.

From c ∈ ||rb|| (c′ /∈ ||rb||) it follows that b ∈ c (resp. b /∈ c′). Hence b ∈ c \ c′.
From proposition 10 we have c \ c′ = •u and c′ \ c = u•. Hence b ∈ •u and, as
a consequence, there exists e ∈ u such that b ∈ •e, and so e ∈ b•. We therefore
have e ∈ u ∩ b•. Hence u ∩ b• �= ∅. Suppose that there is f �= e such that
f ∈ u ∩ b•. Then we have f ∈ u and b ∈ •f which implies b ∈ •f ∩ •e. We
obtained a contradiction with e, f ∈ u ∈ Uenl. Hence |u ∩ b•| = 1.

From b /∈ c′ and c′ \ c = u•, we have b /∈ u•. Let e ∈ u (u �= ∅ by definition).
Then b /∈ e•, and therefore e /∈ •b. Hence |u ∩ •b| = 0.

Proof of definition 1(2) for rb. Can be proved similarly as definition 1(1).

Proof of definition 1(3) for rb. We need to show that u∩ b• �= ∅ implies c ∈ ||rb||
and c′ /∈ ||rb||.

From proposition 10, we have c \ c′ = •u and c′ \ c = u•. From u ∩ b• �= ∅,
we have that there is e ∈ u such that e ∈ b•, and so b ∈ •e. Consequently,
b ∈ •u = c \ c′, and so b ∈ c and b /∈ c′. We therefore obtained that c ∈ ||rb|| and
c′ /∈ ||rb||.

Proof of definition 1(4) for rb. Can be proved similarly as definition 1(3).
Clearly, if ∅ �= ||rb|| �= Cenl then rb is a non-trivial io-region.
We may now proceed with the proof proper.

Proof of (A1). Follows directly from the definition of Cenl.
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Proof of (A2). We observe that if e ∈ Etsenl
then {rb | b ∈ •e} ⊆ ◦e and

{rb | b ∈ e•} ⊆ e◦ (follows from the definitions of ◦e, e◦ and rb). This and
•e �= ∅ �= e• yields ◦e �= ∅ �= e◦.

Proof of (A3). Suppose that c �= c′ are two cases in Cenl. Without loss of
generality, we may assume that there is b ∈ c \ c′. Hence c ∈ ||rb|| and c′ /∈ ||rb||.
Thus, by the fact that rb is not trivial (∅ �= ||rb|| �= Cenl) and rb ∈ Rc \Rc′ , (A3)
holds.

Proof of (A4). Suppose that c ∈ Cenl and u ∈ Utsenl
are such that ◦u ⊆ Rc

and u◦ ∩Rc = ∅ and there is no u $ {e} ∈ Utsenl
satisfying: L(e) ∈ L(u) and

◦e ⊆ Rc and e◦ ∩Rc = ∅. We need to show that c u−→enl.
First we show •u ⊆ c. Let e ∈ u. Consider b ∈ •e. We have already shown

that this implies rb ∈ ◦e. From ◦u ⊆ Rc, we have that rb ∈ Rc, and so c ∈ ||rb||.
Consequently, b ∈ c. Hence, for all e ∈ u we have •e ⊆ c, and so •u ⊆ c.

Now we show that •u ∩ c = ∅. Let e ∈ u. Consider b ∈ e•. We have already
shown that this implies rb ∈ e◦. From u◦ ∩Rc = ∅, we have that rb /∈ Rc, and
so c /∈ ||rb||. Consequently, b /∈ c. Hence, for all e ∈ u we have e• ∩ c = ∅, and so
u•∩ c = ∅. Now we need to prove that there is no step u${e} ∈ Uenl satisfying:
L(e) ∈ L(u) and •e ⊆ c and e• ∩ c = ∅.

Suppose that this is not the case. Let u $ {e1} ∈ Uenl be a step satisfying
these conditions. Now we have two cases.

Case 1: There is no u $ {e1} $ {f} ∈ Uenl such that L(f) ∈ L(u $ {e1})
and •f ⊆ c and f• ∩ c = ∅. This implies c

u�{e1}−→ enl. By proposition 8, we
have that u $ {e1} ∈ Utsenl

. Moreover, L(e1) ∈ L(u) and, by proposition 7,
we have ◦(u $ {e1}) ⊆ Rc and (u $ {e1})◦ ∩Rc = ∅. We therefore obtained a
contradiction with our assumptions.

Case 2: We can find u $ {e1} $ {e2} ∈ Uenl such that L(e2) ∈ L(u $ {e1})
and •e2 ⊆ c and e•2 ∩ c = ∅. Then we consider Cases 1 and 2 again, taking
u$ {e1} $ {e2} instead of u$ {e1}. Since the number of events in E is finite, we
will eventually end up in Case 1. This means that, eventually, we will obtain a
contradiction.

Proof of (A5). We need to show that, if c u−→enl then there is no u${e} ∈ Utsenl

satisfying L(e) ∈ L(u) and ◦e ⊆ Rc and e◦ ∩Rc = ∅.
Suppose that there is u $ {e} ∈ Utsenl

satisfying L(e) ∈ L(u) and ◦e ⊆ Rc

and e◦ ∩Rc = ∅ (†).
We have already shown that for e ∈ Etsenl

, b ∈ •e implies rb ∈ ◦e, and b ∈ e•
implies rb ∈ e◦. From this and u $ {e} ∈ Utsenl

we have u $ {e} ∈ Uenl.
We will show that •e ⊆ c. We have b ∈ •e implies rb ∈ ◦e. But ◦e ⊆ Rc, so

rb ∈ Rc. This means c ∈ ||rb||, and consequently, b ∈ c. Hence •e ⊆ c
We will show that e•∩c = ∅. We have b ∈ e• implies rb ∈ e◦. But e◦∩Rc = ∅,

so rb /∈ Rc. This means c /∈ ||rb||, and consequently, b /∈ c. Hence e• ∩ c = ∅.
As a result, assuming (†) leads to a contradiction with c u−→enl. ��
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3.2 ENL-Systems Generated by ENL-Transition Systems

The reverse translation, from ENL-transition systems to ENL-systems, is based
on the pre- and post-io-regions of events appearing in a transition system.

Let ts = (S, T, sin) be an ENL-transition system. The net system associated
with ts is defined as

enlts
df= (Rts, Ets, Fts,Rsin )

where Fts is defined thus:

Fts
df= {(r, e) ∈ Rts × Ets | r ∈ ◦e} ∪ {(e, r) ∈ Ets ×Rts | r ∈ e◦} . (1)

Proposition 11. For every e ∈ Ets, ◦e = •e and e◦ = e•.

Proof. Follows directly from the definition of enlts. ��

Note that the above construction produces a net which is saturated with
conditions.

Theorem 2. enlts is an ENL-system.

Proof. The only thing we need to observe is that, for every event e of Ets, it is
the case that: •e �= ∅ �= e•, which follows from (A2) and proposition 11; and
•e ∩ e• = ∅, which follows from propositions 6 and 11. ��

We will now show that the ENL-system associated with an ENL-transition sys-
tem ts generates a transition system which is isomorphic to ts.

Proposition 12. Let ts = (S, T, sin) be an ENL-transition system and

enl = enlts = (Rts, Ets, Fts,Rsin ) = (B,E, F, cin )

be the ENL-system associated with it.

1. Cenl = {Rs | s ∈ S}.
2. →enl= {(Rs, u,Rs′) | (s, u, s′) ∈ T }.

Proof. Note that from the definition of Cenl, every c ∈ Cenl is a case reachable
from cin in enl; and that from axiom (A1), every s ∈ S is a state reachable from
sin in ts.

We first show that if c u−→enl c
′ and c = Rs, for some s ∈ S, then there is

s′ ∈ S such that s u−→ s′ and c′ = Rs′ . By c u−→enl c
′, u ∈ Uenl is a step such

that •u ⊆ c and u• ∩ c = ∅, and there is no step u $ {e} ∈ Uenl satisfying
L(e) ∈ L(u) and •e ⊆ c and e• ∩ c = ∅. Moreover, c′ = (c \ •u) ∪ u•.
Hence, by proposition 11 and (A4), u ∈ Uts and s u−→ s′, for some s′ ∈ S. Then,
by proposition 7, Rs′ = (Rs\ ◦u)∪u◦. At the same time, we have c′ = (c\•u)∪u•.
Hence, by proposition 11 and c = Rs, we have that c′ = Rs′ .
As a result, we have shown (note that cin = Rsin ∈ {Rs | s ∈ S}) that

Cenl ⊆ {Rs | s ∈ S}
→enl ⊆ {(Rs, u,Rs′) | (s, u, s′) ∈ T } .
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We now prove the reverse inclusions. By definition, Rsin ∈ Cenl. It is enough
to show that if s u−→ s′ and Rs ∈ Cenl, then Rs′ ∈ Cenl and Rs

u−→enl Rs′ . By
(A5) and propositions 7, 8 and 11, u is a valid step in enl which is enabled at the
case Rs. So, there is a case c′ such that Rs

u−→enl c
′ and c′ = (Rs\•u)∪u•. From

propositions 7 and 11 we have that c′ = Rs′ . Hence we obtain that Rs
u−→enl Rs′

and so also Rs′ ∈ Cenl. ��
Theorem 3. Let ts = (S, T, sin) be an ENL-transition system and enl = enlts
be the ENL-system associated with it. Then tsenl is isomorphic to ts.

Proof. Let ψ : S → Cenl be a mapping given by ψ(s) = Rs, for all s ∈ S
(note that, by proposition 12(1), ψ is well-defined). We will show that ψ is an
isomorphism for ts and tsenl.

Note that ψ(sin) = Rsin . By proposition 12(1), ψ is onto. Moreover, by (A3), it
is injective. Hence ψ is a bijection. We then observe that, by proposition 12(2),
we have (s, u, s′) ∈ T if and only if (ψ(s), u, ψ(s′)) ∈−→enl. Hence ψ is an
isomorphism for ts and tsenl. ��

4 Concluding Remarks

In this paper, we have completely characterised transition systems which can
be generated by the elementary net systems with localities. In doing so, we
followed the standard approach in which key relationships between a Petri net
and its transition system are established via the notion of a region. The standard
definition of regions is insufficient for the class of transition systems of ENL-
systems, and we augmented it with some additional information, leading to the
notion of an io-region.

In this paper, we have completely characterised transition systems which can
be generated by the elementary net systems with localities. In doing so, we
followed the standard approach in which key relationships between a Petri net
and its transition system are established via the notion of a region. The standard
definition of regions is insufficient for the class of transition systems of ENL-
systems, and we augmented it with some additional information, leading to the
notion of an io-region.

We defined, and showed consistency of, two behaviour preserving translations
between ENL-systems and their transition systems. As a result, we provided a
solution to the synthesis problem of ENL-systems, which consists in constructing
an ENL-system for a given transition system in such a way that the transition
system of the former is isomorphic to the latter.

The previous work which appears to be closest to what has been proposed in
this paper is due to Badouel and Darondeau [3]. It discusses the notion of a step
transition system (generalising that introduced by Mukund [11]), which provides
much more general a framework than the basic Elementary Net Systems; in
particular, by dropping the assumption that a transition system should exhibit
the so-called intermediate state property:

s
α+β−→ s′ ⇒ ∃s′′ : s α−→ s′′

β−→ s′ .
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This clearly is a characteristic shared by the class of the ENL-transition systems.
But the step transition systems of [3] still exhibit what one might call a weak
intermediate state property (or subset property):

s
α+β−→ s′ ⇒ ∃s′′ : s α−→ s′′ .

However, this is a key property which is not satisfied by the ENL-transition
systems. We feel that it is an important question to find out whether or to what
extent the theory of Badouel and Darondeau [3] could be adopted to work for
the ENL-transition systems and their extensions.

Future Work. We expect that the notion of an io-region may be used to
characterise transition systems of other extensions of EN-systems, as well as
non-safe Petri nets (after suitable adaptations, of course). We now briefly outline
some initial thoughts, which all boil down to suitable modifications of the last
two axioms, (A4) and (A5).

Let us consider EN-systems with maximal concurrency semantics. In this case
we do not consider localities, but only assume that all enabled steps are chosen
according to the maximal concurrency paradigm.

A4a Let s ∈ S and u ∈ Uts be such that ◦u ⊆ Rs and u◦ ∩ Rs = ∅, and
there is no u $ {e} ∈ Uts satisfying ◦e ⊆ Rs and e◦ ∩ Rs = ∅. Then
s

u−→.
A5a If s u−→ then there is no u${e} ∈ Uts satisfying ◦e ⊆ Rs and e◦∩Rs = ∅.

As a second example, we consider EN-systems with what might be thought of
as ‘constrained parallelism’. Again, in this case we do not consider localities, but
rather assume that no enabled step can comprise less than m events and more
than n ∈ N ∪ {∞} events, where 0 < m < n ≤ ∞. (When m = 0, this roughly
corresponds to assuming that the system is run on n processors.)

A4b Let s ∈ S and u ∈ Uts be such that ◦u ⊆ Rs and u◦ ∩ Rs = ∅ and
m ≤ |u| ≤ n. Then s u−→.

A5b If s u−→ then m ≤ |u| ≤ n.
As a third example, we consider EN-systems where there are two kinds of

events, Es and Eh, modelling respectively software and hardware actions. It is
also assumed that the occurrence of each software event e ∈ Es is supported by
one of the hardware events of a pre-defined set suppe ⊆ Eh.

A4c Let s ∈ S and u ∈ Uts be such that ◦u ⊆ Rs and u◦ ∩Rs = ∅ and, for
every e ∈ u ∩ Es, it is the case that u ∩ suppe �= ∅. Then s u−→.

A5c If s u−→ then, for every e ∈ u ∩ Es, it is the case that u ∩ suppe �= ∅.

Finally, without going into technical details, we feel that if the enabling rela-
tion for a class of EN-systems’ extensions can be expressed by a formula which
refers to pre-sets and post-set of steps, possibly using quantifiers without refer-
ring to specific conditions, then one can derive a suitable modification of the
axioms (A4) and (A5) by suitably replacing references to pre- and post-sets by
the corresponding references to pre- and post-io-regions.
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Abstract. The main contribution of this work is a fast algorithm for
checking whether a labelled transition system (LTS) is operationally de-
terministic. Operational determinism is a condition on the LTS designed
to capture the notion of “deterministic behaviour” without ruling out
invisible actions and divergence, and without strictly devoting oneself
to any single process-algebraic semantics. Indeed, we show that in the
case of operationally deterministic LTSs, all divergence-sensitive equiv-
alences between divergence-sensitive branching bisimilarity and trace +
divergence trace equivalence collapse to the same equivalence. The run-
ning time of the algorithm is linear except a term that, roughly speak-
ing, grows as slowly as Ackermann’s function grows quickly. If the orig-
inal LTS is operationally deterministic, the algorithm produces as a
by-product a structurally deterministic LTS that is divergence-sensitive
branching bisimilar to the original one. This LTS can be minimised like a
deterministic finite automaton. The overall approach is so cheap that it
makes almost always sense to first try it and revert to a semantics-specific
reduction or minimisation algorithm only if the LTS proves operationally
nondeterministic.

1 Introduction

In the theory of finite automata, “deterministic” means that there are no invisible
transitions, and for each state and symbol, there is at most one transition from
that state labelled with that symbol. The definition implies that if a sequence of
visible symbols leads to any state at all, it leads to a unique state. We will call
this and similar notions structural determinism.

Structural determinism is usually too restrictive in the context of concurrent
systems. Therefore, notions of determinism have been suggested that are based
on observable aspects of the behaviour of the system. In CSP, “deterministic”
means that there are no divergences, and it is not possible to both execute and
refuse the same action after the same trace [8, Section 3.3]. A similar definition
that ignores divergences instead of ruling them out was presented in [12]. In our
terminology, these are examples of operational determinism.

The implications of operational determinism resemble those of determinacy,
which requires that after different executions of the same trace, the system be-
haves in an equivalent manner. When divergences are ignored, determinacy is
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known to be largely independent of the equivalence and it collapses a significant
part of the linear time–branching time spectrum [5].

An algorithm for checking whether a system is operationally deterministic is
useful in security analysis, for instance [7,9,13]. Furthermore, as we will show
in this paper, if a labelled transition system (LTS) happens to be operationally
deterministic, then it can be minimised very cheaply.

The contribution of this paper is twofold. First, to promote generality, we
introduce a notion of operational determinism that neither forbids nor ignores
divergences, and prove that it collapses the divergence-sensitive part of the linear
time–branching time spectrum. Second, we present an efficient algorithm for
deciding whether an LTS is operationally deterministic. In the positive case,
the algorithm can be used to return a structurally deterministic LTS that is
divergence-sensitively branching bisimilar with the original one. The algorithm
is applicable, with minimal adjustments, to divergence-banning and divergence-
ignoring determinism.

Section 2 presents the background definitions. Our notions of structural and
operational determinism are introduced and investigated in Section 3. In Sec-
tion 4 we present our algorithm for deciding the operational determinism of
LTSs. The correctness and efficiency of the algorithm are proven. Section 5 adds
to the algorithm a back-end that produces a minimal equivalent LTS, if the input
LTS is operationally deterministic.

2 Background

Definition 1. A labelled transition system or an LTS is a 4-tuple (S,Σ,Δ, Ŝ),
where

– S is a set of states.
– Σ is a set called the alphabet. It satisfies τ /∈ Σ.
– Δ ⊆ S × (Σ ∪ {τ})× S is the transition relation.
– Ŝ ⊆ S is the set of initial states. We assume Ŝ �= ∅.

Our definition differs from the established definition in that we allow for multiple
initial states. This is not an important detail. We have found the need for it when
modelling systems with uninitialised variables. The results in this paper can be
applied to the standard LTSs simply by using singleton sets of initial states.

Let a ∈ Σ, u ∈ Σ ∪ {τ}, and α = a1a2 · · · an ∈ Σ∗. We define the following:

– s−u→ s′, meaning (s, u, s′) ∈ Δ.
– s−u→ means ∃s′ : s−u→ s′.
– s=ε⇒ s′, when for some n, ∃s0, s1, . . . , sn : s = s0−τ→ s1−τ→ · · · −τ→ sn

= s′.
– s=a⇒ s′, when ∃s1, s2 : s=ε⇒ s1 −a→ s2 =ε⇒ s′.
– s=α⇒ s′ means ∃s0, . . . , sn : s = s0 =a1⇒ · · · =an⇒ sn = s′.
– s=α⇒ means ∃s′ : s=α⇒ s′.
– s−τω→ means that there is an infinite sequence s1s2 · · · of states such that
s = s1 −τ→ s2 −τ→ · · · .
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Definition 2. The reachable part of an LTS (S,Σ,Δ, Ŝ) is the LTS
(S′, Σ,Δ′, Ŝ), where

– S′ =
{
s ∈ S

∣∣ ∃σ ∈ Σ∗ : ∃ŝ ∈ Ŝ : ŝ=σ⇒ s
}
, and

– Δ′ = Δ ∩ (S′ × (Σ ∪ {τ})× S′).

Definition 3. Let L1 = (S1, Σ1, Δ1, Ŝ1) and L2 = (S2, Σ2, Δ2, Ŝ2). The parallel
composition of L1 and L2, denoted by L1 || L2 is the reachable part of the LTS
(S,Σ,Δ, Ŝ), where:

– S = S1 × S2,
– Σ = Σ1 ∪Σ2,
– Δ =

{
((s1, s2), u, (s′1, s′2))

∣∣ u ∈ Σ1 ∩Σ2 ∧ (s1, u, s′1) ∈ Δ1 ∧ (s2, u, s′2) ∈ Δ2
∨ u ∈ (Σ1 −Σ2) ∪ {τ} ∧ (s1, u, s′1) ∈ Δ1 ∧ s2 = s′2
∨ u ∈ (Σ2 −Σ1) ∪ {τ} ∧ (s2, u, s′2) ∈ Δ2 ∧ s1 = s′1

}
, and

– Ŝ = Ŝ1 × Ŝ2.

Definition 4. Let L = (S,Σ,Δ, Ŝ) be an LTS. We define the following:

– Σ(L) = Σ.
–
{
σ ∈ Σ∗ ∣∣ ∃ŝ ∈ Ŝ : ŝ=σ⇒

}
is the set of traces of L, denoted by Tr(L).

–
{
σ ∈ Σ∗ ∣∣ ∃ŝ ∈ Ŝ : ∃s ∈ S : ŝ=σ⇒ s−τω→

}
is the set of divergence traces

of L, denoted by Divtr(L).
–
{

(σ,A) ∈ Σ∗ × 2Σ
∣∣ ∃ŝ ∈ Ŝ : ∃s ∈ S : ŝ=σ⇒ s∧ ∀u ∈ A∪ {τ} : ¬(s−u→)

}
is the set of stable failures of L, which we denote by Sfail(L).

We will need three different notions of bisimilarity. Branching bisimilarity [11]
is defined in the usual way (except for multiple initial states). D-bisimilarity is
a divergence-sensitive variant of weak bisimilarity presented in [4]. Δ-branching
bisimilarity adds divergence-sensitivity to branching bisimilarity the same way
as in [10,11]. It is motivated after the definition.

Definition 5. Let L1 = (S1, Σ,Δ1, Ŝ1) and L2 = (S2, Σ,Δ2, Ŝ2) be LTSs, and
“�” ⊆ S1 × S2.

– We say that � is a branching bisimulation if and only if the following hold:
1. Whenever r � s, u ∈ Σ ∪ {τ}, r′ ∈ S1, and r −u→ r′, then

(†1) u = τ ∧ r′ � s or ∃s′, s′′ : s=ε⇒ s′ −u→ s′′ ∧ r � s′ ∧ r′ � s′′.
2. Whenever r � s, u ∈ Σ ∪ {τ}, s′ ∈ S2, and s−u→ s′, then

(‡1) u = τ ∧ r � s′ or ∃r′, r′′ : r =ε⇒ r′ −u→ r′′ ∧ r′ � s ∧ r′′ � s′.
L1 and L2 are branching bisimilar, denoted L1 ∼=SB L2 if and only if there
is a branching bisimulation “�” such that ∀ŝ1 ∈ Ŝ1 : ∃ŝ2 ∈ Ŝ2 : ŝ1 � ŝ2 and
∀ŝ2 ∈ Ŝ2 : ∃ŝ1 ∈ Ŝ1 : ŝ1 � ŝ2.

– D-bisimulation and D-bisimilarity ∼=DB are defined similarly, with (†1) and
(‡1) replaced by
(†2) ∃s′ : r′ � s′ ∧ (u = τ ∧ s=ε⇒ s′ ∨ u �= τ ∧ s=u⇒ s′) and
(‡2) ∃r′ : r′ � s′ ∧ (u = τ ∧ r =ε⇒ r′ ∨ u �= τ ∧ r =u⇒ r′),
and additionally requiring r −τω→⇔ s−τω→ whenever r � s.
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– Δ-branching bisimulation and Δ-branching bisimilarity ∼=BBΔ are obtained
by adding the following requirement to the definition of branching
bisimilarity:
• whenever r0−τ→ r1−τ→ . . . and ∀i : ri � s0, there are s1, s2, . . . such

that s0 −τ→ s1 −τ→ . . . and ∀i : ∀j : ri � sj, and
• whenever s0−τ→ s1−τ→ . . . and ∀i : r0 � si, there are r1, r2, . . . such

that r0 −τ→ r1 −τ→ . . . and ∀i : ∀j : ri � sj.

Δ-branching bisimilarity can be found in [10]. An equivalent notion is defined
in [11], where it was called branching bisimulation with explicit divergence. An-
other, not equivalent definition, with a subtle difference in the handling of dead-
locks, was presented in [3]. Yet another definition with a different meaning was
given in [4]. The condition on divergences that defines Δ-branching bisimilarity
may seem complicated, but in all our proofs we show that the following stronger
condition holds: whenever r0 −τ→ r1 −τ→ . . . and r0 � s0, there are s1, s2,
. . . such that s0 −τ→ s1 −τ→ . . . and ∀i : ∀j : ri � sj , and symmetrically
for s0 −τ→ ω.

3 Structural and Operational Determinism

By “structural” determinism we refer to the property that each trace always
leads to the same (not just equivalently behaving) state. The classical notion of
(structural) determinism forbids invisible actions altogether. To make our theory
useful also in the presence of divergences, we generalise a bit by allowing local
τ -loops in our notion of structural determinism.

Definition 6. An LTS (S,Σ,Δ, Ŝ) is structurally deterministic if and only if

1. |Ŝ| = 1,
2. ∀s, s′ : (s−τ→ s′ ⇒ s = s′), and
3. ∀s, s1, s2, a : (s−a→ s1 ∧ s−a→ s2 ⇒ s1 = s2).

To relax the rather strong structural requirements imposed by structural de-
terminism, we define operational determinism so that only the observable be-
haviour the system can exhibit is fully determined by the trace observed so far.

Definition 7. We say that an LTS L is operationally deterministic if and only
if for any two states s1 and s2 such that there are initial states ŝ1 and ŝ2 and a
trace σ such that ŝ1 =σ⇒ s1 and ŝ2 =σ⇒ s2, the following hold:

1. ∀a ∈ Σ(L) : (s1 =a⇒⇒ s2 =a⇒), and
2. s1 −τω→⇒ s2 −τω→.

In other words, if σa is a trace of L, then after executing σ, it is always possible
to continue with a. Also, if σ is a divergence trace, then all executions of σ lead
to a divergence. Operational determinism, like determinism in CSP [8, Section
3.3]: (Divtr(L) = ∅∧∀σ, a : σa ∈ Tr(L)⇒ (σ, {a}) /∈ Sfail(L)), is preserved under
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action prefixing, alphabet-based parallel composition and one-to-one renaming.
The proof for parallel composition is given towards the end of this section.

In [5] it is proven that determinacy, which is actually our operational deter-
minism with divergences ignored, has the following characteristic: If we restrict
ourselves to determinate systems, all equivalences in the branching time–linear
time spectrum that are between trace equivalence and weak bisimulation are the
same equivalence. A stronger result is actually true; the divergence-ignoring part
of the spectrum collapses all the way to branching bisimulation. This is noted
in [12].

We will prove soon (Theorem 3) that a similar collapse takes place when
divergences are taken into account, if our notion of operational determinism is
used, branching bisimilarity is replaced by Δ-branching bisimilarity, and trace
equivalence is amplified by divergence traces. However, before attacking this
more complicated result, we observe that an LTS is CSP-deterministic if and
only if it is operationally deterministic and has no divergences.

Theorem 1. If L is operationally deterministic, then Sfail(L) ={
(σ,A)

∣∣ σ ∈ Tr(L)− Divtr(L) ∧A ⊆ Σ(L) ∧ ∀a ∈ A : σa /∈ Tr(L)
}
.

Proof. If (σ,A) ∈ Sfail(L), then there are ŝ ∈ Ŝ and s such that ŝ =σ⇒ s and
¬(s −τ→). Definition 7(2) implies that σ /∈ Divtr(L). Furthermore, if a ∈ A,
then ¬(s −a→), from which Definition 7(1) yields σa /∈ Tr(L). If (σ,A) belongs
to the set on the right hand side, then, by executing σ and then taking as many
τ -transitions as possible, a state s is reached such that ∀u ∈ A∪{τ} : ¬(s−u→).
Taking τ -transitions terminates because σ /∈ Divtr(L). So (σ,A) ∈ Sfail(L). �

The converse of this result does not hold. More generally, the following LTSs
demonstrate that our operational determinism cannot be characterised in terms

of Σ(L), Tr(L), Divtr(L), and Sfail(L): a τ and a τ τ .
One of them is deterministic and the other is not, but they do not differ in
terms of the given sets.

Most of the rest of this paper is based on an auxiliary notion of D-relation.

Definition 8. Let (S,Σ,Δ, Ŝ) be an LTS. Let a ∈ Σ below. We say that “∼”
⊆ S × S is a D-relation, if and only if it is an equivalence with the following
properties:

D1 ∀s1, s2, a : (s1 ∼ s2 ∧ s1 =a⇒⇒ s2 =a⇒)
D2 ∀s1, s2 : (s1 ∼ s2 ∧ s1 −τω→⇒ s2 −τω→)
D3 ∀s1, s2, s′1, s′2, a : (s1 ∼ s2 ∧ s1 −a→ s′1 ∧ s2 −a→ s′2 ⇒ s′1 ∼ s′2)
D4 ∀s1, s2 : (s1 −τ→ s2 ⇒ s1 ∼ s2)
D5 ∀ŝ1, ŝ2 : (ŝ1 ∈ Ŝ ∧ ŝ2 ∈ Ŝ ⇒ ŝ1 ∼ ŝ2)

Lemma 1. An LTS is operationally deterministic if and only if its reachable
part has a D-relation.

Proof. First, suppose there is an equivalence ∼ on the reachable states of L that
has the properties D1 to D5. Let s1 and s2 be states, σ ∈ Σ∗ and ŝ1 ∈ Ŝ,
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ŝ2 ∈ Ŝ such that ŝ1 =σ⇒ s1 ∧ ŝ2 =σ⇒ s2. By property D5 we write ŝ1 ∼ ŝ2.
By straightforward induction, relying on D3 and D4 and the fact that ∼ is an
equivalence, also s1 ∼ s2. Together with D1 and D2, this implies that L must
be operationally deterministic.

Conversely, suppose that L is operationally deterministic. We define the rela-
tion “�” ⊆ S × S by s1 � s2 ⇔ ∃ŝ1, ŝ2 ∈ Ŝ : ∃σ ∈ Σ∗ : ŝ1 =σ⇒ s1 ∧ ŝ2 =σ⇒ s2.
Furthermore, we define the relation � as the transitive closure of �. We are
going to show that � is a D-relation over the reachable part of L. It is clearly
symmetric, transitive and reflexive over the states of the reachable part, that is,
it is an equivalence. Since L is operationally deterministic, � must satisfy D1
and D2, and by transitivity, so must �.

To see that � satisfies D3, suppose that s1 � s2 and that s1−a→s′1∧s2−a→s′2.
We observe that s1 � s2 ⇔ ∃z0, z1, . . . , zn : z0 = s1 ∧ zn = s2 ∧ ∀i; 1 ≤ i ≤
n : zi−1 � zi. By D1, the states z1, . . . , zn−1 all have zi =a⇒ z′i for some z′i.
Furthermore, by the definition of � we have s′1 � z′1, z′i−1 � z′i, and z′n−1 � s′2.
Thus, by transitivity, s′1 � s′2, which proves D3.

D4 is obvious from the definition of �, and D5 follows by choosing σ = ε as
the trace in the definition of �. �

D-relations make it possible to show that for each operationally deterministic
LTS, there is a structurally deterministic Δ-branching bisimilar LTS.

Definition 9. Let (S,Σ,Δ, Ŝ) be the reachable part of an operationally deter-
ministic LTS, and ∼ a D-relation on it. Its quotient LTS is (S′, Σ,Δ′, Ŝ′), where

– If s ∈ S, then [[s]] =
{
s′ ∈ S

∣∣ s ∼ s′ }.
– S′ =

{
[[s]]

∣∣ s ∈ S },
– Δ′ =

{
([[s]], a, [[s′]])

∣∣ (s, a, s′) ∈ Δ ∧ a ∈ Σ } ∪{
([[s]], τ, [[s]])

∣∣ s ∈ S ∧ s−τω→}, and
– Ŝ′ =

{
[[ŝ]]

∣∣ ŝ ∈ Ŝ }.
Because there may be many D-relations, the quotient LTS is not necessarily
unique.

Theorem 2. A quotient LTS is structurally deterministic, and Δ-branching
bisimilar to the original LTS.

Proof. D5 implies item 1 of Definition 6. Item 2 follows immediately from the
definition of Δ′, and D3 yields item 3.

We now prove that the relation “�” ⊆ S × S′ defined by r � s ⇔ s = [[r]]
is a Δ-branching bisimulation. Let r � s. If r −τ→ r′ then [[r′]] = [[r]] by D4,
so r′ � s. If s −τ→ s′ then s′ = s, so r � s′. If r −a→ r′ where a �= τ , then
s = [[r]] −a→ [[r′]], so s qualifies as the s′ and [[r′]] qualifies as the s′′ in †1.
Let s −a→ s′ where a �= τ . By the construction, there are some x and x′ ∈ S
such that x −a→ x′, s = [[x]] and s′ = [[x′]]. Because s = [[r]], we get x ∼ r.
D1 implies that there are r′ and r′′ such that r=ε⇒ r′−a→ r′′. D4 implies that
r ∼ r′, so [[r′]] = [[r]] = s and r′ � s. Because x ∼ r ∼ r′, D3 gives x′ ∼ r′′. So
[[r′′]] = [[x′]] = s′ and r′′ � s′, and ‡1 holds.
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By the construction of Ŝ′, “�” obviously satisfies the condition on initial
states in Definition 5.

If r0 −τ→ r1 −τ→ . . . and r0 � s0, then s0 = [[r0]] = [[r1]] = . . . by D4.
Furthermore, the definition of Δ′ yields s0−τ→ s0. So we may choose s0 = s1 =
s2 = . . . to get s0−τ→ s1−τ→ . . . and ∀i : ∀j : ri � sj . Let s0−τ→ s1−τ→ . . .
and r0 � s0. By the construction, s0 = s1 = s2 = . . ., and there is x ∈ [[r0]]
such that x−τω→. By D2, also r0−τω→, that is, there are r1, r2, . . . such that
r0 −τ→ r1 −τ→ . . .. D4 gives [[r0]] = [[r1]] = [[r2]] = . . ., so ∀i : ∀j : ri � sj . �

Theorem 3. Let L1 and L2 be operationally deterministic LTSs with Σ(L1) =
Σ(L2), Tr(L1) = Tr(L2), and Divtr(L1) = Divtr(L2). Then L1 ∼=BBΔ L2.

Proof. Let “∼” ⊆ S1 × S2 such that s1 ∼ s2 ⇔ ∃ŝ1 ∈ Ŝ1 : ∃ŝ2 ∈ Ŝ2 : ∃σ ∈ Σ∗ :
ŝ1 =σ⇒ s1 ∧ ŝ2 =σ⇒ s2. We show that “∼” is a Δ-branching bisimulation.

By definition, it is clear that ∀ŝ1 ∈ Ŝ1 : ∀ŝ2 ∈ Ŝ2 : ŝ1 ∼ ŝ2, by considering
ε = σ as the common trace in the definition of “∼”.

Let s1 ∼ s2 and σ be the common trace, starting from initial states ŝ1 and
ŝ2, respectively.

1. Let s1 −τ→ s′1. Since ŝ1 =σ⇒ s1 implies ŝ1 =σ⇒ s′1, we have s′1 ∼ s2.
2. Let s1 −a→ s′1. Then ŝ1 =σ⇒ s1 implies ŝ1 =σa⇒ s′1. By trace equivalence,
ŝ2=σa⇒ and by operational determinism s2=ε⇒s′′2−a→s′2, for some s′2, s′′2 .
By definition of “∼”, s1 ∼ s′′2 and s′1 ∼ s′2.

3. Let s1−τ→ s
(1)
1 −τ→ · · · . Because Divtr(L1) = Divtr(L2), ŝ′2 =σ⇒ s′2−τω→

for some ŝ′2, s′2. By operational determinism then s2−τ→s(1)2 −τ→ · · · . Since
ŝ1 =σ⇒ s

(i)
1 and ŝ2 =σ⇒ s

(i)
2 for all i, we have ∀i : ∀j : s(j)1 ∼ s(i)2 .

(‡1) and the symmetric case for divergence are proven analogously. �

Theorem 4. Let L be a structurally deterministic LTS and let L′ be D-bisimilar
to L. Then L′ is operationally deterministic.

Proof. Let L′ = (S′, Σ,Δ′, Ŝ′) such that L′ ∼=DB L. Let ŝ be the unique initial
state of L, and let � be a D-bisimulation such that ∀ŝ′ ∈ Ŝ′ : ŝ′ � ŝ.

Let σ ∈ Σ∗, ŝ′1, ŝ′2 ∈ Ŝ′ and r1, r2 ∈ S′ such that ŝ′1 =σ⇒ r1 ∧ ŝ′2 =σ⇒ r2. By
letting L simulate according to †2 the executions of σ that lead to r1 and r2,
such s1 and s2 are found that r1 � s1 and r2 � s2. However, s1 = s2 because L
is structurally deterministic. If r1 =a⇒, then by †2 s1 =a⇒, and by ‡2 r2 =a⇒.
By the last requirement of D-bisimulation, r1 −τω→ ⇔ s1 −τω→ ⇔ r2 −τω→.
Therefore, L′ is operationally deterministic. �

Corollary 1. Let L1 ∼=DB L2. Then L1 is operationally deterministic if and only
if L2 is operationally deterministic.

Proof. If L1 is operationally deterministic, then let L′
1 be its quotient LTS. A

Δ-branching bisimulation is also a D-bisimulation, so L1 ∼=DB L
′
1. So L2 ∼=DB L

′
1,

from which Theorem 4 gives that L2 is operationally deterministic. �
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Lemma 2. Let L1 = (S1, Σ1, Δ1, Ŝ1) and L2 = (S2, Σ2, Δ2, Ŝ2) be structurally
deterministic LTSs. Then L1 || L2 is structurally deterministic.

Proof. Let (S,Σ,Δ, Ŝ) = L1 ||L2. Firstly, note that |Ŝ| = |Ŝ1|·|Ŝ2| = 1. Secondly,
let (s, u, s′) ∈ Δ and (s, u, s′′) ∈ Δ, where s = (s1, s2), s′ = (s′1, s

′
2), and s′′ =

(s′′1 , s
′′
2). If u = τ , then, by structural determinism and the definition of || we

must have s1 = s′1 = s′′1 and s2 = s′2 = s′′2 , and hence s = s′ = s′′. Suppose then
that u �= τ . If u ∈ Σ1 we have (s1, u, s′1) ∈ Δ1 and (s1, u, s′′1) ∈ Δ1, so s′1 = s′′1
by structural determinism. Otherwise, s′1 = s1 and s′′1 = s1. So, in both cases
s′1 = s′′1 . Similarly s′2 = s′′2 . Therefore, s′ = s′′. �

Theorem 5. Let L1 and L2 be operationally deterministic LTSs. Then L1 ||L2
is operationally deterministic.

Proof. Let L′
1 and L′

2 be quotient LTSs of L1 and L2. By Theorem 2 and
Lemma 2, L′

1 || L′
2 is structurally deterministic. Because D-bisimilarity is im-

plied by Δ-branching bisimilarity and is a congruence with respect to || [4],
L1 || L2 ∼=DB L

′
1 || L′

2. Therefore, Theorem 4 gives the claim. �

4 Fast Checking of Operational Determinism

In this section we introduce a simple yet efficient algorithm for checking whether
an LTS (S,Σ,Δ, Ŝ) is operationally deterministic. Throughout this section we
use a convention that s1, s2, . . . ∈ S and a ∈ Σ. Some concepts and notation
need to be defined, along with a brief discussion on implementation details.

We use a disjoint set structure presented in data structure textbooks [2, Chap-
ter 21]. It is a simple way of maintaining a collection of disjoint sets featuring
the operations of creating a singleton set, taking a union of two sets, and testing
whether two elements belong to the same set.

Each element is stored in a record that also has a pointer field. In each set, one
member, the representative, has a pointer to itself, while others have a pointer to
another element in the same set so that following the chain of pointers eventually
leads to the representative. Whether or not two elements belong to the same set
is tested by finding their representatives and checking whether they are the same.
Union is computed by re-directing the pointer of one representative to point to
the other.

Two heuristics are used to speed up processing. First, each time a chain of
pointers is followed, all pointers along the chain are re-directed to point directly
to the representative. Second, a rank, an upper approximation of the length of
the longest chain, is maintained in each set. When taking the union of two sets
with different ranks, the representative of the set with the greater rank is chosen
as the representative of the union. The rank is initially zero, and incremented
when computing the union of two sets of equal rank.

If a total ofm operations are performed, of which n are singleton-set creations,
the total time consumption is O(mα(n)), where α is a very slowly growing func-
tion, practically a constant [2].
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We denote by Rep(s) the representative of s. The definition of representative
implies that Rep(Rep(s)) = Rep(s). Union(s1, s2) takes the sets which s1
and s2 are members of and transforms them into a single set. Instead of using
the operation that creates a singleton set, we use Initrep(s1, s2) that makes the
pointer of s1 point to s2. We will use it in such a way that the result is equivalent
to first making each s a singleton set and then calling the union operation less
than |S| times, choosing the representative in a certain way whenever the two
ranks are equivalent. Therefore, the n in the total time consumption formula
will be the number of states in the LTS.

The algorithm is shown in Figure 2. The LTS must be preprocessed in what we
shall call stage 0. All strongly connected components consisting of τ -transitions
are collapsed into single states. As a result of the operation τ -collapse, an LTS
(S,Σ,Δ, Ŝ) is replaced by (S′, Σ,Δ′, Ŝ′), where

– S′ =
{

[[s]]
∣∣ s ∈ S }, where [[s]] =

{
s′
∣∣ s=ε⇒ s′ ∧ s′ =ε⇒ s

}
,

– Δ′ =
{

([[s]], u, [[s′]])
∣∣ u ∈ Σ ∪ {τ} ∧ (s, u, s′) ∈ Δ

}
, and

– Ŝ′ =
{

[[ŝ]]
∣∣ ŝ ∈ Ŝ }.

After such an operation, we can talk about the set Sb of bottom states. A
bottom state is a state s for which ∀s′ : (s −τ→ s′ ⇒ s = s′). For each state s,
there is at least one bottom state sb such that s=ε⇒ sb.

For each bottom state sb and a non-τ action a we choose a representative
transition and denote by sb.tr [a] the destination state of this transition, and let
sb.tr [a] = Nil if no such transition exists for a. Also, for any state s, bottom or
otherwise, s.div is used to indicate whether or not a local τ -loop is present in
the state. As a consequence, s−τω→ if and only if ∃s′ : s=ε⇒ s′ ∧ s′.div . One
can think of “s.div ” as a notational convention or it may be implemented, e.g.,
as a bit. In the latter case, local τ -loops may be removed. When we later write
s−τω→ we actually mean that ∃s′ : s=ε⇒ s′ ∧ s′.div .

After stage 1, each state has a representative and that representative is a
bottom state. Due to the implementation of the union operation sketched earlier,
this will remain true until the algorithm terminates. Each bottom state is now
its own representative, but this will change later.

For the next stage we need a subroutine to check whether two states can be
joined. This subroutine is shown in Figure 1. We use a set Pending , initially
empty, to store pairs of states that need to be checked later on. Exit(Nondet)
means that the algorithm has found that the LTS is not operationally determin-
istic, and terminates.

We now proceed to analyse what takes place in stages 2 and 3.

Lemma 3. If the LTS has a D-relation ∼, then Exit(Nondet) is not called
and the following invariant holds throughout the execution of stages 2 and 3: if
s1 and s2 are states and Rep(s1) = Rep(s2) ∨ (s1, s2) ∈ Pending, then s1 ∼ s2.
Proof. Recall that for each s, Rep(Rep(s)) = Rep(s), so the invariant will also
imply Rep(s) ∼ s.

The invariant holds initially, since Pending is empty, ∀s : s=ε⇒Rep(s), and
∼ satisfies D4 and is an equivalence.
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global variable Pending ⊆ S2 := ∅

Check(s1, s2)
1 s1 := Rep(s1); s2 := Rep(s2)
2 if s1 = s2 then return
3 if s1.div �= s2.div then Exit(Nondet)
4 for a ∈ Σ do
5 if (s1.tr [a] = Nil) exclusive-or (s2.tr [a] = Nil) then Exit(Nondet)
6 if s1.tr [a] �= Nil then add (s1.tr [a], s2.tr [a]) to Pending
7 endfor
8 Union(s1, s2)

Fig. 1. State checking subroutine

stage0
9 remove unreachable states and transitions

10 τ -collapse
Stage1

11 for each state s do
12 find a bottom state sb such that s =ε⇒ sb and call Initrep(s, sb)
13 endfor

Stage2
14 for each bottom state sb do
15 for each transition (sb, a, s′) do Check(sb.tr [a], s′) endfor
16 endfor
17 for each non-bottom state s do
18 if s.div ∧ ¬Rep(s).div then Exit(Nondet)
19 endfor
20 for a ∈ Σ do
21 for each (s, a, s′) ∈ Δ such that s is a non-bottom state do
22 if Rep(s).tr [a] = Nil then Exit(Nondet)
23 Check(Rep(s).tr [a], s′)
24 endfor
25 endfor
26 for each invisible transition (s, τ, s′) do Check(s, s′) endfor
27 choose ŝ ∈ Ŝ

28 for each ŝ′ ∈ Ŝ − {ŝ} do Check(ŝ, ŝ′) endfor
Stage3

29 while Pending �= ∅ do
30 take any (s1, s2) from Pending
31 Check(s1, s2)
32 endwhile
33 Exit(Deterministic)

Fig. 2. Fast determinism checking

The invariant is at risk only when Rep is changed or pairs are added to
Pending . These only happen inside Check, so we must examine each call of
Check.
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First we prove that if s1 ∼ s2 when Check(s1, s2) is called, the invariant is
preserved.

We have Rep(s1) ∼ s1 ∧ Rep(s2) ∼ s2, which implies Rep(s1) ∼ Rep(s2).
To avoid confusion, let z1 and z2 denote the variables s1 and s2 in the code of
check. z1 = Rep(s1) ∼ z2 = Rep(s2) holds after line 1. Line 3 will not cause
termination, because of D2 and the fact that z−τω→⇔ z.div for bottom states.
Similarly D1 guarantees that line 5 will not cause termination. By property
D3, when the pair (z1.tr [a], z2.tr [a]) goes to Pending on line 6, we do have
z1.tr [a] ∼ z2.tr [a]. The Union in the end cannot violate the invariant, since if
it makes Rep(s′1) = Rep(s′2) hold for some s′1 and s′2, then before the call of
Check, Rep(s′1) = Rep(s1) and Rep(s′2) = Rep(s2) (or Rep(s′2) = Rep(s1)
and Rep(s′1) = Rep(s2)) held, so s′1 ∼ Rep(s1) = z1 ∼ z2 = Rep(s2) ∼ s′2.

We must now show that s1 ∼ s2 holds every time Check(s1, s2) is called.
On line 15, Check(s1, s2) is called when ∃a : ∃sb ∈ Sb : sb−a→s1∧sb−a→s2.

Because a D-relation is reflexive and D3 holds, we must have s1 ∼ s2.
On line 23, s ∼ Rep(s). We have s−a→ s′ and Rep(s)−a→Rep(s).tr [a], so,

because of D3, Rep(s).tr [a] ∼ s′.
For line 26, s ∼ s′ is guaranteed by D4. D5 takes care of line 28.
As for line 31, the invariant itself guarantees that s1 ∼ s2.
Line 18 will not cause termination because of D2 and the fact that a bot-

tom state may diverge only by having s.div . Similarly, the safety of line 22 is
guaranteed by D1. �

Corollary 2. If the algorithm executes Exit(Nondet) then L is nondetermin-
istic.

Proof. Lemma 3 implies that then L has no D -relation, from which Lemma 1
gives the claim. �

To see that false positives are not produced, we need the following:

Definition 10. Let the relation “�” ⊆ S × S be defined as follows: s1 � s2 if
and only if Rep(s1) = Rep(s2), (s1, s2) ∈ Pending, or (s2, s1) ∈ Pending. We
denote by . the transitive closure of �.

Lemma 4. The following hold during stages 2 and 3:

1. The truth value of “Rep(s)−a→” never changes.
2. The truth value of “Rep(s).div” never changes.
3. If Rep(s1) = Rep(s2) becomes true, it holds until the algorithm terminates.
4. If Rep(s).tr[a] . s′ becomes true and Exit(nondet) is not executed, it holds

(except inside the loop of stage 3) until the algorithm terminates.

Proof. Claims 1 and 2 are checked before Union is called in line 8 in Check.
Claim 3 is obvious from the operation of the disjoint set structure. Claim 4
holds because when the Rep changes, the pair consisting of the old and the new
Rep(s).tr [a] is put into Pending , and . is transitive. �
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Lemma 5. If the algorithm does not execute Exit(Nondet), the following hold
after stages 2 and 3:

E1 ∀s1, s2, a : (Rep(s1) = Rep(s2) ∧ s1 =a⇒⇒ s2 =a⇒)
E2 ∀s1, s2 : (Rep(s1) = Rep(s2) ∧ s1 −τω→⇒ s2 −τω→)
E3 ∀s1, s2, s′1, s′2, a : (Rep(s1) = Rep(s2) ∧ s1 −a→ s′1 ∧ s2 −a→ s′2 ⇒ s′1 . s′2)
E4 ∀s1, s2 : (s1 −τ→ s2 ⇒ Rep(s1) = Rep(s2))
E5 ∀ŝ1, ŝ2 : (ŝ1 ∈ Ŝ ∧ ŝ2 ∈ Ŝ ⇒ Rep(ŝ1) = Rep(ŝ2))

Proof. E4: Since all τ -transitions are covered in line 26 this is obvious.
E5: Again, obvious due to line 28.
E1: Let Rep(s1) = Rep(s2) ∧ s1 =a⇒ at the end of stage 2 or 3. By defin-

ition, we have ∃s′1 : s1 =ε⇒ s′1 −a→. Because of E4 we must have Rep(s′1) =
Rep(s1) = Rep(s2) in the end of stage 2 or 3. If s′1 ∈ Sb, then s′1 = Rep(s′1) and
thus Rep(s′1) −a→ held in the beginning of stage 2. Otherwise Rep(s′1) −a→
held when line 22 was executed for s′1 and a, because exit(Nondet) was not
executed. By Lemma 4(1), Rep(s′1)−a→ and thus Rep(s2)−a→ hold at the end
of stage 2 or 3. Again, using Lemma 4(1), Rep(s2) −a→ held at the beginning
of stage 2 or 3. Then also s2 =ε⇒Rep(s2) held. This completes our proof of E1.

E2: The reasoning is analogous to E1. Clearly s1 −τω→⇔ ∃s′1 : s1 =ε⇒ s′1 ∧
s′1.div . If s′1 is not a bottom state, then Rep(s′1).div holds in line 18. If s′1 is a
bottom state, then Rep(s′1).div held initially. In both cases Lemma 4(2) gives
that Rep(s′1).div holds at the end of stage 2 or 3. E4 makes sure that then also
Rep(s′1) = Rep(s1). So Rep(s2).div holds at the end of stage 2 or 3. Thus,
Rep(s2).div held also at the beginning of stage 2, which proves that s2 −τω→.

E3: Let Rep(s1) = Rep(s2)∧ s1−a→ s′1 ∧ s2−a→ s′2 hold at the end of stage
2 or 3. If s1 is not a bottom state, Rep(s1).tr [a] . s′1 held immediately after
line 23. Due to Lemma 4(4), Rep(s1).tr [a] . s′1 also holds at the end of stage 2 or
3. Proving the same when s1 is a bottom state is more complicated. s1.tr [a] . s′1
held immediately after line 15. By Lemma 4(3), it holds at the end of stage 2 or
3. On the other hand, Rep(s1) = s1 and thus Rep(s1).tr [a] . s1.tr [a] held at
the beginning of stage 2. Lemma 4(4) carries this fact to the end of stage 2 or
3. Together these yield Rep(s1).tr [a] . s′1. Similar reasoning applies to s2 and
s′2. Since we assumed that Rep(s1) = Rep(s2) holds at the end of stage 2 or 3,
we have s′1 . Rep(s1).tr [a] = Rep(s2).tr [a] . s′2. �

Now, after the completion of stage 3, Pending = ∅. Therefore, s′1 . s′2 ⇔
Rep(s′1) = Rep(s′2), and E3 becomes:

E3′ ∀s1, s2, s′1, s′2, a :
(Rep(s1) = Rep(s2) ∧ s1 −a→ s′1 ∧ s2 −a→ s′2 ⇒ Rep(s′1) = Rep(s′2))

The relation s1 ∼ s2 ⇔ Rep(s1) = Rep(s2) is now clearly a D -relation. Lemma 1
gives the following.

Theorem 6. If the algorithm executes Exit(Deterministic) then L is opera-
tionally deterministic.

Theorem 7. The running time of the algorithm is O(|S|+ (|Δ|+ |Ŝ|)α(|S|)).
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Proof. Stages 0 and 1 can be implemented in linear (O(|S| + |Δ|)) time with
well-known graph search and strong component algorithms. During stages 2 and
3, Check is critical in assessing the cost.

In the worst case, Check executes lines 4–7, which at a first glance amount to
O(|Σ|). However, the loop need not do more than |

{
a
∣∣ s1.tr [a] �= nil∧s2.tr [a] �=

nil
}
| iterations, if the non-τ output transitions of each state s are represented

as a list of lists, where each higher level list record contains an a and tr [a]
where tr [a] �= nil, plus a link to a lower level list containing the remaining
s′ for which (s, a, s′) ∈ Δ. The higher level list is sorted according to a. Note
that if at some point s1.tr [a] �= nil ∧ s2.tr [a] = nil, the algorithm terminates
immediately.

These lines are executed only if Rep(s1) �= Rep(s2) and, if they are,
Rep(s1) = Rep(s2) after the call. Therefore, the worst case can happen at
most O(|S|) times. This also makes sure that of the transitions corresponding to
s1.tr [a] and s2.tr [a], one will never re-appear on lines 5 and 6. So, at most |Δ|
iterations of the loop in Check are executed in total and thus |Δ| additions are
applied to Pending , each of which is constant time.

When the loop is not executed, the execution time of Check is almost con-
stant. Finding the Rep for a state requires amortized time α(|S|), where α is an
extremely slowly growing function. For more details and analysis of the disjoint
set data structure, see [2].

At most |Δ|+|Ŝ| calls of Check take place during stage 2. The number of calls
of Check during stage 3 is at most the number of additions to Pending , that is,
|Δ|. As a consequence, the algorithm as a whole is O(|S|+ (|Δ|+ |Ŝ|)α(|S|)). �

5 Deterministic LTS Minimisation

Quotient LTSs were introduced in Definition 9. Because the relation Rep(s1) =
Rep(s2) is a D-relation on line 33 of Figure 2, a quotient LTS can be constructed
with it.

We can speed up the computation by using the representative states as the
states of the result. Because representative states are bottom states, they cannot
have τ -transitions to other states. Therefore, if s −τω→, then Rep(s).div ; and
if s−a→ s′, then there is s′′ such that Rep(s)−a→ s′′ and Rep(s′) = Rep(s′′).
Thus a quotient LTS can be constructed as follows.

– S′ =
{
Rep(s)

∣∣ s ∈ S }
– Δ′ =

{
(s, a, s′)

∣∣ s ∈ S′ ∧ a �= τ ∧ ∃s1 ∈ S : (s, a, s1) ∈ Δ ∧ s′ = Rep(s1)
}

∪
{

(s, τ, s)
∣∣ s ∈ S′ ∧ s.div

}
– Ŝ′ =

{
Rep(ŝ)

∣∣ ŝ ∈ Ŝ }
Structurally deterministic LTSs can be minimised with the block splitting

construction of deterministic finite automata. To use the construction, for each
a ∈ Σ, the transition relation −a→ must be made total by adding one com-
mon “non-trace” state and directing all missing transitions to it. As a conse-
quence, all σ ∈ Σ∗ that are not traces lead to the non-trace state. To save
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memory, this state and its incoming transitions should not be actually imple-
mented. However, block splittings must be computed as if the state were there.
To guarantee that divergence traces are preserved in the minimisation, the ini-
tial partitioning of states consists of three blocks: diverging (in this case that
is, s −τ→ s) states, non-diverging states, and the above-mentioned non-trace
state.

The result is the smallest structurally deterministic LTS that has the same
traces and divergence traces as the original LTS. By Theorem 3, it isΔ-branching
bisimilar, and consequently equivalent according to many other notions, to the
input LTS. Because this application of block splitting is simpler than in typical
LTS minimisation algorithms (no τ -transitions between different states, no mul-
tiple transitions with the same label from the same state), it can be implemented
at least as efficiently.

The deterministic LTS minimisation algorithm thus starts by running the
algorithm in Figure 2. If the result is Nondet, then the algorithm gives up and
some other approach must be used. Otherwise, a quotient LTS is constructed
and minimised as was described above.

6 Conclusions

We defined the concept of operational determinism and studied its consequences
and showed how operational determinism of LTSs can be detected. In light of the
results we have given, operational determinism captures the notion of “determin-
istic behaviour” in a natural way. Operational determinism is preserved under all
branching time equivalences that are at least as strong as divergence-sensitive
weak bisimulation. In addition, the parallel composition of two operationally
deterministic LTSs is operationally deterministic.

We have proven that the distinction between branching time and linear time
disappears when restricting to operationally deterministic processes, so that all
the equivalences between trace + divergence trace equivalence and Δ-branching
bisimulation equivalence are the same.

The handling of τ -transitions affects significantly the complexity of known
branching bisimulation [6,1] and weak bisimulation minimisation algorithms.
Therefore, we suggest first testing if the LTS is operationally deterministic. If
it is, it is minimised by computing the quotient LTS and then applying the
minimisation algorithm for deterministic finite automata. If it is not, the or-
dinary algorithm for branching bisimulation, etc., is applied. The testing is
cheap and does not affect the overall complexity. For operationally determin-
istic LTSs, the significant cost of handling τ -structures during the latter stage
is avoided.

Our algorithm is also suitable for detecting the kind of determinism where
divergence is not allowed: nondeterminism may be declared as soon as a diver-
gence is found. It is also applicable when using divergence-blind semantics, by
simply ignoring the divergence information.
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Abstract. Boolean programs with recursion are convenient abstractions
of sequential imperative programs, and can be represented as recursive
state machines (RSMs) or pushdown automata. Motivated by the special
structure of RSMs, we define a notion of modular visibly pushdown au-
tomata (modular VPA) and show that for the class of languages accepted
by such automata, unique minimal modular VPA exist. This yields an
efficient approximate minimization theorem that minimizes RSMs to
within a factor of k of the minimal RSM, where k is the maximum
number of parameters in any module. Using the congruence defined for
minimization, we show an active learning algorithm (with a minimally
adequate teacher) for context free languages in terms of modular VPAs.
We also present an algorithm that constructs complete test suites for
Boolean program specifications. Finally, we apply our results on learn-
ing and test generation to perform model checking of black-box Boolean
programs.

1 Introduction

The abstraction-based approach to model-checking is based on building finite
models, say using predicates over variables, and subjecting the finite models to
systematic state-space exploration [10]. Recursion of control in programs leads
to models with recursion, which can be captured using pushdown automata.
The model of recursive state machines (RSMs) [1] is an alternate model, which
is equivalent in power but whose notation is closer to programs.

The class of visibly pushdown languages is a subclass of context-free lan-
guages, defined as those languages that can be accepted by pushdown automata
whose action on the stack is determined by the letter the automaton reads. Given
that a model of a program is naturally visibly pushdown (since we can make calls
and returns to modules visible), visibly pushdown languages are a tighter model
for Boolean programs. The class of visibly pushdown languages enjoys closure
and decidability properties, making several problems like model-checking push-
down program models against visibly pushdown specifications decidable [3,5].

In this paper we reap more benefits from the visibly pushdown modeling of
programs, by showing that pushdown program models can be minimized, can be
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learnt and tested for conformance, and subject to black-box checking, paralleling
results for finite-state models. We now outline these results.

In a recent paper [4], we showed that visibly pushdown languages have a con-
gruence based characterization. However, this congruence does not yield minimal
visibly pushdown automata, and in fact, unique minimal visibly pushdown au-
tomata do not exist in general. The main reason why the minimization result
fails is that when implementing functions in the automata model there are two
choices available. One option is to have function modules that “compute” the
value for multiple (or all the) parameters, and then let the caller decide which
result to pick when the function returns. The second option is for the function to
only “compute” the answer to the specific parameter with which it was called.

In [4], we showed a minimization result for a special class of models. We
looked at visibly pushdown machines with a modular structure (similar to re-
cursive state machines) which have the additional property that modules, when
called, compute the answers to all parameters and let the caller decide the right
answer on return. This results in modular, single-entry (i.e., the state the ma-
chine enters on function calls is the same, no matter what the parameter is)
machines. We showed that for any visibly pushdown language there is a unique
minimal modular single-entry machine.

The restriction to single-entry machines is awkward. First they do not corre-
spond to program models, as programs typically do not compute answers to all
parameters on function calls. Second, combining the computation for multiple
parameters can result in requiring a lot more memory, which in the context of
automata corresponds to larger number of states.

The first contribution of this paper is a minimization result of a variant of
modular VPAs that has multiple entry points in each module, corresponding
to the multiple parameters. This variant is inspired by the recursive state ma-
chine model in two ways: (a) the parameters passed to modules are explicit and
visible, and (b) we demand that when a module is called, the state but not
the parameter is pushed onto the stack. Requiring that the parameter not be
pushed onto the stack is crucial in achieving a unique minimization result; since
the program does not “remember” the parameter it called the module with, it
cannot choose the result for a parameter from a combined result. Thus, we get
minimal program models that are more faithful to the semantics of program-
ming languages. Technically, if we allow automata models that are not complete
(i.e., certain transitions being disabled from certain states) then it is possible to
encode the parameter in the calling state. Thus our minimization result only ap-
plies to complete models. However, we also show that any incomplete recursive
state machine model for a program can be translated into a canonical, complete,
recursive state machine model which is at most k times larger than the incom-
plete model, where k is the maximum number of parameters in any module.
This results in an approximate minimization procedure for incomplete RSMs
that transforms a deterministic RSM in polynomial time into one whose size is
at most k times the size of the minimal deterministic RSM.
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Next, we look at the problem of learning modular VPA models for context free
languages. The learning model that we consider is one where the learning algo-
rithm is allowed to interact with a knowledgeable teacher who answers two types
of queries: membership queries, where the learner can ask whether a string be-
longs to the target language, and equivalence queries, where the learner can ask
whether a hypothesis machine does indeed recognize exactly the target language.
Learning algorithms identifying machine models for formal languages in such a
learning framework have recently been extensively used in formal verification in a
variety of contexts (see [8,2,12,7,21,14,25] for some examples). However, all these
applications use algorithms that learn finite state models based on the algorithm
originally proposed by Angluin [9]. The reason for this is because known learn-
ing algorithms apply only to very limited push-down models: Chomsky Normal
Form grammars with known non-terminals [9] (which corresponds to knowing
all the states of a pushdown model and discovering only the transitions), and
deterministic one-counter machines [11].

Our main result in the context of the learning problem is that we can learn the
smallest complete, deterministic, modular VPA for a language in time which is
polynomial in the length of the longest counter-example provided by the teacher,
and the size of the smallest machine model. The algorithm is based on the
congruence based characterization of the minimum machine that we present in
this paper1.

We would like to contrast this learning algorithm with the implicit one sug-
gested by the results of [5,22]. The results in [5] show that associated with every
visibly pushdown language is the tree language of stack trees which is regular.
Using Sakakibara’s algorithm [22] one could learn the deterministic bottom-up
tree automaton accepting the language of stack trees, and convert that to ob-
tain a visibly pushdown automaton for the language using the results of [5].
There are two downsides to using this approach. First, the resulting VPA is
non-deterministic, and one would need to pay the exponential cost in obtaining
a deterministic machine. Second, even the non-deterministic VPA obtained thus
has an awkward structure, as it may not be modular, or have one entry for each
parameter, that we expect of program models.

The number of membership and equivalence queries made by our learning
algorithm has the same dependence on the size of the minimal machine and
length of the longest counter-example as Angluin’s algorithm for learning finite
state machines. However, in the case of regular languages, it is possible for a
cooperative teacher to present counter-examples that are linear in the size of
the smallest deterministic finite automaton accepting the language. For modular
VPAs this is not the case; one can construct examples where the shortest counter-
example is exponential in the size of the smallest modular VPA recognizing the
language. However, we observe that the counter-examples (even if long) are

1 The learning, conformance testing, and black-box checking algorithms in this paper
can also be adapted to the congruence presented in [4] to construct single-entry
VPA models. We present results using the congruence presented in this paper as we
believe that multiple entry modular VPAs are a more natural and succinct model.
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highly structured, and can be succinctly represented using an equation system.
Our learning algorithm can be shown to have the same running time even when
the teacher presents such succinct counter-examples, thus yielding a polynomial
learning algorithm for such cooperative teachers.

We can also PAC learn modular-VPAs with membership queries. The PAC
learning with membership queries model [24,9] is a weaker learning framework,
where the equivalence queries are replaced by an oracle that samples strings
(based on any fixed probability distribution) and labels them as either belong-
ing to the language or not; the learning algorithm is required to identify the
concept “approximately” in polynomial time, using the sampling oracle, with
“high probability”. We can show that one can PAC learn modular VPAs pro-
vided one has an oracle that samples strings represented succinctly using the
equational representation. Because of lack of space we do not outline the PAC
learning algorithm, but the extension to this framework is standard based on
our results on learning with a knowledgeable teacher.

Next, we study the problem of conformance testing modular VPAs. In this
framework, one is given a black-box implementation, whose internal transition
structure is assumed to be unknown. The specification is another machine, but
one whose transition structure is fully known. The objective in conformance
testing is to construct a sequence of test inputs (based on the specification) such
that if the implementation does not “conform” to the specification, then the
implementation gives a different output than the specification on the test. Typ-
ically the notion of “conformance” is taken to be language equivalence, though
weaker notions such as ioco have also been explored [23]. Since Moore’s semi-
nal work [20], there have been many algorithms to generate such test sequences;
major results are summarized in [16,13,19,18] 2. These algorithms construct com-
plete suites (i.e., guaranteed to catch all buggy implementations) when both the
specification and the implementation are known to be finite state machines. Fur-
ther, these algorithms also assume that an a priori bound on the number of states
of the implementation is known. We extend these results on conformance testing
to the case when the specification and implementation are modeled as complete
modular VPAs. The size of our test suite and the running time to construct the
test suite depend on the number of states in the unknown black-box implemen-
tation, and the construction of the test suite relies on our characterization of the
minimal modular VPA recognizing a language.

Finally, we show how we can apply our results to verify third-party programs.
Black Box Checking [21] is a framework to model check unknown systems, by first
learning the model of the system and then model checking the constructed model.
This framework has been applied to construct finite state models, using Angluin’s
learning algorithm and conformance testing algorithms for finite models. Our
extension to learning and testing boolean programs, allows one to extend this
framework to verify recursive systems.

2 The references here only talk about algorithms to construct complete test suites,
which is the focus of this paper. There is also extensive work on constructing incom-
plete test suites that catch all bugs in the limit.
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An alternative formulation of visibly pushdown automata is nested word au-
tomata [6], which are finite automata (without stack) on words endowed with
a nesting relation (corresponding to the nesting relation defined between calls
and their matching returns). A nested word automaton can decide the state at
a return based on the previous state and the state before its matching call. This
model already has the implicit restriction that at a call the module and para-
meter cannot be “pushed”, and hence conforms to the restriction we introduce
in this paper. Consequently, all results in this paper also hold for appropriately
defined modular nested word automata.

The paper is organized as follows. We first introduce the model of modular
VPAs and RSMs, along with useful definitions and notation. In Section 3 we
present our results on the existence of unique, minimal, complete modular VPAs,
and show how these results can be used to construct approximately minimal
RSM models. After this we focus our attention exclusively on complete machines.
Our learning algorithm is presented in Section 4, while our conformance testing
results are presented in Section 5. Finally, we conclude in Section 6 by showing
how these results can be combined to perform black-box checking.

2 Preliminaries

In this section, we define modular VPAs, and introduce notation that we will
use in the rest of the paper.

We model Boolean programs as modular VPAs by modeling each module as
a finite-state machine that also allows calls to and returns from other modules:
modules representing different procedures are modeled separately, the usage of
stack is implicit in that when a call to a module occurs, the local state of the
module is pushed into the stack automatically, but neither the name of the called
module nor the parameter passed is stored in the stack.

Let us fix M , a finite set of modules, with m0 ∈M as the initial module. For
eachm ∈M , let us fix a nonempty finite set of parameters Pm, with Pm0 = {p0}.

A call c is a pair (m, p) where m ∈ M \ {m0} and p ∈ Pm, and denotes the
action calling the module m with parameter p (we won’t allow the initial module
to be called except at the beginning, and hence (m0, p0) will not be a call). Let
Σcall denote the set of all calls. Let us also fix a finite set of internal actions Σint,
and let Σret = {r} be the alphabet of returns, containing the unique symbol r .
Let Σ̂ = (Σcall, Σint, Σret) and let Σ = Σcall ∪Σint ∪Σret.

Definition 1 (Modular VPAs). A modular VPA over 〈M, {Pm}m∈M ,m0, Σ̂〉
is a tuple ({Qm, {qpm}p∈Pm , δm}m∈M , F ) where for each m ∈M

– Qm is a finite set of states. We assume that for m �= m′, Qm∩Qm′ = ∅. Let
Q =

⋃
m∈M Qm denote the set of all states.

– For each parameter p ∈ Pm, qpm is a state associated with p; we will call this
the entry associated with the call (m, p).
(Note that we do not insist that qpm be different from qp

′

m, when p �= p′.)
– F ⊆ Q0 is the set of final states.
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– δm = 〈δmcall, δmint, δ
m
ret〉 is a triple of transition relations, one for calls, one for

internals and one for returns, where
• δmcall ⊆ {(q, (n, p), qpn) | q ∈ Qm, (n, p) ∈ Σcall};

• δmint ⊆ {(q, a, q′) | q, q′ ∈ Qm, a ∈ Σint};

• δmret ⊆ {(q, q′, q′′) | q′, q′′ ∈ Qm, q ∈ Q};

Notation: We write q
(n,p)−−−→ qpn to mean (q, (n, p), qpn) ∈ δmcall, q

a−→ q′ to mean

(q, a, q′) ∈ δmint, and q
q′

−→ q′′ to mean (q, q′, q′′) ∈ δmret.

Semantics: A stack is a finite sequence over Q; let the set of all stacks be
St = Q∗. A configuration is any pair (q, σ) where q ∈ Q, and σ ∈ St . Let Conf
denote the set of all configurations, along with the special configuration c0.

The configuration graph of a modular VPA is (V,E) where V = Conf and E
is the smallest set of Σ-labeled edges that satisfies:

(Initial edge) c0
(m0,p0)−−−−−→ (qp0

m0
, ε) ∈ E.

(Internal edges) If (q, σ) ∈ V (q ∈ Qm) and (q, a, q′) ∈ δmint, then (q, σ) a−→
(q′, σ) ∈ E.

(Call edges) If (q, σ) ∈ V and q
(m,p)−−−→ qpm, then (q, σ)

(m,p)−−−→ (qpm, σq) ∈ E.
(Return edges) If (q, σq′) ∈ V (q′ ∈ Qm), and (q, q′, q′′) ∈ δmret, then (q, σq′) r−→

(q′′, σ) ∈ E.
(Note that q′′ and q′ belong to the same module m.)

A run of A on a word u is a path in the configuration graph on u. Let ρ :
Conf ×Σ∗ → 2Conf be the function where ρ(conf , u) is the set of configurations
reached at the end of all runs from conf on u in the configuration graph. An
accepting run of A on u is a run from the initial configuration c0 that ends in
a configuration whose state is in the final set F . A word u is accepted by A if
there is an accepting run of A on u, i.e. if ρ(c0, u) ∩ (F × St) �= ∅. The language
of A, L(A), is defined as the set of words u ∈ Σ∗ accepted by A.

Let WM be the set of well-matched words over Σ̂, i.e, the set of all words
generated by the grammar: S → cSrS (for each c ∈ Σcall), S → aS (for each
a ∈ Σint), and S → ε. We will denote by w,w′, wi, . . . words in WM . Note that
a modular VPA accepts only words that are in {(m0, p0)}.WM (since the final
states are in module m0, and the initial symbol (m0, p0) is not considered a call).

A word u reaches state q in A if (q, σ) ∈ ρ(c0, u) for some σ ∈ St . Note that
if q belongs to module m, then u = u1(m, p)w for some p ∈ Pm and w ∈ WM .
We say that (m, p)w is an access string for state q in A.

A (complete) modular VPA is said to be deterministic if its transition relation
is deterministic, i.e. for each m ∈M :

– ∀q ∈ Qm, a ∈ Σint, there is at most one q′ such that (q, a, q′) ∈ δmint; and
– ∀q ∈ Q, q′ ∈ Qm, there is exactly one q′′ such that (q, q′, q′′) ∈ δmret.
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Note that transitions on calls are always deterministic since the target state is
always the unique entry state associated with the call.

A modular VPA is said to be complete if a transition of every label is enabled
from every state, i.e. for each m ∈M ,

– for each q ∈ Qm and (n, p) ∈ Σcall, (q, (n, p), qpn) ∈ δmcall;
– for each q ∈ Qm and a ∈ Σint, ∃q′ such that (q, a, q′) ∈ δmint; and
– for each q ∈ Q and q′ ∈ Qm, ∃q′′ such that (q, q′, q′′) ∈ δmret.
A recursive state machine (RSM) is a modular VPA with no final states

set and where every word that has a run on it can be completed to a well-
matched word. More precisely, the language defined by an RSM R is the set of
words u such that there is a path in the configuration graph from the initial
configuration, and we require that for every u ∈ L(R), there is some word w ∈
({(m0, p0)}.WM ) ∩ L(R), such that u is a prefix of w.

Let MR be the set of all words with “matched-returns”, i.e. where every return
has a matching call, i.e. MR = {u ∈ Σ∗ | ∃v ∈ Σ∗, uv ∈ WM }. It is easy to see
then that the language of an RSM consists of words in (m0, p0).MR.

The size of a modular VPA (or RSM) is the number of states in it; when we
refer to minimization, we mean minimizing the number of states.

The definition of modular VPAs above has been chosen carefully with final
states only in the initial module, and disallowing calls to the initial module. Note
that if we did allow final states in non-initial modules, then complete VPAs are
less powerful than incomplete ones. For example, if u(m, p) is accepted by a
complete VPA, then u′(m, p) is also accepted by it. An incomplete VPA can
disallow the call after u′ and hence reject u′(m, p). However, incomplete VPAs
are too ill behaved in the sense that we can encode parameters into the state
being pushed at a call in an incomplete VPA, leading minimization results to
fail. The focus on complete VPAs is a subtle and tricky restriction that allows
our minimization result to go through.

Section 4 and Section 5 will consider only complete modular VPAs, and show
the learning and conformance testing results for them. In the latter half of Sec-
tion 3, we show how to handle (incomplete) RSMs by using the results for com-
plete machines.

3 Minimization of VPAs and RSMs

Minimization of Complete Modular VPAs: In this section, we will show
that for any complete modular VPA A, there exists a unique minimal (with
respect to number of states) deterministic modular VPA that accepts the same
language as A does. As a corollary, it will follow that deterministic complete
modular VPAs are as powerful as non-deterministic complete ones.

Lemma 1. For any complete modular VPA A, there exists a unique minimal
complete modular VPA A′ such that L(A′) = L(A). Further, given a complete
deterministic modular VPA A, the unique minimal deterministic modular VPA
equivalent to it can be constructed in polynomial time.
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Fig. 1. (a) and (b): Two non-isomorphic
minimum-state RSMs; (c) completing
the RSM

Proof. (sketch)
Let A = ({Qm, {qpm}p∈Pm , δm}m∈M , F )
and let L(A) = L. For every m ∈ M ,
we define an equivalence relation ∼m on
Pm×WM which depends on L (and not
on A) as: (p1, w1) ∼m (p2, w2) iff ∀u,
v ∈ Σ∗

u(m, p1)w1v ∈ L iff u(m, p2)w2vinL

Note that ∼m is a congruence in
the sense that if (p1, w1) ∼m (p2, w2),
then for any well-matched word w,
(p1, w1w) ∼m (p2, w2w).

Let [(p, w)]m denote the equivalence
class of (p, w) with respect to ∼m. I

tcan be shown that ∼m has at most
2|Qm| equivalence classes. These equiva-
lence classes correspond to states of the
unique minimal complete deterministic
modular VPA. The details of the con-
struction and complexity, and the proof
of minimality can be found in [17]. ��

Let A be a complete modular VPA.
For distinct states q1, q2 in module
m of A with access strings (m, p1)w1
and (m, p2)w2 respectively, a pair of
strings (u, v) is a distinguishing test for
{q1, q2} if exactly one of u(m, p1)w1v
and u(m, p2)w2v is in L(A). By the
above theorem, for a minimal complete
modular VPA A, there is a set D of
distinguishing tests such that for every
module m and distinct states q1, q2 in
module m of A, there is a distinguishing
test (u, v) ∈ D for {q1, q2}. We call such
a set D a complete set of distinguishing
tests.

Minimization of Recursive State Machines: Figure 1 shows two non-
isomorphic (incomplete) RSMs that use minimal number of states and accept
the same language. The call with parameter p1 checks if there are an even num-
ber of a’s (from the call to the return) while the parameter p2 checks if there are
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an even number of b’s. The first machine processes the parameters separately,
while the second machine processes both parameters and lets the caller choose
the appropriate result. However, if we restrict to complete machines, then we
can complete the first machine by enabling all calls from q0 and q1, to get a
modular VPA that accepts the language L′ = {w ∈ WM | ∀v * w, v ∈ L} 3,
where L is the language accepted by the RSM (see Fig. 1(c); all edges are not
drawn). However, the second automaton cannot be transformed this way: if we
enable the call (m, p2) from q0, then upon returning from a call, we would not
know whether the module was called with p1 or p2, and hence cannot accept the
right language.

Our strategy for minimizing RSMs is to translate an RSM into a complete
modular VPA, minimize it, and translate it back to an RSM. This results in an
RSM whose size is at most a factor k of the minimal size possible, where k is
bound by the maximum number of parameters in any module of the RSM.

Lemma 2. Let R = ({Qm, {qpm}p∈Pm , δm}m∈M ) be an RSM and let k be the
maximum number of parameters for any module. Then there exists a complete
modular VPA A such that L(A) = {w ∈ WM | ∀v * w, v ∈ L(R)}. Further, the
size of A is at most k times R, and A is deterministic if R is deterministic.

Lemma 3. Let R be an RSM, and let Â be the complete minimal deterministic
automaton such that L(Â) = {w ∈ WM | ∀v * w, v ∈ L(R)}. Then there
exists a deterministic RSM R′ with at most the number of states in Â, such that
L(R′) = L(R).

Using the lemmas above and Lemma 1, we can show:

Theorem 1. Given a deterministic RSM R, we can compute in polynomial time
an RSM R̂ that accepts the same language, such that if R′ is any RSM accepting
L(R), then R̂ has at most k times the number of states R′ has.

Proof. Given R, we complete it (using Lemma 2), minimize it (using Lemma 1),
and using Lemma 3, build an incomplete RSM R̂ (all this takes polynomial
time). If R′ is another RSM accepting the same language as R does, then its
completion results in the same language as the completion of R, and is at most k
times size of R′. Since R̂ was obtained using incompletion of a minimal machine
(and the incompletion process only removes states), the result follows.

4 Learning Complete Modular VPAs

We will now consider the problem of exactly learning a target context free lan-
guage L (over 〈M, {Pm}m∈M ,m0, Σ̂〉) by constructing a complete, modular VPA
for L from examples of strings in L and those not in L. In our learning model,
we will assume that the learning algorithm is interacting with a knowledgeable
teacher (often called a minimally adequate teacher) who assists the learner in
identifying L. We can think of the teacher as an oracle answering two types of
queries.
3 � denotes the prefix relation on words.
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Membership Query The learning algorithm may select any string x and ask
whether x is a member of L.

Equivalence Query In such a query, the algorithm submits a hypothesis RSM
Â. If L = L(Â) then the teacher informs the learning algorithm that it has
correctly identified the target language. Otherwise, in response to the query,
the learner receives a counter-example word (m0, p0)x where x is a well-
matched string and (m0, p0)x ∈ (L \L(Â))∪ (L(Â) \L). No assumptions are
made about how the counter-example is chosen. In particular the counter-
example x maybe picked adversarially.

Our goal is to design an algorithm that identifies L in time which is polynomial in
the size of the smallest modular VPA recognizing L and the length of the longest
counter-example presented to it. The algorithm that we present is very similar
to the learning algorithm for regular languages due to Angluin [9]. However our
presentation is closer in spirit to the algorithm due to Kearns and Vazirani [15].

4.1 Overview of Algorithm

Let A be the smallest, complete, deterministic, modular VPA that recognizes
the target language L and let size(A) be the number of states of A. Recall from
Lemma 1, that the states of A correspond to the equivalence classes of ∼m. The
main idea behind the learning algorithm will be to progressively identify the
equivalence classes of ∼m; the construction of the VPA A from ∼m will be the
same as that outlined in Lemma 1 (see [17]).

The learning algorithm will proceed in phases. During the execution, the al-
gorithm will maintain equivalence relations (not necessarily congruences) ≡m on
Pm ×WM such that if (p1, w1) ∼m (p2, w2) then (p1, w1) ≡m (p2, w2). In other
words, ∼m will always be a refinement of ≡m. The algorithm will also ensure
that if it knows (m0, p0)w1 ∈ L and (m0, p0)w2 �∈ L, then (p0, w1) �≡m0 (p0, w2).
Further the equivalence ≡m itself will be maintained implicitly using a data
structure called a classification forest, such that deciding if (p1, w1) ≡m (p2, w2)
is efficient; this is formally stated next. A classification forest is very similar to a
classification tree, introduced by Vazirani and Kearns. Readers unfamiliar with
the Vazirani-Kearns data structure are referred to [17].

Proposition 1. Given (p1, w1) and (p2, w2), (p1, w1) ≡m (p2, w2) can be de-
cided using O(size(A)) membership queries.

In addition to maintaining the equivalence relation ≡m, the algorithm will main-
tain a representative (p, w) for each equivalence class [(p, w)]m of ≡m. In what
follows we will denote the representative of [(p, w)]m by rep([(p, w)]m). In partic-
ular, the algorithm will ensure that (p0, ε) is always among the representatives.
In each phase of the algorithm, these representatives will be used to construct
a hypothesis machine Â. A module m will have one state corresponding to each
representative rep([(p, w)]m). The transitions are naturally determined by the
relation ≡m as follows. On a call symbol (m, p), every state has a transition to
the state rep([(p, ε)]m). On an internal symbol a, a state (p, w) = rep([(p, w)]m)
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has a transition to the state rep([(p, wa)]m). Finally on a return with (p1, w1) =
rep([(p1, w1)]m1) on top of the stack, the state (p2, w2) = rep([(p2, w2)]m2) has
a transition to the state rep([(p1, w1(m2, p2)w2r)]m1). Observe that since ≡m is
not necessarily a congruence, the machine Â depends on the representatives cho-
sen. Finally, by using special data structures, this machine can be constructed
efficiently from ≡m and the representatives (details are in [17]).

In each phase, the algorithm will construct the hypothesis machine Â based
on the current ≡m and representatives. It will then ask an equivalence query
with the machine Â. If the query has a positive answer, the learning algorithm
will stop and one can show that in this case ≡m=∼m and that Â is exactly the
machine A. On the other hand the equivalence oracle may present a counter
example string w. The algorithm will process this counter example to refine
≡m to discover a new equivalence class of ∼m. The details of how the counter-
example is processed is similar to Angluin’s algorithm and is skipped in the
interests of space; the interested reader is referred to [17].

The overall algorithm is thus as follows. The algorithm starts with a hypothe-
sis machine, where each module has exactly one state; thus (p1, w1) ≡m (p2, w2)
for any p1, p2, w1, w2. In each phase the algorithm asks an equivalence query
with the current hypothesis, and uses the answer to refine the equivalence ≡m

by identifying one more equivalence class of ∼m. This process repeats until the
algorithm has identified all the equivalence classes of ∼m. This algorithm can be
implemented efficiently and this is the main theorem of this section.

Theorem 2. Let L be a language accepted by a complete, deterministic VPA
and let A be the smallest modular VPA accepting L. The learning algorithm
identifies A by making at most size(A) calls to the equivalence oracle, and
O(size(A)(size(A) + n)) calls to the membership oracle, where n is the length
of the longest counter-example returned by the equivalence oracle.

4.2 Cooperative Teacher

The running time of the learning algorithm presented in the previous section
has the same dependence on the size of the minimal machine and the length
of counter-examples, as the learning algorithm for regular languages. However,
there is one important difference. For regular languages, a cooperative teacher
can always find a counter-example of length at most size(A) in response to
an equivalence query, yielding a polynomial running time in the presence of
cooperative teachers. This is, however not the case for VPAs as the shortest
counter-example in response to an equivalence query maybe as long as 2size(A).
Thus, even if the counter-examples are guaranteed to be the shortest possible,
the learning algorithm for VPAs will not run in polynomial time.

There is, however, one form of cooperative teacher who can assist in learning
the target VPA fast. Observe that even though the shortest counter-example
maybe exponentially long, it is typically highly structured and has a very small,
succinct representation. Consider an equation system {xi = ti}ki≥1, where xi is a
variable and ti is a well-matched string over Σ ∪ {x1, . . . xi−1}. The variable xk
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in such an equation system represents a string over WM that can be obtained
by progressively solving for xi for increasing values of i, by replacing solutions
for x1, . . . xi−1. It can be shown that there is an equation system of size at most
size(A) that represents a counter-example to any equivalence query. Further,
given a counter-example represented by an equation system (instead of explic-
itly), we can process the counter example using linearly many (in the size of
the equation system) membership queries to discover a new state in the hypoth-
esis machine. The details are a straightforward extension of the ideas already
presented, and are skipped in the interests of space.

5 Conformance Testing

We now describe the setting for conformance testing. We are given a specification
machine S and a “black-box” implementation machine I that are both deter-
ministic complete modular VPAs over 〈M, {Pm}m∈M , Σint, Σret〉. The task is to
test whether or not I is equivalent to S, i.e. L(I) = L(S). In order to achieve
this, we make the following assumptions:

1. S is minimized and has n states;
2. I is equivalent to a deterministic complete modular VPA that has at most
N states;

3. I does not change during the testing experiment.

Note that assumption 1 can be made with no loss of generality, since the
specification S is known, and hence we can assume it is minimized. Assumption 2
is necessary in order to guarantee that every state of the implementation is
explored. The need for assumption 3 is obvious.

A sample over Σ is a pair (T+, T−), where T+, T− are finite subsets of Σ∗.
A modular VPA A is consistent with sample (T+, T−) if T+ ⊆ L(A) and T− ⊆
L(A).

Definition 2. A conformance test for (S, I) is a sample (T+, T−) over Σ such
that S is consistent with (T+, T−) and, for any I satisfying the above assump-
tions, I is consistent with (T+, T−) if and only if L(I) = L(S).

Let QS (the states of S) be {q1, q2, . . . , qn}, with access strings (m1, p1)w1,
(m2, p2)w2, . . ., (mn, pn)wn respectively, and let the set of final states of S be
FS . Assume without loss of generality that the access string for every entry
state qpm of S is (m, p), and that q1 = qp0

m0
. Let QI (the set of states of I) be

{q̂1, q̂2, . . . , q̂N}, let q̂1 = q̂p0
m0

, and let the set of final states of I be FI .
Since S is minimized and has n states, for I to be equivalent to S it is necessary

for I to have at least n distinct states. Using the fact that S, being minimized, has
a complete set of distinguishing tests, we construct a sample (T+

0 , T
−
0 ) such that

any modular VPA consistent with it has at least n states. Let D be a complete
set of distinguishing tests for S. Hence, for every distinct pair of states qi, qj in
module m, there is a distinguishing test (uij , vij) ∈ D for {qi, qj}. For every i =
1, . . . , n, let Di =

⋃
j{(uij , vij)}. Define T0 =

⋃n
i=1{u(mi, pi)wiv | (u, v) ∈ Di}.

Let T+
0 = T0 ∩L(S) and T−

0 = T0 \L(S). The following lemma is easy to prove.



Minimization, Learning, and Conformance Testing of Boolean Programs 215

Lemma 4. If I is consistent with (T+
0 , T

−
0 ), then

1. for every i �= j, (mi, pi)wi and (mj , pj)wj are access strings for distinct
states of I (hence N ≥ n)

2. there are access strings {xi}Ni=1 for all states of I, where xi = (mi, pi)wi for
i = 1, . . . , n and for i > n, xi is of one of the following forms: xi = ya,
where a ∈ Σint; or xi = yzr, where y, z ∈ {x1, x2, . . . , xi−1} and z �= x1.

Note that every access string xi of I is of the form (m, p)w for some m ∈M,p ∈
Pm, w ∈WM . Assume without loss of generality that for each i, xi is an access
string for q̂i. If I is equivalent to S, it is necessary that for each i, xi is an access
string of a final state of I if and only if xi is an access string of a final state
in S. We define a sample (T+

1 , T
−
1 ) such that I is consistent with this sample if

this condition holds.
Define h : QI → QS as follows: h(q̂i) = qj iff xi is an access string for qj in S.

Define T1 = {xi | i = 1, . . . , N}. Let T+
1 = T1 ∩ L(S) and T−

1 = T1 \L(S). We
immediately have the following lemma:

Lemma 5. If I is consistent with (T+
1 , T

−
1 ), then for every 1 ≤ i ≤ n, q̂i ∈ FI

iff h(q̂i) ∈ FS .

Our goal is to design a sample (T+, T−) such that if I is consistent with it,
then L(I) = L(S). In view of Lemma 5, it is enough to construct a sample such
that if I is consistent with it, then for every u ∈ MR, h(q̂i)

u−→S h(q̂j) whenever
q̂i

u−→I q̂j . Define

T2 =
⋃n

i=1{uxiav | a ∈ Σint, (u, v) ∈ Dj where h(q̂i)
a−→S qj}

T3 =
⋃n

i,j=1{uxjxirv | (u, v) ∈ Dk where h(q̂i)
h(q̂j)−−−→S qk}

It is not hard to see that if I is consistent with (T2 ∩ L(S), T2 \L(S)), then for
every a ∈ Σint, h(q̂i)

a−→S h(q̂j) whenever q̂i
a−→I q̂j . Similarly, it can be show that

if I is consistent with (T3 ∩ L(S), T3 \L(S)), then h(q̂i)
h(q̂j)−−−→S h(q̂k) whenever

q̂i
q̂j−→I q̂k. Finally, since we had assumed that the access string for each entry

state qpm of S was (m, p) and xj = (m, p) for some 1 ≤ j ≤ n, it follows that

h(q̂pm) = qpm. Hence, h(q̂i)
(m,p)−−−→S h(q̂pm) whenever q̂i

(m,p)−−−→I q̂
p
m. The following

theorem now follows.

Theorem 3. Let T =T0∪T1∪T2∪T3. If I is consistent with (T∩L(S), T \L(S)),
then L(I) = L(S).

Proof. By the above observations, for any string u ∈ MR, it follows by induction
on the length of u that h(q̂i)

u−→S h(q̂j) whenever q̂i
u−→I q̂j . Now Lemma 5 implies

that L(I) = L(S). ��

By the above Theorem, a conformance test (T+, T−) for (S, I) can be con-
structed given a complete set of distinguishing tests D for S, and a set of access
strings for all states of I. We show how these requirements can be met.
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Constructing a complete set of distinguishing tests
Lemma 6. If S is a minimized deterministic complete modular VPA, a complete
set of distinguishing tests D can be constructed effectively.

The proof of the above lemma is presented in the full version [17]. Let Ω =
Σ ∪ {xi}ni=1. The following lemma is a simple corollary to Lemma 6.

Lemma 7. A complete set of distinguishing tests D for S can be represented as(
n
2

)
strings in Ω∗, each of length O(n2), where n is the number of states of S.

Constructing access strings
Let Ω be as defined above, and let Ω′ = Ω∪{xn+1, . . . , xN}. By Lemma 4, if I is
consistent with (T+

0 , T
−
0 ), there is a system ofN−n equations, each representable

by O(1) symbols in Ω′, describing the set of access strings for all states in I.
There are at most

(
N |Σ|+N2

)N−n such systems of equations, at least one of
which describes a correct set of access strings for I. Assuming |Σ| is a constant,
a set of access strings for I can be represented in O(n log n + N2(N−n) logN)
space.

6 Black Box Checking

Our learning algorithm, along with our algorithm to generate conformance tests,
can be used in a powerful way to model check black-box programs whose struc-
ture is unknown. Black-box checking was introduced in [21], and in this frame-
work one assumes that while the structure of the system is unknown, it can
be simulated to see if it exhibits certain behaviors. The main idea is to use a
machine learning algorithm to construct a model of the program and then use
the constructed machine model for verification. Our learning algorithm requires
a teacher to answer both membership and equivalence queries. So in order to
use our learning algorithm to construct a model of the program, we will need to
find a way to answer these queries. Membership queries correspond to whether
a certain sequence of steps is executed by the system; thus they can be answered
by simulating the system. Equivalence queries are handled by constructing a
conformance test. We assume that an a priori upper bound on the size of the
model of the program is known. When the learning algorithm builds a hypothesis
machine, we construct a conformance test using the hypothesis as the specifica-
tion and the program as the implementation. If the program behaves the same
way as the constructed hypothesis, then we have constructed a faithful model
of the program. On the other hand, if the program differs from the hypoth-
esis, then the conformance test gives us the counter-example needed for the
learning algorithm to refine its hypothesis. Thus, using the learning and test-
ing algorithms presented here, we can perform black-box checking of recursive
programs.
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A Capability Calculus for Concurrency and
Determinism�
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Abstract. We present a capability calculus for checking partial con-
fluence of channel-communicating concurrent processes. Our approach
automatically detects more programs to be partially confluent than pre-
vious approaches and is able to handle a mix of different kinds of com-
munication channels, including shared reference cells.

1 Introduction

Deterministic programs are easier to debug and verify than non-deterministic
programs, both for testing (or simulation) and for formal methods. However,
sometimes programs are written as communicating concurrent processes, for
speed or for ease of programming, and therefore are possibly non-deterministic.
In this paper, we present a system that can automatically detect more programs
to be deterministic than previous methods [7,10,8,9,5]. Our system is able to
handle programs communicating via a mix of different kinds of channels: ren-
dezvous, output buffered, input buffered, and shared reference cells. Section 3.2
shows a few examples that can be checked by our system: producer consumer, to-
ken ring, and barrier synchronization. The companion technical report contains
the omitted proofs [12].

We cast our system as a capability calculus [4]. The capability calculus was
originally proposed as a framework for reasoning about resources in sequential
computation, but has recently been extended to reason about determinism in
concurrent programs [3,11]. However, these systems can only reason about syn-
chronization at join points, and therefore cannot verify determinism of channel-
communicating processes. This paper extends the capability calculus to reason
about synchronization due to channel communications. A key insight comes from
our previous work [11] which showed that confluence can be ensured in a princi-
pled way from ordering dependencies between the side effects; dependencies are
enforced by finding a flow assignment (which can be interpreted as fractional
capabilities [3]) in the dependence graph.

2 Preliminaries

We focus on the simple concurrent language shown in Figure 1. A program, p,
is a parallel composition of finitely many processes. A process, s, is a sequential
� This research was supported in part by NSF Grant No. CCR-0326577.

C. Baier and H. Hermanns (Eds.): CONCUR 2006, LNCS 4137, pp. 218–232, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Capability Calculus for Concurrency and Determinism 219

p ::= s1||s2|| . . . ||sn (program)
e ::= c (channel)
| x (local variable)
| n (integer constant)
| e1 op e2 (integer operation)

s ::= s1; s2 (sequence)
| if e then s1 else s2 (branch)
| while e do s (loop)
| skip (skip)
| x := e (assignment)
| !(e1, e2) (write channel)
| ?(e, x) (read channel)

Fig. 1. The syntax of the small concurrent language

statement consisting of the usual imperative features as well as channel commu-
nication operations. Here, !(e1, e2) means writing the value of e2 to the channel
e1, and ?(e, x) means storing the value read from the channel e to the variable
x. The variables are process-local, and so the only means of communication are
channel reads and writes. We use meta-variables x, y, z, etc. for variables and
c, d, etc. for channels.

The language cannot dynamically create channels or spawn new processes, but
these restrictions are imposed only to keep the main presentation to the novel
features of the system. Section 3.3 shows that techniques similar to previous
work in the capability calculus can be used to handle dynamic channels and
processes.

2.1 Channel Kinds

The literature on concurrency includes several forms of channels with dis-
tinct semantics. We introduce these channel kinds and show how they affect
determinism.

If c and d are rendezvous channels, then the following program is determinis-
tic1 because (x, y) = (1, 2) when the process terminates:

!(c, 1); !(d, 2) || !(d, 3); ?(c, x) || ?(d, y); ?(d, y)

The same program is non-deterministic if c is output buffered because !(c, 1)
does not need to wait for the reader ?(c, x), and therefore (x, y) could be (1, 2)
or (1, 3).

While all the processes share one output buffer per channel, each process has
its own input buffer per channel. Therefore, !(c, 1); !(c, 2) || ?(c, x) || ?(c, y) is
deterministic if c is input buffered but not if c is output buffered or rendezvous.
Input buffered channels are the basis of Kahn process networks [7].

We also consider a buffered channel whose buffer is overwritten by every write
but never modified by a read. Such a channel is equivalent to a reference cell. If
c is a reference cell, !(c, 1); !(c, 2) || ?(c, x) is not deterministic because !(c, 2)
may or may-not overwrite 1 in the buffer before ?(c, x) reads the buffer. The
program is deterministic if c is any other channel kind. On the other hand,
!(c, 1); !(c, 2); !(d, 3); ?(c, x) || ?(d, x); ?(c, y) is deterministic if c is a reference
1 Here, we use the term informally. Determinism is formally defined in Section 2.2.
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cell and d is rendezvous because both reads of c happen after !(c, 2) overwrites
the buffer. But the program is not deterministic if c is output buffered.

2.2 Operational Semantics

The operational semantics of the language is defined as a series of reductions
from states to states. A state is represented by the triple (B,S, p) where B is a
buffer, S is a store, and p is a program such that each concurrent process in p
is indexed by a process number, i.e., p ::= 1.s1||2.s2|| . . . ||n.sn. Indexes are used
to connect a process to its input buffer and its store.

A store is a mapping from process indexes to histories of assignments where
a history is a sequence of pairs (x, e), meaning e was assigned to x. We use
meta-variables h, h′, etc. for histories. Let :: be append. A lookup in a history
is defined as: (h :: (x, e))(x) = e and (h :: (y, e))(x) = h(x) if y �= x. We use
history instead of memory for the purpose of defining determinism.

Expressions are evaluated entirely locally. The semantics of expressions are
defined as: (h, c) ⇓ c, (h, x) ⇓ h(x), (h, n) ⇓ n, and (h, e1 op e2) ⇓ e′1 op e′2 if
(h, e1) ⇓ e′1 and (h, e2) ⇓ e′2.

Figure 2 shows the reduction rules. Programs are equivalent up to re-ordering
of parallel processes, e.g., p1||p2 = p2||p1. If p is an empty program (i.e., p

(S(i), e) ⇓ n n �= 0
(B, S, i.(if e then s1 else s2); s||p) → (B, S, i.s1; s||p)

IF1

(S(i), e) ⇓ 0
(B, S, i.(if e then s1 else s2); s||p) → (B, S, i.s2; s||p)

IF2

(S(i), e) ⇓ n n �= 0
(B, S, i.(while e do s1); s||p) → (B,S, i.s1; (while e do s1); s||p)

WHILE1

(S(i), e) ⇓ 0
(B, S, i.(while e do s1); s||p) → (B, S, i.s||p)

WHILE2

(S(i), e) ⇓ e′ S′ = S[i �→ S(i) :: (x, e′)]
(B, S, i.x := e; s||p) → (B,S′, i.s||p)

ASSIGN

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′
2 (S(j), e3) ⇓ c

¬buffered(c) S′ = S[j �→ S(j) :: (x, e′
2)]

(B, S, i.!(e1, e2); s1||j.?(e3, x); s2||p) → (B, S′, i.s1||j.s2||p)
UNBUF

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′
2 buffered(c) B′ = B.write(c, e′

2)
(B, S, i.!(e1, e2); s||p) → (B′, S, i.s||p)

BUF1

(S(i), e) ⇓ c buffered(c)
(B′, e′) = B.read(c, i) S′ = S[i �→ S(i) :: (x, e′)]

(B,S, i.?(e, x); s||p) → (B′, S′, i.s||p)
BUF2

Fig. 2. The operational semantics of the small concurrent language
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contains 0 processes), then p′||p = p′. Also, we let s = s; skip = skip; s.
Note that the rules only reduce the left-most processes, and so we rely on
process re-ordering to reduce other processes. The rules IF1, IF2, WHILE1,
and WHILE2 do not involve channel communication and are self-explanatory.
ASSIGN is also a process-local reduction because variables are local. Here,
S[i �→ h] means {j �→ S(j) | j �= i ∧ j ∈ dom(S)} ∪ {i �→ h}. We use the same
notation for other mappings.

UNBUF handles communication over rendezvous channels. The predicate
¬buffered(c) says c is unbuffered (and therefore rendezvous). Note that the writ-
ten value e′2 is immediately transmitted to the reader. BUF1 and BUF2 handle
communication over buffered channels, which include output buffered channels,
input buffered channels, and reference cells. The predicate buffered(c) says that
c is a buffered channel. We write B.write(c, e′2) for the buffer B after e′2 is writ-
ten to the channel c, and B.read(c, i) for the pair (B′, e′) where e′ is the value
process i read from channel c and B′ is the buffer after the read.

Formally, a buffer B is a mapping from channels to buffer contents. If c is
a rendezvous channel, then B(c) = nil indicating that c is not buffered. If c is
output buffered, then B(c) = q where q is a FIFO queue of values. If c is input
buffered, then B(c) = 〈q1, q2, . . . , qn〉, i.e., a sequence of FIFO queues where each
qi represents the buffer content for process i. If c is a reference cell, then B(c) = e
for some value e. Let enq(q, e) be q after e is enqueued. Let deq(q) be the pair
(q′, e) where q′ is q after e is dequeued. Buffer writes and reads are defined as
shown in Figure 3. Note that B.read(c, i) and B.write(c, e) are undefined if c is
rendezvous.

We write P →∗ Q for 0 or more reduction steps from P to Q. We define
partial confluence and determinism.

Definition 1. Let Y be a set of channels. We say that P is partially confluent
with respect to Y if for any P →∗ P1 communicating only over channels in Y ,
and for any P →∗ P2, there exists a state Q such that P2 →∗ Q communicating
only over channels in Y and P1 →∗ Q.

B.write(c, e) =

B[c �→ enq(B(c), e)] if c is output buffered
B[c �→ 〈enq(q1, e), . . . , enq(qn, e)〉]

where B(c) = 〈q1, . . . , qn〉
if c is input buffered

B[c �→ e] if c is a reference cell

B.read(c, i) =

(B[c �→ q′], e)
where B(c) = q and (q′, e) = deq(q)

if c is output buffered

(B[c �→ 〈q1, . . . , q
′
i, . . . , qn〉], e)

where B(c) = 〈q1, . . . , qi, . . . , qn〉
(q′

i, e) = deq(qi)
if c is input buffered

(B, B(c)) if c is a reference cell

Fig. 3. Buffer operations
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Definition 2. Let Y be a set of channels. We say that P is deterministic with
respect to Y if for each process index i, there exists a (possibly infinite) sequence
hi such that for any P →∗ (B,S, p) that communicates only over channels in Y ,
S(i) is a prefix of hi.

Determinism implies that for any single process, interaction with the rest of the
program is deterministic. Determinism and partial confluence are related in the
following way.

Lemma 1. If P is partially confluent with respect to Y then P is deterministic
with respect to Y .

Note that the definitions are sufficient for programs interacting with the en-
vironment because an environment can be modeled as a process using integer
operators with unknown (but deterministic) semantics.

3 Calculus of Capabilities

We now present a capability calculus for ensuring partial confluence. While capa-
bility calculi are typically presented as a type system in the literature, we take a
different approach and present the capability calculus as a dynamic system. We
then construct a type system to statically reason about the dynamic capability
calculus. This approach allows us to distinguish approximations due to the type
abstraction from approximations inherent in the capability concept. (We have
taken a similar approach in previous work [11].)

We informally describe the general idea. To simplify matters, we begin this
initial discussion with rendezvous channels and total confluence. Given a pro-
gram, the goal is to ensure that for each channel c, at most one process can
write c and at most one process can read c at any point in time. To this end,
we introduce capabilities r(c) and w(c) such that a process needs r(c) to read
from c and w(c) to write to c. Capabilities are distributed to the processes at
the start of the program and are not allowed be duplicated.

Recall the following confluent program from Section 2:

1.!(c, 1); !(d, 2) || 2.!(d, 3); ?(c, x) || 3.?(d, y); ?(d, y)

Note that for both c and d, at most one process can read and at most one
process can write at any point in time. However, because both process 1 and
process 2 write to d, they must somehow share w(d). A novel feature of our
capability calculus is the ability to pass capabilities between processes. The idea
is to let capabilities be passed when the two processes synchronize, i.e., when
the processes communicate over a channel. In our example, we let process 2
have w(d) at the start of the program. Then, when process 1 and process 2
communicate over c, we pass w(d) from process 2 to process 1 so that process 1
can write to d.

An important observation is that capability passing works in this example
because !(d, 3) is guaranteed to occur before the communication on c due to c
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being rendezvous. If c is buffered (recall that the program is not confluent in this
case), then !(c, 1) may occur before !(d, 3). Therefore, process 1 cannot obtain
w(d) from process 2 when c is written because process 2 may still need w(d) to
write on d. In general, for a buffered channel, while the read is guaranteed to
occur after the write, there is no ordering dependency in the other direction,
i.e., from the read to the write. Therefore, capabilities can be passed from the
writer to the reader but not vice versa, whereas capabilities can be passed in
both directions when communicating over a rendezvous channel.

Special care is needed for reference cells. If c is a reference cell, the program
1.!(c, 1); !(c, 2)||2.?(c, x) is not deterministic although process 1 is the only writer
and process 2 is the only reader. We use fractional capabilities [3,11] such that a
read capability is a fraction of the write capability. Capabilities can be split into
multiple fractions, which allows concurrent reads on the same reference cell, but
must be re-assembled to form the write capability. Fractional capabilities can
be passed between processes in the same way as other capabilities. Recall the
following confluent program from Section 2 where c is a reference cell and d is
rendezvous:

1.!(c, 1); !(c, 2); !(d, 3); ?(c, x) || 2.?(d, x); ?(c, y)

Process 1 must start with the capability to write c. Because both processes read
from c after communicating over d, we split the capability for c such that one
half of the capability stays in process 1 and the other half is passed to process 2
via d. As a result, both processes obtain the capability to read from c. We have
shown previously that fractional capabilities can be derived in a principled way
from ordering dependencies [11].

We now formally present our capability calculus. Let

Capabilities = {w(c), r(c) | c is rendezvous or output buffered}
∪{w(c) | c is input buffered} ∪ {w(c) | c is a reference cell}

A capability set C is a function from Capabilities to rational numbers in the
range [0, 1]. If c is rendezvous, output buffered, or input buffered, C(w(c)) = 1
(resp. C(r(c)) = 1) means that the capability to write (resp. read) c is in C. Read
capabilities are not needed for input buffered channels because each process has
its own buffer. For reference cells, C(w(c)) = 1 means that the capability to
write is in C, whereas C(w(c)) > 0 means that the capability to read is in C.
To summarize, we define the following predicates:

hasWcap(C, c) ⇔ C(w(c)) = 1

hasRcap(C, c) ⇔

⎧⎪⎨⎪⎩
C(r(c)) = 1 if c is rendezvous or output buffered
true if c is input buffered
C(w(c)) > 0 if c is reference cell

To denote capability merging and splitting, we define:

C1 + C2 = {cap �→ C1(cap) + C2(cap) | cap ∈ Capabilities}

We define C1 − C2 = C3 if C1 = C3 + C2. (We avoid negative capabilities.)
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(S(i), e) ⇓ n n �= 0
(X, B, S, i.C.(if e then s1 else s2); s||p) → (X, B, S, i.C.s1; s||p)

IF1′

(S(i), e) ⇓ 0
(X, B, S, i.C.(if e then s1 else s2); s||p) → (X, B, S, i.C.s2; s||p)

IF2′

(S(i), e) ⇓ n n �= 0
(X, B, S, i.C.(while e do s1); s||p)

→ (X, B, S, i.C.s1; (while e do s1); s||p)

WHILE1′

(S(i), e) ⇓ 0
(X, B, S, i.C.(while e do s1); s||p) → (X, B, S, i.C.s||p)

WHILE2′

(S(i), e) ⇓ e′ S′ = S[i �→ S(i) :: (x, e′)]
(X, B, S, i.C.x := e; s||p) → (X, B, S′, i.C.s||p)

ASSIGN′

Fig. 4. The capability calculus: sequential reductions

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′
2 (S(j), e3) ⇓ c

¬buffered(c) S′ = S[j �→ S(j) :: (x, e′
2)]

� = (confch(c) ⇒ (hasWcap(Ci, c) ∧ hasRcap(Cj , c)))
(X, B, S, i.Ci.!(e1, e2); s1||j.Cj?(e3, x); s2||p)


→ (X, B, S′, i.(Ci − C + C′).s1||j.(Cj + C − C′).s2||p)

UNBUF′

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′
2 buffered(c)

B′ = B.write(c, e′
2) � = (confch(c) ⇒ hasWcap(C, c))

(X, B, S, i.C.!(e1, e2); s||p) 
→ (X[c �→ X(c) + C′], B′, S, i.(C −C′).s||p)
BUF1′

(S(i), e) ⇓ c buffered(c) (B′, e′) = B.read(c, i)
S′ = S[i �→ S(i) :: (x, e′)] � = (confch(c) ⇒ ¬hasRcap(C, c))

(X, B, S, i.C.?(e, x); s||p) 
→ (X[c �→ X(c)− C′], B′, S′, i.(C + C′).s||p)
BUF2′

Fig. 5. The capability calculus: communication reductions

Figure 4 and Figure 5 show the reduction rules of the capability calculus.
The reduction rules (technically, labeled transition rules) are similar to those of
operational semantics with the following differences.

Each concurrent process is prefixed by a capability set C representing the
current capabilities held by the process. The rules in Figure 4 do not utilize ca-
pabilities (i.e., capabilities are only passed sequentially) and are self-explanatory.
Figure 5 shows how capabilities are utilized at communication points. UNBUF′

sends capabilities C from the writer process to the reader process and sends ca-
pabilities C′ from the reader process to the writer process. UNBUF′ checks
whether the right capabilities are present by hasWcap(Ci, c) ∧ hasRcap(Cj , c).
The label � records whether the check succeeds. Because we are interested in
partial confluence with respect to some set Y of channels, we only check the
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capabilities if c ∈ Y . To this end, the predicate confch() parameterizes the sys-
tem so that confch(c) iff c ∈ Y .

BUF1′ and BUF2′ handle buffered communication. Recall that the writer
can pass capabilities to the reader. BUF1′ takes capabilities C′ from the writer
process and stores them in X . BUF2′ takes capabilities C′ from X and gives
them to the reader process. The mapping X from channels to capability sets
maintains the capabilities stored in each channel.

We now formally state when our capability calculus guarantees partial con-
fluence. Let erase((X,B, S, 1.C1.s1|| . . . ||n.Cn.sn)) = (B,S, 1.s1|| . . . ||n.sn), i.e.,
erase() erases all capability information from the state. We use meta-variables P ,
Q, R, etc. for states in the operational semantics and underlined meta-variables
P , Q, R, etc. for states in the capability calculus.

A well-formed state is a state in the capability calculus that does not carry
duplicated capabilities. More formally,

Definition 3. Let P = (X,B, S, 1.C1.s1|| . . . ||n.Cn.sn). Let C =
∑n

i=1 Ci +∑
c∈dom(X)X(c). We say P is well-formed if for all cap ∈ dom(C), C(cap) = 1.

We define capability-respecting states. Informally, P is capability respecting with
respect to a set of channels Y if for any sequence of reductions from erase(P ),
there exists a strategy to pass capabilities between the processes such that every
communication over the channels in Y occurs under the appropriate capabilities.
More formally,

Definition 4. Let Y be a set of channels and let confch(c) ⇔ c ∈ Y . Let M
be a set of states in the capability calculus. M is said to be capability-respecting
with respect to Y if for any P ∈M ,

– P is well-formed, and
– for any state Q such that erase(P ) → Q, there exists Q ∈ M such that,

erase(Q) = Q, P �→ Q, and if � is not empty then � = true.

We now state the main claim of this section.

Theorem 1. Let P be a state. Suppose there existsM such that M is capability-
respecting with respect to Y and there exists P ∈ M such that erase(P ) = P .
Then P is partially confluent with respect to Y .

3.1 Static Checking of Capabilities

Theorem 1 tells us that to ensure that P is partially confluent, it is sufficient
to find a capability-respecting set containing some P such that erase(P ) = P . 2

Ideally, we would like to use the largest capability-respecting set, but such a set
is not recursive (because it is reducible from the halting problem). Instead, we
use a type system to compute a safe approximation of the set.
2 It is not a necessary condition, however. For example, !(c, 1)||!(c, 1)||?(c, x)||?(c, x)

is confluent but does not satisfy the condition.
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We define four kinds of channel types, one for each channel kind.

τ ::= ch(ρ, τ, Ψ1, Ψ2) (rendezvous)
| ch(ρ, τ, Ψ) (output buffered)
| ch(ρ, τ, 〈Ψ1, . . . , Ψn〉) (input buffered)
| ch(ρ, τ) (reference cell)
| int (integers)

Meta-variables ρ, ρ′, etc. are channel handles. Let Handles be the set of channel
handles. Let StaticCapabilities = {w(ρ), r(ρ) | ρ ∈ Handles}. Meta-variables
Ψ , Ψ ′, etc. are mappings from StaticCapabilities to [0, 1]. We call such a map-
ping a static capability set. The rendezvous channel type can be read as follows:
the channel communicates values of type τ , any writer of the channel sends
capabilities Ψ1, and any reader of the channel sends capabilities Ψ2. For an out-
put buffered channel, because readers cannot send capabilities, only one static
capability set, Ψ , is present in its type. For an input buffered channel, the se-
quence 〈Ψ1, . . . , Ψn〉 lists capabilities such that each process i gets Ψi from a read.
Because a value stored in a reference cell may be read arbitrarily many times,
our type system cannot statically reason about processes passing capabilities
through reference cells, and so a reference cell type does not carry any static
capability set.

Additions and subtractions of static capabilities are analogous to those of
(actual) capabilities:

Ψ1 + Ψ2 = {cap �→ Ψ1(cap) + Ψ2(cap) | cap ∈ StaticCapabilities}
Ψ1 − Ψ2 = Ψ3 if Ψ1 = Ψ3 + Ψ2

We say Ψ1 ≥ Ψ2 if there exists Ψ3 such that Ψ1 = Ψ2 + Ψ3.
For channel type τ , hdl(τ) is the handle of the channel, and valtype(τ)

is the type of the communicated value. That is, hdl(ch(ρ, . . .)) = ρ and
valtype(ch(ρ, τ, . . .)) = τ . Also, writeSend(τ) (resp. readSend(τ)) is the set of
capabilities sent by a writer (resp. reader) of the channel. More formally,

writeSend(ch(ρ, τ, Ψ1, Ψ2)) = Ψ1
writeSend(ch(ρ, τ, Ψ)) = Ψ
writeSend(ch(ρ, τ, 〈Ψ1, . . . , Ψn〉)) =

∑n
i=1 Ψi

writeSend(ch(ρ, τ)) = 0

readSend(τ) =

{
Ψ2 if τ = ch(ρ, τ ′, Ψ1, Ψ2)
0 otherwise

(0 is the constant zero functionλx.0.) Similarly, writeRecv(τ) (resp.readRecv(τ, i))
is the set of capabilities received by the writer (resp.the reader process i):

writeRecv(τ) = readSend(τ)

readRecv(τ, i) =

{
Ψi if τ = ch(ρ, τ, 〈Ψ1, . . . , Ψn〉)
writeSend(τ) otherwise
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Γ, i, Ψ � s1 : Ψ1 Γ, i, Ψ1 � s2 : Ψ2

Γ, i, Ψ � s1; s2 : Ψ2
SEQ

Γ � e : int Γ, i, Ψ � s1 : Ψ1 Γ, i, Ψ � s2 : Ψ2 Ψ1 ≥ Ψ3 Ψ2 ≥ Ψ3

Γ, i, Ψ � if e then s1 else s2 : Ψ3
IF

Γ � e : int Γ, i, Ψ1 � s : Ψ2 Ψ2 ≥ Ψ1 Ψ ≥ Ψ1

Γ, i, Ψ � while e do s : Ψ2
WHILE

Γ, i, Ψ � skip : Ψ
SKIP Γ � e : Γ (x)

Γ, i, Ψ � x := e : Ψ
ASSIGN

Γ � e1 : τ Γ � e2 : valtype(τ ) confch(τ, Γ ) ⇒ hasWcap(Ψ, τ )
Γ, i, Ψ � !(e1, e2) : Ψ − writeSend(τ ) + writeRecv(τ )

WRITE

Γ � e : τ Γ (x) = valtype(τ ) confch(τ, Γ ) ⇒ hasRcap(Ψ, τ )
Γ, i, Ψ � ?(e, x) : Ψ − readSend(τ ) + readRecv(τ, i)

READ

Fig. 6. Type checking rules

Note that the writer of the input buffered channel ch(ρ, τ, 〈Ψ1, . . . , Ψn〉) must
be able to send the sum of all capabilities to be received by each process (i.e.,∑n

i=1 Ψi), whereas the reader receives only its own share (i.e., Ψi).
For channel type τ , hasWcap(Ψ, τ) and hasRcap(Ψ, τ) are the static analog of

hasWcap(C, c) and hasRcap(C, c). More formally,

hasWcap(Ψ, τ)⇔ Ψ(w(hdl(τ))) = 1

hasRcap(Ψ, τ) ⇔

⎧⎪⎨⎪⎩
Ψ(r(hdl(τ))) = 1 if τ is rendezvous or output buffered
true if τ is input buffered
Ψ(w(hdl(τ))) > 0 if τ is reference cell

A type environment Γ is a mapping from channels and variables to types such
that for each channel c and d,

– the channel type kind of Γ (c) coincides with the channel kind of c, and
– if c �= d then hdl(Γ (c)) �= hdl(Γ (d)), i.e., each handle ρ uniquely identifies a

channel. (Section 3.3 discusses a way to relax this restriction.)

We sometimes write Γ [c] to mean hdl(Γ (c)).
Expressions are type-checked as follows:

Γ , c : Γ (c) Γ , x : Γ (x) Γ , n : int
Γ , e1 : int Γ , e2 : int

Γ , e1 op e2 : int

Figure 6 shows the type checking rules for statements. The judgments are of
the form Γ, i, Ψ , s : Ψ ′ where i is the index of the process where s appears in,
Ψ the capabilities before s, and Ψ ′ the capabilities after s. SEQ, IF, WHILE,
SKIP, and ASSIGN are self-explanatory. WRITE handles channel writes and
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READ handles channel reads. Here, confch(τ, Γ ) is defined as:

confch(τ, Γ )⇔ ∃c.Γ [c] = hdl(τ) ∧ confch(c)

We write Γ , B(c) if the buffer B(c) is well-typed, i.e., Γ , e : valtype(Γ (c))
for each value e stored in the buffer B(c). We write Γ , h if the history h is
well-typed, i.e, Γ , h(x) : Γ (x) for each x ∈ dom(h). We write Γ , C : Ψ if Ψ
represents C, i.e., for each w(c) ∈ dom(C), Ψ(w(Γ [c])) = C(w(c)) and for each
r(c) ∈ dom(C), Ψ(r(Γ [c])) = C(r(c)).

Let P = (B,X, S, 1.C1.s1|| . . . ||n.Cn.sn). An environment for P consists of a
type environment Γ for typing the channels, a type environment Γi for typ-
ing each process i, the starting static capability Ψi for each process i, and
the mapping W from handles to static capabilities that represents X . We say
P is well-typed under the environment (Γ, Γ1, . . . , Γn, Ψ1, . . . , Ψn,W ), written
(Γ, Γ1, . . . , Γn, Ψ1, . . . , Ψn,W ) , P , if

– For each c, Γ , B(c).
– For each i, Γi ⊇ Γ , Γi , S(i), Γ , Ci : Ψi, and Γi, i, Ψi , si : Ψ ′

i for some Ψ ′
i .

– For each c, Γ , X(c) : W (Γ [c]), i.e., W is a static representation of X .
– Let Ψtotal =

∑n
i=1 Ψi +

∑
ρ∈dom(W )W (ρ). Then for each cap ∈ dom(Ψtotal ),

Ψtotal (cap) = 1, i.e., there are no duplicated capabilities.
– For all output buffered channels c, W (Γ [c]) = |B(c)| ×writeSend(Γ (c)). For

all input buffered channels c, W (Γ [c]) =
∑n

i=1 |B(c).i| × readRecv(Γ (c), i).

In the last condition, |B(c)| denotes the length of the queue B(c), and |B(c).i|
denotes the length of the queue for process i (for input buffered channels). The
condition ensures that there are enough capabilities in X for buffered reads. We
now state the main claim of this section.

Theorem 2. Let Y be a set of channels and let confch(c) ⇔ c ∈ Y . Let M =
{P | ∃Env .Env , P}. Then M is capability-respecting with respect to Y .

Theorem 2 together with Theorem 1 implies that to check if P is confluent, it
suffices to find a well-typed P such that P = erase(P ). More formally,

Corollary 1. Let Y be a set of channels and let confch(c) ⇔ c ∈ Y . P is
partially-confluent and deterministic with respect to Y if there exists P and Env
such that P = erase(P ) and Env , P .

The problem of finding P and Env such that P = erase(P ) and Env , P can
be formulated as linear inequality constraints satisfaction problem. The details
are similar to the type inference algorithm from our previous work [11]. The
constraints can be generated in time polynomial in the size of P , which can then
be solved efficiently by a linear programming algorithm.

3.2 Examples

Producer Consumer. Let c be an output buffered channel. The program
1.while 1 do !(c, 1) || 2.while 1 do ?(c, x) is a simple but common commu-
nication pattern of sender and receiver processes being fixed for each channel;
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no capabilities need to be passed between processes. The type system can prove
confluence by assigning the starting capabilities 0 [w(ρ) �→ 1] to process 1 and
0 [r(ρ) �→ 1] to process 2 where c : ch(ρ, int, 0 ).

Token Ring. Let c1, c2, c3 be rendezvous and d be output buffered. The program
below models a token ring where processes 1, 2, and 3 take turns writing to d:

1.while 1 do (?(c3, x); !(d, 1); !(c1, 0))
|| 2.while 1 do (?(c1, x); !(d, 2); !(c2, 0))
|| 3.!(c3, 0); while 1 do (?(c2, x); !(d, 3); !(c3, 0))
|| 4.while 1 do ?(d, y)

Recall that variables x and y are process local. The type system can prove
confluence by assigning the channel d the type ch(ρd, int, 0 ) and each ci the
type ch(ρci , int, 0 [w(ρd) �→ 1], 0 ), which says that a write to ci sends w(d) to the
reader. The starting capabilities are 0 [r(ρc3 ) �→ 1, w(ρc1) �→ 1] for process 1,
0 [r(ρc1 ) �→ 1, w(ρc2) �→ 1] for process 2, 0 [r(ρc2) �→ 1, w(ρc3) �→ 1, w(ρd) �→ 1]
for process 3, and 0 [r(ρd) �→ 1] for process 4.

Barrier Synchronization. Let c1, c2, c3 be reference cells. Let d1, d2, d3, d′1, d′2,
d′3 be input buffered channels. Consider the following program:

1.while 1 do (!(c1, e1); !(d1, 0);BR; ?(c1, y); ?(c2, z); ?(c3, w); !(d′1, 0);BR′)
|| 2.while 1 do (!(c2, e2); !(d2, 0);BR; ?(c1, y); ?(c2, z); ?(c3, w); !(d′2, 0);BR′)
|| 3.while 1 do (!(c3, e3); !(d3, 0);BR; ?(c1, y); ?(c2, z); ?(c3, w); !(d′3, 0);BR′)

Here, BR = ?(d1, x); ?(d2, x); ?(d3, x) and BR′ = ?(d′1, x); ?(d
′
2, x); ?(d

′
3, x). The

program is an example of barrier-style synchronization. Process 1 writes to c1,
process 2 writes to c2, process 3 writes to c3, and then the three processes
synchronize via a barrier so that none of the processes can proceed until all are
done with their writes. Note that !(di, 0);BR models the barrier for each process
i. After the barrier synchronization, each process reads from all three reference
cells before synchronizing themselves via another barrier, this time modeled by
!(d′i, 0);BR′, before the next iteration of the loop.

The type system can prove confluence by assigning the following types (assume
e1, e2, and e3 are of type int): c1 : ch(ρc1, int), c2 : ch(ρc2, int), c3 : ch(ρc3, int),
and for each i ∈ {1, 2, 3},

di : ch(ρdi , int, 〈0 [w(ρci ) �→ 1
3 ], 0 [w(ρci ) �→ 1

3 ], 0 [w(ρci ) �→ 1
3 ]〉)

d′i : ch(ρd′
i
, int, 〈0 [w(ρc1 ) �→ 1

3 ], 0 [w(ρc2 ) �→ 1
3 ], 0 [w(ρc3 ) �→ 1

3 ]〉)

The initial static capability set for each process i is 0 [w(ρci) �→ 1, w(ρdi) �→
1, w(ρd′

i
) �→ 1]. Note that fractional capabilities are passed at barrier synchro-

nization points to enable reads and writes on c1, c2, and c3.
Type inference fails if the program is changed so that d1, d2, d3 are also used

for the second barrier (in place of d′1, d′2, d′3) because while the first write to di
must send the capability to read ci, the second write to di must send to each
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process j the capability to access cj , and there is no single type for di to express
this behavior. This demonstrates the flow-insensitivity limitation of our type
system, i.e., a channel must send and receive the same capabilities every time it
is used.

However, if synchronization points are syntactically identifiable (as in this
example) then the program is easily modified so that flow-insensitivity becomes
sufficient by using distinct channels at each syntactic synchronization point.3

In our example, the first barrier in each process matches the other, and the
second barrier in each process matches the other. Synchronizations that are not
syntactically identifiable are often considered as a sign of potential bugs [1]. Note
that reference cells c1 and c2 are not used for synchronization and therefore need
no syntactic restriction.

3.3 Extensions

We discuss extensions to our system.

Regions. Aliasing becomes an issue when channels are used as values, e.g., like in
a π calculus program. For example, our type system does not allow two different
channels c and d to be passed to the same channel because two different channels
cannot be given the same handle. One way to resolve aliasing is to use regions
so that each ρ represents a set of channels. Then, we may give both c and d the
same type ch(ρ, . . .) at the cost of sharing w(ρ) (and r(ρ)) for all the channels
in the region ρ.

Existential Abstraction and Linear Types. Another way to resolve aliasing is to
existentially abstract capabilities as in ∃ρ.τ ⊗ Ψ . Any type containing a capa-
bility set must be handled linearly4 to prevent the duplication of capabilities.
The capabilities are recovered by opening the existential package. Existential
abstraction can encode linearly typed channels [10,8] (for rendezvous channels)
as: ∃ρ.ch(ρ, τ, 0 , 0 ) ⊗ 0 [w(ρ) �→ 1, r(ρ) �→ 1]. Note that the type encapsulates
both a channel and the capability to access the channel. This encoding allows
transitions to and from linearly typed channels to the capabilities world, e.g.,
it is possible to use once a linearly-typed channel multiple times. An analogous
approach has been applied to express updatable recursive data structures in the
capability calculus [13].

Dynamically Created Channels. Dynamically created channels can be handled
in much the same way heap allocated objects are handled in the capability
calculus [4] (we only show the rule for the case where c is rendezvous):

ρ is not free in the conclusion
Γ ∪ {c �→ ch(ρ, τ, Ψ1, Ψ2)}, i, Ψ + 0 [w(ρ) �→ 1][r(ρ) �→ 1] , s : Ψ ′

Γ, i, Ψ , νc.s : Ψ ′

3 This can be done without changing the implementation. See named barriers in [1].
4 Actually, a more relaxed sub-structural type system is preferred for handling frac-

tional capabilities [11].
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Existential abstraction allows dynamically created channels to leave their lexi-
cal scope. An alternative approach is to place the newly created channel in an
existing region. In this case, we can remove the hypothesis “ρ is not free in the
conclusion”, but we also must remove the capabilities 0 [w(ρ) �→ 1][r(ρ) �→ 1].

Dynamically Spawned Processes. Dynamic spawning of processes can be typed
as follows:

Γ, i, Ψ2 , s : Ψ ′

Γ, i, Ψ1 + Ψ2 , spawn(s) : Ψ1

(For simplicity, we assume that the local store of the parent process is copied for
the spawned process. Details for handling input buffered channels are omit-
ted.) Note that the spawned process may take capabilities from the parent
process.

4 Related Work

We discuss previous approaches to inferring partial confluence. Kahn process
networks [7] restrict communication to input buffered channels with a unique
sender process to guarantee determinism. Edwards et al. [5] restricts communi-
cation to rendezvous channels with a unique sender process and a unique receiver
process to model deterministic behavior of embedded systems. These models
are the easy cases for our system where capabilities are not passed between
processes.

Linear type systems can infer partial confluence by checking that each chan-
nel is used at most once [10,8].5 Section 3.3 discusses how to express lin-
early typed channels in our system. König presents a type system that can
be parameterized to check partial confluence in the π-calculus [9]. Her system
corresponds to the restricted case of our system where each (rendezvous) chan-
nel is given a type of the form ch(ρ, τ, 0 [w(ρ) �→ 1], 0 [r(ρ) �→ 1]), i.e., each
channel sends its own write capability at writes and sends its own read ca-
pability at reads. Therefore, for example, while her system can check the
confluence of !(c, 1); ?(c, x)||?(c, x); !(c, 2), it cannot check the confluence of
!(c, 1); !(c, 2)||?(c, x); ?(c, x).

A more exhaustive approach for checking partial confluence has been proposed
in which the confluence for every state of the program is individually checked
by following the transitions from that state [6,2]. These methods are designed
specifically to drive state space reduction, and hence have somewhat a different
aim from our work. They have been shown effective for programs with a small
number of states.

This work was motivated by our previous work on inferring confluence in
functional languages with side effects [11] (see also [3]). These systems can only
reason about synchronization at join points, and therefore cannot infer conflu-
ence of channel-communicating processes.

5 [8] uses asynchronous π calculus, and so is not entirely comparable with our work.
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5 Conclusions

We have presented a system for inferring partial confluence of concurrent pro-
grams communicating via a mix of different kinds of communication channels.
We casted our system as a capability calculus where fractional capabilities can
be passed at channel communications, and presented a type system for statically
inferring partial confluence by finding an appropriate capability passing strategy
in the calculus.
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A New Type System
for Deadlock-Free Processes

Naoki Kobayashi

Graduate School of Information Sciences, Tohoku University

Abstract. We extend a previous type system for the π-calculus that
guarantees deadlock-freedom. The previous type systems for deadlock-
freedom either lacked a reasonable type inference algorithm or were not
strong enough to ensure deadlock-freedom of processes using recursion.
Although the extension is fairly simple, the new type system admits type
inference and is much more expressive than the previous type systems
that admit type inference. In fact, we show that the simply-typed λ-
calculus with recursion can be encoded into the deadlock-free fragment
of our typed π-calculus. To enable analysis of realistic programs, we
also present an extension of the type system to handle recursive data
structures like lists. Both extensions have already been incorporated into
the recent release of TyPiCal, a type-based analyzer for the π-calculus.

1 Introduction

Various type systems for the π-calculus have been proposed, some of which can
guarantee that processes are deadlock-free in the sense that certain communi-
cations will eventually succeed unless the process diverges [3, 5–7, 10, 15]. (Some
of them guarantee even a stronger property.) Earlier type systems for deadlock-
freedom [5, 6, 14, 15] required explicit type annotations, so that they were not
suitable for automatic analysis of deadlock-freedom. Kobayashi et al. [7, 10] later
modified the type systems so that the resulting type systems have a type infer-
ence algorithm, and deadlock-freedom of processes can be automatically ana-
lyzed through type inference.

Based on the type system of [7], Kobayashi has implemented the first version
of TyPiCal (ver. 1.0), a type-based analyzer for the π-calculus. Figure 1 shows
a sample input and output of the deadlock analysis of TyPiCal. The first line in
the input program runs two servers, one of which waits for a request on channel
server1 and sends 1 back to the reply channel r, and the other of which waits
for a request on channel server2 and may or may not send a reply, depending on
the value of b. (Here, ?, !, and | represent an input action, an output action, and
parallel composition respectively. O represents an inaction.) The second line runs
a client process, which creates a fresh communication channel r1 for receiving
a reply, sends a request on server1, and waits for a reply. The client process
on the third line behaves similarly, except that it sends a request on server2.
Given that program, TyPiCal’s deadlock analyzer automatically finds input and

C. Baier and H. Hermanns (Eds.): CONCUR 2006, LNCS 4137, pp. 233–247, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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output operations that are guaranteed to succeed if they are ever executed and if
the whole process does not diverge, and mark them with ?? and !!. The output
shown in the figure indicates that the first client can eventually receive a reply
(note that r1?x has been replaced by r1??x), while the second client may not
be able to receive a reply (r2?x remains the same).

Input program:
*(server1?r.r!1) | *(server2?r.if b then r!1 else O) /* Servers */

| new r1 in server1!r1.r1?x /* A client for the first server */
| new r2 in server2!r2.r2?x /* A client for the second server */

Output:
*(server1?r.r!!1) | *(server2?r.if b then r!!1 else O)

| new r1 in server1!!r1.r1??x | new r2 in server2!!r2.r2?x

Fig. 1. A sample input and output of the deadlock analysis of TyPiCal

To enable type inference, however, we have traded the strength of the type
system [7, 10]. In particular, the previous type systems for deadlock-freedom
equipped with type inference algorithms cannot well handle recursive processes.
For example, consider the following function server, which computes the factorial:

*fact?(n,r).if n=0 then r!1
else new r1 in (fact!(n-1,r1) | r1?x.r!(x*n))

The server is deadlock-free in the sense that given a request, it will eventually re-
turns a result unless the process diverges (actually, the process does not diverge,
but the termination analysis is out of scope of this paper), but the previous
type systems fail to conclude that. Even the simply-typed λ-calculus (without
recursion) could not be encoded into the deadlock-free fragment of the previous
type systems [7, 10]. On the other hand, an earlier type system of Kobayashi [5]
could handle the above recursive process, but it was so complicated that a type
inference algorithm could not be developed.

In this paper, we introduce a simple extension of the type system for deadlock-
freedom [7, 10], which allows us to handle recursive processes like above, while
keeping the existence of a type inference algorithm. Unlike the previous type
systems which deal with pure polyadic π-calculus, we also extend the target
language with data structures like pairs and lists. We have already incorporated
those extensions into the recent version of TyPiCal.

The rest of this paper is structured as follows. Section 2 introduces our target
language (with only pairs as data structures). Section 3 introduces our new
type system for deadlock-freedom, and shows its soundness. To demonstrate the
strength of our type system, Section 4 shows that the simply-typed λ-calculus
with recursion can be encoded into the deadlock-free fragment of our typed
calculus. Section 5 informally explains how to deal with list data structures.
Missing definitions and proofs are found in the full version of this paper [8].
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2 Target Language

This section introduces the target language of our deadlock analysis, which is a
subset of π-calculus [12] extended with booleans, pairs, and conditionals.

2.1 Syntax

Definition 2.1. The set of processes, ranged over by P , is defined by:

P ::= 0 | x!tv. P | x?ty. P
| (P |Q) | ∗P | (νx)P | if v then P else Q | let x = e in P

e ::= true | false | x | 〈e1, e2〉 | proj1(e) | proj2(e)
v ::= true | false | x | 〈v1, v2〉

Here, x and y range over a countably infinite set Var of variables. t ranges over
Nat ∪ {∞}.

Notation 2.1. The prefix x?y binds variables y and (νx) binds x. As usual,
we identify processes up to α-conversions (renaming of bound variables), and
assume that α-conversions are implicitly applied so that bound variables are al-
ways different from each other and from free variables. We write [x �→ v]P for
the process obtained by replacing all the free occurrences of x in P with v. We
often omit 0 and write x!v and x?y for x!v.0 and x?y.0 respectively.

We assume that prefixes (x!v, x?y, (νx) , and ∗) bind tighter than the parallel
composition operator | , so that x!y. P |Q means (x!y. P ) |Q, not x!y. (P |Q).
We often write x?(y, z). P for x?p. let y = proj1(p) in let z = proj2(p) in P
(where we assume p does not appear in P ).

Process 0 does nothing. Process x!tv. P sends v on x, and then (after v is received
by some process) the process behaves like P . The label t indicates whether the
output operation is deadlock-free: If t �=∞, then the output is deadlock-free, i.e.,
if it is ever executed, v will eventually be received by some process or the whole
process diverges. The exact value of t can be ignored at this moment; it will only
be used in the type system. We call t a capability annotation. Note that program-
mers actually need not supply capability annotations; They are automatically
inferred through type inference. We often omit t when it is unimportant. Process
x?ty. P waits to receive a value v on x and then behaves like [y �→ v]P . The la-
bel t indicates whether the input operation is deadlock-free: If t �= ∞, then the
input is deadlock-free, i.e., if it is ever executed, the process will eventually be
able to receive a message on x or the whole process diverges. P |Q represents
concurrent execution of P and Q. ∗P represents infinitely many copies of the
process P running in parallel, and (νx)P denotes a process that creates a fresh
communication channel x and then behaves like P . if v then P else Q behaves
like P if v is true, and behaves like Q if v is false. let x = e in P evaluates e to
some value v, binds x to it, and then behaves like P .

As usual, we define the operational semantics using a structural relation
P * Q, and a reduction relation P −→ Q. The former relation means that



236 N. Kobayashi

P can be restructured to Q by using the commutativity and associativity laws
on | , etc. The latter relation means that P is reduced to Q by one communi-
cation on a channel. The formal definition of the relations are given in the full
paper [8]. We write −→∗ for the reflexive and transitive closure of −→.

3 Type System

3.1 Overview

We first review the idea of previous type systems for deadlock-freedom [7, 10],
identify the weakness of them, and then explain how to get rid of the weakness.

Ideas of Previous Type Systems for Deadlock-Freedom. The main idea
of previous type systems for deadlock-freedom was to extend channel types with
the following information:

– Channel-wise usage information, which describes how often and in which
order each channel is used for input and output.

– Capability and obligation of each input/output action, which captures cer-
tain inter-channel dependency information.

We express channel-wise usage information by using a small, CCS-like process
calculus, which has two primitive actions ? and !. For example, usage of x in
the process x?y |x!1 |x!2 is expressed by ? | ! | !, which means that x is used once
for input and twice for output possibly in parallel. The usage of x in x?y. x!y is
expressed by ?.!, which means that x is first used for input, and then used for
output. The usage conveys some information about whether each action succeeds
or not. For example, x having usage ? | ! | ! indicates that at least one of the two
outputs fails to succeed. Similarly, x having usage ?.! (in the whole process)
indicates that neither an input action nor an output action succeeds, since the
input and output do not occur in parallel.

Channel-wise usage information alone is not sufficient for the analysis of
deadlock. For example, it cannot distinguish between a deadlocked process
x?z. y!z | y?z. x!1 and a non-deadlocked process x?z. y!z |x!1. y?z. . To control
the dependency between communications on different channels, we have in-
troduced the notion of capabilities and obligations [6, 7]. Let us explain why
x?z. y!z | y?z. x!1 deadlocks in terms of capabilities (to successfully receive or
send a message) and obligations (to wait for or to send a message). In order
for the left sub-process x?z. y!z to succeed in receiving a message on x, some
process has to fulfill an obligation to send a message on x. The right sub-process,
however, tries to exercise a capability to receive a message on y before fulfilling
the obligation. In order for the right sub-process to be able to exercise a ca-
pability, the left process must fulfill an obligation to send a message on y, but
the left process tries to exercise a capability to receive a message on x before
fulfilling the obligation. Thus, the capability/obligation dependency is circular,
so that no communication can succeed. To avoid such circular dependency, each
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action (? or !) in the channel-wise usage is associated with the levels of obliga-
tions and capabilities, which range over {0, 1, 2, . . .} ∪ {∞}. The capability and
obligation levels impose the following rules on the behavior of a process and its
environment.

A. An obligation of level n(�= ∞) must be fulfilled by using only capabilities
of level less than n. For example, suppose that x has usage ?0

0 and y has
usage !11, where the subscript of an action describes its capability level and
the superscript describes its obligation level. Then, x?z. y!z and x?z | y!1 are
valid, but y!1. x?z is invalid: the last process tries to exercise a capability of
level 1 before fulfilling the obligation of lower level.

B. For an action of capability level n(�= ∞), there must exist a co-action of
obligation level less than or equal to n (so as to guarantee that the capability
can be eventually exercised).

Therefore, the obligation level describes a requirement for the process being
concerned, while the capability level describes an assumption about the environ-
ment of the process being concerned. The two rules above ensure that there is
no cyclic dependency between capabilities and obligations of finite levels; thus,
deadlock-freedom is ensured for any action of a finite capability level.

Let us come back to the deadlocked process x?z. y!z | y?z. x!1. Suppose that
the usages of x and y are ?ox1

cx1
| !ox2
cx2

and ?oy1
cy1 | !

oy2
cy2 , where cx1 and cy1 are finite.

Rule A above implies that cx1 < oy2 and cy1 < ox2, while rule B implies that
ox2 ≤ cx1, ox1 ≤ cx2, oy2 ≤ cy1, and oy1 ≤ cy2. So, we get cx1 < oy2 ≤ cy1 <
ox2 ≤ cx1, a contradiction.

Weakness of Previous Type Systems. The main weakness of the previous
type systems based on the idea above was that they cannot handle recursive
processes well. Consider the following function server computing the factorial:

∗fact?(n, r). if n = 0 then r!1 else (νr′) (fact !(n− 1, r′) | r′?m. r!(m× n))

The second argument r of fact is assigned a type of the form chan(int , !totc ),
which says that the channel is used for sending an integer, and the levels of the
obligation and capability to do so are to and tc respectively. Since r′ is sent on
fact , it is also assigned the type chan(int , !totc ). Then, because of rule B, however,
the capability level of the input action on r′ in r′?m. · · · must be greater than to.
So, the sub-process r′?m. r!(m × n) violates rule A (if to is not ∞). The same
problem arises even in handling a process simulating a term of the simply-typed
λ-calculus (without recursion). One way to overcome the problem above is to
use dependent types, so that the obligation level of the second argument r can
depend on the value of the first argument n [6]. The resulting type system would,
however, require heavy type annotations.

The Idea of the Extension. To get rid of the weakness mentioned above, we
weaken rule A as follows:
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A′. An obligation of level n on a channel x must be fulfilled by using only
capabilities of level less than or equal to n, and if the capability level is n,
the capability must be on a channel which has been created more recently
than x.

For example, in the factorial server above, the level of an obligation to return
a value on r and that of a capability to receive a value on r′ are the same,
but since r′ has been created more recently, r′?m. r!(m× n) conforms to rule
A′. Rule A′ is sufficient to prevent deadlock by avoiding circular dependency
between different channels. Since information about which channels has been
created more recently is dynamic, a static analysis is required to estimate the
information. In this paper, we use a simple syntactic analysis, which concludes
that, in the process (νx)P , x has been created more recently than any other free
channel of P . Fortunately, that turns out to be sufficient for handling recursive
processes like the factorial server and processes simulating λ-terms.

In the formal operational semantics, a channel x being created more recently
than another channel y corresponds to the condition that the prefix (νx) is inside
the scope of the prefix (νy) . Note that our operational semantics disallows the
usual structural rule (νx) (νy)P ≡ (νy) (νx)P . The condition in A′ could be
the other way around; we could require that the capability must be on a channel
which has been created less recently than x. We, however, found the condition
above more useful than this alternative requirement. That is because one of the
common channel creation patterns is (νx) (P |x?y.Q), where P performs some
sub-computation and sends the result on x.

3.2 Usages

This subsection introduces the syntax and semantics of usages more formally.
They are almost identical to those of the previous type system [7].

Definition 3.1 (usages). The set U of usages, ranged over by U , is given by:

U ::= 0 | αt1t2 .U | (U1 |U2) | ∗U | ↑tU | U1 & U2 | ρ | μρ.U
α ::=? |!

Here, t ranges over Nat ∪ {∞} (where Nat is the set of natural numbers).

We often omit 0 and write αt1t2 for αt1t2 .0. We extend the usual binary relation
≤ on Nat to that on Nat ∪ {∞} by ∀t ∈ Nat ∪ {∞}.t ≤ ∞. We also extend
+ by ∞ + t = t +∞ = ∞. We write min(x1, . . . , xn) for the least element of
{x1, . . . , xn} (∞ if n = 0) with respect to ≤ and write max(x1, . . . , xn) for the
greatest element of {x1, . . . , xn} (0 if n = 0). We assume that μρ binds ρ. We
write [ρ �→ U1]U2 for the usage obtained by replacing the free occurrences of ρ
in U2 with U1. We write FV (U) for the set of free usage variables. A usage is
closed if FV (U) = ∅.

Intuitive meaning of usages is summarized in Table 1. If to is finite, a channel
of usage αtotc .U must be used for the action α, while if to is ∞, the action need
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Table 1. Meaning of Usage Expressions

Usages Interpretation
0 Cannot be used at all
?to

tc
.U Used once for input, and then used according to U

!to
tc

.U Used once for output, and then used according to U

U1 |U2 Used according to U1 and U2, possibly in parallel
∗U Used according to U by infinitely many processes
↑tU The same as U , except that input and output obligation levels

are lifted to t.
U1 & U2 Used according to either U1 or U2

ρ Usage variable (used in combination with recursive usages below)
μρ.U Recursively used according to [ρ �→ μρ.U ]U .

not be performed. When tc is finite, the action will eventually succeed if it is
ever executed and the whole process does not diverge. If tc is ∞, there is no
such guarantee. Note that a channel of usage αtotc .U must be used according to
U only if it has been used for the action α and the action succeeds. For example,
a channel of usage ?∞0 .!0∞ can be used for input (but need not be used), and if it
has been used for input and the input has succeeded, it must be used for output.
That is similar to the usage of a lock: a lock may be acquired (but need not be
acquired), and after the lock has been acquired, the lock must be released. In
fact, a lock can be expressed as a channel of such usage: see Example 1. Usage
↑tU lifts the obligation levels occurring in U (except for those guarded by ? or
!) so that the input obligations and output obligations become greater than or
equal to t. For example, ↑1(?0

0.!
0
∞) is the same as ?1

0.!
0
∞.

We give a higher precedence to prefixes (αtotc and ∗) than to | . We write α for
the co-action of α (? =! and ! =?).

Example 1. Linear channels [9] are given a usage of the form ?n1
n2
| !n3
n4

. Affine
channels, which can be used at most once, are given a usage ?∞∞ | !∞∞. A reference
cell can be implemented as a channel holding the current value as a message.
Then, the read operation is expressed as x?y. (x!y | · · ·), while the write operation
is expressed as x?y. (x!v | · · ·). The usage of a reference cell is thus represented as
!0∞ | ∗?∞0 .!0∞. Similarly, a binary semaphore can be expressed as a channel holding
at most one message. The semaphore can be acquired by receiving the message,
and released by sending the message back to the channel. Thus, the usage of a
semaphore is represented as !0∞ | ∗?∞n .!n∞. Here, the level n controls which locks
should be acquired first when multiple locks need to be acquired.

Next, we define capability/obligation levels of a usage.

Definition 3.2 (capabilities). cap?(U) and cap !(U) are defined by:

capα(0) = capα(αtotc .U) = capα(ρ) =∞ capα(αtotc .U) = tc
capα(∗U) = capα(↑tU) = capα(μρ.U) = capα(U)
capα(U1 |U2) = capα(U1 & U2) = min(capα(U1), capα(U2))
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Definition 3.3 (obligations). ob?(U) and ob !(U) are defined by:

obα(0) = obα(αtotc .U) =∞ obα(ρ) = 0
obα(αtotc .U) = to obα(U1 |U2) = min(obα(U1), obα(U2))
obα(↑tU) = max(t, obα(U)) obα(U1 & U2) = max(obα(U1), obα(U2))
obα(∗U) = obα(μρ.U) = obα(U)

We write ob(U) for max(ob?(U), ob !(U)).

We next introduce the usage reduction relation U −→ U ′. Intuitively, U −→ U ′

means that if a channel of usage U has been used for a communication, then
it should be used according to U ′ afterwards. For example, !0∞ | ?∞0 .!0∞ −→!0∞
holds. The formal definition of the relation is given in the full paper [8].

Relations and Operations on Usages. As described in rule B in Subsec-
tion 3.1, if some action has a capability of level n, the obligation level of its
co-action should be at most n. The relation rel(U) defined below ensures that
condition.

Definition 3.4 (reliability). We write conα(U) when obα(U) ≤ capα(U). A
usage U is reliable, written rel(U), if con?(U ′) and con!(U ′) hold for any U ′ such
that U −→∗ U ′.

The subusage relation U1 ≤ U2 defined below means that U1 expresses more
liberal usage of channels than U2, so that a channel of usage U1 may be used
as that of usage U2. The first and second conditions require that the subusage
relation is closed under contexts and reduction. The third and fourth conditions
allow capabilities to be weakened and obligations to be strengthened.

Definition 3.5 (subusage). The subusage relation ≤ on closed usages is the
largest binary relation on usages such that the following conditions hold whenever
U1 ≤ U2.

1. [ρ �→ U1]U ≤ [ρ �→ U2]U for any usage U such that FV (U) = {ρ}.
2. If U2 −→ U ′

2, then there exists U ′
1 such that U1 −→ U ′

1 and U ′
1 ≤ U ′

2.
3. For each α ∈ {?, !}, capα(U1) ≤ capα(U2) holds.
4. For each α ∈ {?, !}, if conα(U1), then obα(U1) ≥ obα(U2).

3.3 Types

Definition 3.6 (types). The set of types is given by:

τ (types) ::= bool | τ1 × τ2 | chan(τ, U)

Type bool is the type of booleans. The type τ1× τ2 describes pairs consisting of
a value of type τ1 and a value of type τ2. The type chan(τ, U) describes channels
that should be used according to U for transmitting values of type τ .

We extend relations and operations on usages to those on types.

Definition 3.7 (subtyping). A subtyping relation ≤ is the least reflexive re-
lation closed under the following rule:
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U ≤ U ′

chan(τ, U) ≤ chan(τ, U ′)
τ1 ≤ τ ′1 τ2 ≤ τ ′2
τ1 × τ2 ≤ τ ′1 × τ ′2

Definition 3.8. The obligation level of type τ , written ob(τ), is defined by:
ob(bool) =∞, ob(τ1×τ2) = min(ob(τ1), ob(τ2)), and ob(chan(τ, U)) = ob(U).

Definition 3.9. Unary operations ∗ and ↑t on types is defined by:
∗bool = ↑tbool = bool, ∗(τ1 × τ2) = (∗τ1)×(∗τ2), ↑t(τ1 × τ2) = (↑tτ1)×(↑tτ2),
∗(chan(τ, U)) = chan(τ, ∗U), and ↑t(chan(τ, U)) = chan(τ, ↑tU),

Definition 3.10. A (partial) binary operation | on types is defined by:
bool |bool = bool, (τ11 × τ12) | (τ21 × τ22) = (τ11 | τ21) × (τ12 | τ22), and
(chan(τ, U1)) | (chan(τ, U2)) = chan(τ, (U1 |U2)). τ1 | τ2 is undefined if it does
not match any of the above rules.

3.4 Type Environment

A type environment is a mapping from a finite set of variables to types. We
use metavariables Γ and Δ for type environments. We write ∅ for the type
environment whose domain is empty. When x �∈ dom(Γ ), we write Γ, x : τ for
the type environment Γ ′ such that dom(Γ ′) = dom(Γ ) ∪ {x}, Γ ′(x) = τ , and
Γ ′(y) = Γ (y) for all y ∈ dom(Γ ).

The operations and relations on types are pointwise extended to those on type
environments below.

Definition 3.11. A binary relation ≤ on type environments is defined by:
Γ1 ≤ Γ2 if and only if (i) dom(Γ1) ⊇ dom(Γ2), (ii) Γ1(x) ≤ Γ2(x) for each
x ∈ dom(Γ2), and (iii) ob(Γ1(x)) = ∞ for each x ∈ dom(Γ1)\dom(Γ2).

Definition 3.12. The operations | and ∗ on type environments are defined by:

(Γ1 |Γ2)(x) =

⎧⎨⎩
Γ1(x) |Γ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)
Γ1(x) if x ∈ dom(Γ1)\dom(Γ2)
Γ2(x) if x ∈ dom(Γ2)\dom(Γ1)

(∗Γ )(x) = ∗(Γ (x))

3.5 Typing Rules

We have two kinds of judgments: Γ , e : τ for expressions, and Γ ,≺ P for
processes. The latter means that P uses free variables as specified by Γ . ≺ is a
partial order that statically estimates the order between the times when channels
are created. x ≺ y means that x must have been created more recently than y.
Because of rule A′, x : chan(bool, ?0

1), y : chan(bool, !1∞) ,{(x,y)} x?z. y!z and
x : chan(bool, ?0

0), y : chan(bool, !1∞) ,∅ x?z. y!z are valid judgments, while
x : chan(bool, ?0

1), y : chan(bool, !1∞) ,∅ x?z. y!z is invalid.
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For expressions

x : τ � x : τ
(Tv-Var)

b ∈ {true, false}
∅ � b : bool

(Tv-Bool)

Γ1 � e1 : τ1 Γ2 � e2 : τ2

Γ1 |Γ2 � 〈e1, e2〉 : τ1 × τ2
(Tv-Pair)

Γ � e : τ1 × τ2 i ∈ {1, 2}
ob(τ3−i) = ∞

Γ � proji(e) : τi

(Tv-Proj)

Γ � e : τ Γ ′ ≤ Γ

Γ ′ � e : τ
(Tv-Weak)

For Processes

Γ, x : chan(τ, U) �≺∪{(x,y)|y∈F V (P )\{x}} P rel(U)
Γ �≺ (νx)P

(T-New)

∅ �≺ 0
(T-Zero)

Γ1 �≺ P1 Γ2 �≺ P2

Γ1 |Γ2 �≺ P1 |P2
(T-Par)

Γ1 �≺ P Γ2 � v : τ

x : chan(τ, !0tc);≺(Γ1 |Γ2) �≺ x!tcv. P
(T-Out)

Γ1 � e : τ Γ2, x : τ �≺ P

Γ1 |Γ2 �≺ let x = e in P
(T-Let)

Γ ′ �≺ P Γ ≤ Γ ′

Γ �≺ P
(T-Weak)

Γ �≺ P

∗Γ �≺ ∗P (T-Rep)

Γ, y : τ �≺ P

x : chan(τ, ?0
tc

);≺Γ �≺ x?tcy.P
(T-In)

Γ1 � v : bool
Γ2 �≺ P Γ2 �≺ Q

Γ1 |Γ2 �≺ if v then P else Q
(T-If)

Fig. 2. Typing Rules

We assume that α-conversion is implicitly applied so that the variables in Γ
and ≺ are always different from the bound variables in P . The typing rules for
deriving valid type judgments are given in Figure 2.

We explain some key rules. In T-New, ≺ is extended with the assumption
that x has been created more recently than any other free channels in P .

In T-Out and T-In, we use the operation x : chan(τ, αtotc );≺Γ on type envi-
ronments. It represents the type environment Δ defined by:

dom(Δ) = {x} ∪ dom(Γ )

Δ(x) =
{

chan(τ, αtotc .U) if Γ (x) = chan(τ, U)
chan(τ, αtotc ) if x �∈ dom(Γ )

Δ(y) =
{
↑tcΓ (y) if y �= x ∧ x ≺ y
↑tc+1Γ (y) if y �= x ∧ x �≺ y
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For example, x: chan(τ , ?0
2);{(x,y)}(x: chan(τ , !00), y: chan(τ1, !00), z: chan(τ2, !00))

is x : chan(τ, ?0
2.!

0
0), y : chan(τ1, !20), z : chan(τ2, !30)).

Intuitively, the environment x : chan(τ, αtotc );≺Γ means that x may be first
used for the action α, and then communications can be performed according to
Γ . Since the capability of level tc is exercised before fulfilling obligations in Γ ,
the level of each obligation in Γ are lifted either to tc or tc + 1, depending on ≺.

In rule T-In, the premise means that P performs communications according
to Γ . Since x?tcy. P tries to exercise a capability of level tc to receive a value on
x, the process is well-typed under x : chan(τ, ?0

tc);≺Γ .

Example 2. Let us consider the following process P :

∗f?r. (if b then r!true else (νr′) (f !r′ | r′?x. r!x)).

It is typed as follows.

Γ ,∅ r!true Γ ,∅ (νr′) · · ·
Γ ,∅ if b then r!true else · · ·

f : chan(chan(bool, !1∞), ?0
∞.!

∞
0 ), b :bool ,∅ f?r. · · ·

f : chan(chan(bool, !1∞), ∗?0
∞.!

∞
0 ), b :bool ,∅ P

Here, Γ is f : chan(chan(bool, !1∞), !∞0 ), b :bool, r : chan(bool, !1∞), and
Γ ,∅ (νr′) · · · is derived by:

Γ1 ,{(r′,r)} f !r′ r : chan(bool, !1∞), r′ : chan(bool, ?0
1) ,{(r′,r)} r

′?x. r!x

Γ, r′ : chan(bool, !1∞ | ?0
1) ,{(r′,r)} f !r′ | r′?x. r!x

Γ ,∅ (νr′) · · ·

Here, Γ1 = f : chan(chan(bool, !1∞), !∞0 ), r′ : chan(bool, !1∞). Note that if r′ ≺ r
did not hold, we could only obtain r : chan(bool, !2∞), r′ : chan(bool, ?0

1) ,∅
r′?x. r!x, so that f : chan(chan(bool, !1∞), ∗?0

∞.!∞0 ), b :bool ,∅ P were not
derivable.

3.6 Type Soundness

The following theorems imply that if a process is well-typed in our type system,
an input or output process that is annotated with a finite capability level is
deadlock-free, in the sense that if the process is ready (i.e., it appears at the
top-level, without being guarded by any other input or output prefix), the whole
process can be reduced further.

We write Γ −→ Γ ′ when Γ = Γ1, x : chan(τ, U) and Γ ′ = Γ1, x : chan(τ, U ′)
with U −→ U ′ for some Γ1, x, τ, U , and U ′.

Theorem 1 (type preservation). If Γ ,≺ P and P −→ Q, then Γ ′ ,≺ Q
for some Γ ′ such that Γ ′ = Γ or Γ −→ Γ ′.
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Theorem 2. If ∅ ,≺ P and either P * (νx̃) (x!nv.Q1 | Q2) or P * (νx̃)
(x?ny.Q1 | Q2) with n ∈ Nat, then P −→ R for some R.

Corollary 1. Suppose ∅ ,≺ P . If P −→∗ Q, and either Q * (νx̃) (x!nv.Q1 |
Q2) or Q * (νx̃) (x?ny.Q1 | Q2) with n ∈ Nat, then Q −→ R for some R.

3.7 Type Inference

Given a closed process P (without any capability annotations on input and out-
put processes), there is a complete algorithm to decide whether there exists P ′

such that ∅ ,∅ P ′ holds and P and P ′ coincide except for capability annota-
tions. Moreover, such an algorithm tries to infer the least capability for each
input/output process. Since the algorithm is almost the same as that of the pre-
vious type system [7], we do not re-describe the algorithm here; The algorithm
first extract constraints on types, reduce them step by step to obtain constraints
of the form rel(U), and then solve rel(U) by reduction to Petri net reachability
problems [7]. The only extra work compared with the previous one is to expand
the relation ≺ when the algorithm encounters the ν-prefix. We have already
implemented the algorithm in TyPiCal [4].

4 Encoding of λ-Calculus

To demonstrate the power of the new type system, we show that the call-by-
value simply-typed λ-calculus with recursion can be encoded into the deadlock-
free fragment. Concurrent objects can also be encoded as in our previous
paper [5].

Definition 4.1. The sets of types and terms of λ→,fix are given by the following
syntax:

θ (types) ::= bool | θ1 → θ2
M (terms) ::= x | fix(f, x,M) |M1M2

Here, fix(f, x,M) represents a recursive function f defined by f(x)
�
= M . If f

does not appear in M , it is the same as the usual λ-abstraction λx.M .
Typing rules are given as follows.

T , x : θ , x : θ
(TL-Var)

T , f : θ1 → θ2, x : θ1 ,M : θ2
T , fix(f, x,M) : θ1 → θ2

(TL-Fix)

T ,M1 : θ1 → θ2 T ,M2 : θ1
T ,M1M2 : θ2

(TL-App)

We encode terms, types, and type environments into our typed π-calculus as
follows, in a standard manner [5, 11, 13].
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[[x ]]r = r!x
[[fix(f, x,M) ]]r = (νy) (r!y | ∗y?(x, r′). [[ M ]]r

′
)

[[M1M2 ]]r = (νr1) (νr2) ([[M1 ]]r1 | [[ M2 ]]r2 | r1?f. r2?x. f !(x, r))

[[bool ]] = bool
[[ θ1 → θ2 ]] = chan( [[ θ1 ]] ×chan( [[ θ2 ]] , !1∞), ∗!∞0 )

[[x1 : θ1, . . . , xn : θn ]] = x1 : [[ θ1 ]] , . . . , xn : [[ θn ]]

Intuitively, a term M is encoded into [[M ]]r which evaluates M and sends the
result on channel r. The usage ∗!∞0 in the encoding of function types means that
a function can be invoked an arbitrary number of times, and the usage !1∞ means
that the function will eventually returns a result (or diverge).

It is easy to check that the typing is preserved by encoding.

Lemma 1. If T ,M : θ, then [[ T ]] , r : chan( [[ θ ]] , !1∞) ,∅ [[M ]]r .

The following is an immediate corollary of the above lemma, which means that
a process that simulates functional computation does not get deadlocked before
returning a result.

Corollary 2. If ∅ , M : θ and [[M ]]r −→∗ P , then P −→ Q for some Q or
P * (νx̃) (r!v.Q1 |Q2) for some v,Q1, Q2.

Proof. Suppose ∅ , M : θ and [[M ]]r −→∗ P . By Lemma 1, r : chan( [[ θ ]] , !1∞) ,∅
[[M ]]r . By Theorem 1, we have r : chan( [[ θ ]] , !1∞) ,∅ P . Let R = (νr) (P | r?1x.0).
Then, ∅ ,∅ R. By Theorem 2, we have R −→ R′, which implies either P −→ Q
or P * (νx̃) (r!v.Q1 |Q2).

5 Extension for Recursive Data Structures

The language discussed so far is the π-calculus extended with pairs. We briefly
discuss a subtle point that arises when dealing with recursive data structures,
using the list data structure as an example.

Let us consider the following process, which waits to receive a list l of channels,
and sends true to all the channels in the list.

∗broadcast?l. if null(l) then 0 else
(let x = hd(l) in (x!true | broadcast!tl(l)))

Here, hd(l) is the first element of the list l, and tl(l) is the rest.
A naive way to handle lists is to introduce list types of the form list(τ), which

describes lists whose elements are of type τ , and the following typing rules:

Γ , e : list(τ)
Γ , hd(e) : τ

Γ , e : list(τ)
Γ , tl(e) : list(τ)

However, we have to add the condition that ob(τ) = ∞ in both rules (just like
we had to impose the condition ob(τ3−i) = ∞ in the rule for projections), since
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hd(e) throws away the elements other than the head, and tl(e) throws away the
head. Thus, we can only assign list(chan(bool, !∞t )) to l in the above example,
failing to infer that the server eventually sends messages to all the elements in
the list.

To overcome the problem above, we represent list types as list(τ1, τ2), where
τ1 is the type of the first element, and τ2 is the type of the rest of the elements,
and use the following types:

Γ , e : list(τ1, τ2) ob(τ2) =∞
Γ , hd(e) : τ1

Γ , e : list(τ1, τ2) ob(τ1) = ∞
Γ , tl(e) : list(τ2, τ2)

With these rules, we can assign list(chan(bool, !1∞), chan(bool, !1∞)) to l in
the example above, so that we can infer that the server eventually sends messages
to all the elements in the list.

The replacement of list(τ) with list(τ1, τ2) corresponds to the unfolding of
the recursive type μα.(1 + (τ × α)) to 1 + τ × μα.(1 + (τ × α)). As in the case
of lists above, unfolding of recursive types in general seems to be useful to make
our type system for deadlock-freedom more robust.

6 Related Work

As already mentioned in Section 1, earlier type systems that can guarantee
deadlock-freedom [5, 14, 15] required explicit type annotations, having no rea-
sonable type inference algorithm. We have later modified the type systems to
make type inference tractable [7, 10], with the sacrifice of some expressive power.
The type system proposed in this paper can be considered a reunion of the earlier
type systems [5, 14] and recent ones [7, 10].

Some type systems [6, 7] can guarantee a stronger property that certain com-
munications will eventually succeed no matter whether the process diverges.
There are also type systems that guarantee the termination of processes [1, 16].
Unfortunately, the idea proposed in the present paper does not work for guar-
anteeing those stronger properties.

There are some studies of abstract interpretation for the π-calculus [2]. To
the best of our knowledge, deadlock-freedom analysis has not been studied in
that context. Our type-based analysis relies on a syntactic analysis of the order
in which channels are created. Abstract interpretation [2] might be useful for
obtaining more precise information about the order of channel creation.

7 Conclusion

We have proposed a new type system for deadlock-freedomof π-calculus processes.
The new type system admits type inference, while it is strictly more expressive
than the previous type systems that admit type inference. We have also extended
the type system to handle data structures like pairs and lists.



A New Type System for Deadlock-Free Processes 247

References

1. Y. Deng and D. Sangiorgi. Ensuring termination by typability. In Proceedings of
IFIP TCS 2004, pages 619–632, 2004.

2. J. Feret. Abstract interpretation of mobile systems. Journal of Logic and Algebraic
Programming, 63(1), 2005.

3. K. Honda and N. Yoshida. A uniform type structure for secure information flow.
In Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles of Program-
ming Languages, pages 81–92, 2002.

4. N. Kobayashi. TyPiCal: A type-based static analyzer for the pi-calculus. Tool
available at http://www.kb.ecei.tohoku.ac.jp/~koba/typical/.

5. N. Kobayashi. A partially deadlock-free typed process calculus. ACM Transactions
on Programming Languages and Systems, 20(2):436–482, 1998.

6. N. Kobayashi. A type system for lock-free processes. Information and Computation,
177:122–159, 2002.

7. N. Kobayashi. Type-based information flow analysis for the pi-calculus. Acta
Informatica, 42(4-5):291–347, 2005.

8. N. Kobayashi. A new type system for deadlock-free processes, 2006. Full version.
Available from http://www.kb.ecei.tohoku.ac.jp/~koba/.

9. N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. ACM
Transactions on Programming Languages and Systems, 21(5):914–947, 1999.

10. N. Kobayashi, S. Saito, and E. Sumii. An implicitly-typed deadlock-free process
calculus. Technical Report TR00-01, Dept. Info. Sci., Univ. of Tokyo, January 2000.
A summary has appeared in Proceedings of CONCUR 2000, Springer LNCS1877,
pp.489-503, 2000.

11. R. Milner. Function as processes. In Automata, Language and Programming,
volume 443 of Lecture Notes in Computer Science, pages 167–180. Springer-Verlag,
1990.

12. R. Milner. The polyadic π-calculus: a tutorial. In F. L. Bauer, W. Brauer, and
H. Schwichtenberg, editors, Logic and Algebra of Specification. Springer-Verlag,
1993.

13. B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. In Pro-
ceedings of IEEE Symposium on Logic in Computer Science, pages 376–385, 1993.

14. E. Sumii and N. Kobayashi. A generalized deadlock-free process calculus. In
Proc. of Workshop on High-Level Concurrent Language (HLCL’98), volume 16(3)
of ENTCS, pages 55–77, 1998.

15. N. Yoshida. Graph types for monadic mobile processes. In FST/TCS’16, volume
1180 of Lecture Notes in Computer Science, pages 371–387. Springer-Verlag, 1996.

16. N. Yoshida, M. Berger, and K. Honda. Strong normalisation in the pi-calculus.
Information and Computation, 191(2):145–202, 2004.



Sortings for Reactive Systems�

Lars Birkedal, Søren Debois, and Thomas Hildebrandt

IT University of Copenhagen
{birkedal, debois, hilde}@itu.dk

Abstract. We investigate sorting or typing for Leifer and Milner’s reac-
tive systems. We focus on transferring congruence properties for bisim-
ulations from unsorted to sorted systems. Technically, we give a general
definition of sorting; we adapt Jensen’s work on the transfer of con-
gruence properties to this general definition; we construct a predicate
sorting, which for any decomposible predicate P filters out agents not
satisfying P ; we prove that the predicate sorting preserves congruence
properties and that it suitably retains dynamics; and finally, we show how
the predicate sortings can be used to achieve context-aware reaction.

1 Introduction

The last decade has seen a series of definitions of reactive systems for which it
is possible to derive labeled transition systems with an associated bisimulation
relation that is guaranteed to be a congruence relation [1,2,3,4,5,6,7,8]. Sewell
proposed to use suitable contexts of the reactive system as labels in the derived
labeled transition system [1]. Leifer and Milner refined this approach by suggest-
ing that it suffices to consider minimal contexts, with minimality captured by
the notion of relative pushout (RPO) in the category corresponding to the reac-
tive system [2]. Milner and Jensen suggested further refinements in their work
on bigraphical reactive systems, technically by representing the reactive sys-
tems as quotients of precategories, which in turn possess the requisite relative
pushouts [3,4,5]. An alternative approach using 2-categories was suggested by
Sassone and Sobocinski [6,7], and subsequently transferred to double categories
by Bruni, Gadducci, Montanari and Sobocinski in [8].

One aim of these abstract definitions of reactive systems is to unify and gen-
eralize existing calculi for concurrency and mobility, by providing a uniform
behavioral theory: the congruential bisimulation relation associated with the de-
rived labeled transition system. For bigraphical reactive systems, this aim has
been evaluated with encouraging results: existing behavioral theories have been
recovered for CCS [5], π-calculus [9], and mobile ambients [9]; and bigraphical
semantics has contributed to that of Petri-nets [10] and Homer [11].

Bigraphical reactive systems aim also to model aspects of ubiquitous systems
directly. An evaluation of this aim was initiated in [12].
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A sorting for a reactive system is analogous to a typing discipline for terms:
Each sort gives an abstract view of its morphisms, in the same way that each
type gives an abstract view of its terms. Various notions of sorting have turned
out to be useful for both the meta-modeling aim and for the ubiquitous system
aim.

1. In representations of existing calculi in bigraphical reactive systems, sortings
remove “junk” morphisms — morphisms not representing anything. These
are removed to get a tight correspondence between the bisimulation derived
in bigraphs and the intended bisimulation [10,5,9,11].

2. For the modeling of context-aware systems, sortings help restricting reac-
tion rules to apply only in certain contexts, to get “context-aware reaction
rules” [13,12].

The sortings used in loc.cit. are all defined by first adding sorts to each object
in the category of bigraphs, second stipulating a well-sortedness condition using
this extra information, and finally declaring that we will only consider well-sorted
morphisms. (Notice again the analogy to typing disciplines.) For representation
applications (Item 1 above), sorts and conditions are chosen to make well-sorted
all but the junk morphisms. For modeling applications (Item 2 above), sorts are
used simply to distinguish sets of contexts; by choosing an appropriate sort for
a reaction, we restrict it to specific contexts.

However, we cannot tinker arbitrarily with our underlying category; we must
preserve relative pushouts in order to keep bisimulation a congruence. In each
example cited above, this preservation property is shown by hand. Moreover,
sorting is itself defined explicitly in each case: both Jensen [9] and Milner [5] de-
fine sorting for bigraphical place graphs; and Leifer and Milner define bigraphical
link graph sorting in [10].

In this paper we investigate sortings for reactive systems and make the fol-
lowing contributions.

1. We give a general definition of sorting, encompassing all the different notions
seen in the above examples (Definition 4).

2. We lift Jensen’s safety theorem to this general setting (Theorem 12). Jensen’s
safety theorem gives a sufficient condition under which RPOs may be trans-
ferred between sorted and unsorted worlds, but only in the setting of bi-
graphical place-graph sorting [9].

3. We present a general construction of sorting, the predicate sorting (Defini-
tion 15). For any predicate P which is preserved under under de-composition,
this sorting filters out morphisms not satisfying P .

4. We prove that predicate sortings transfer RPOs (Theorem 20). Thus, if the
bisimulation of an unsorted system is a congruence, then so is the bisimula-
tion of the corresponding predicate-sorted system.

5. We prove a correspondence theorem (Theorem 25) for predicate sortings:
A predicate sorted system suitably preserves the dynamics of its unsorted
counterpart.
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6. We show that predicate sortings can be used to model some context-aware
reaction systems, notably those where some reaction rules should apply only
in contexts which do not contain a given sub-context (Theorem 30).

Our setting is reactive systems over categories rather than precategories (the
home of bigraphs) or 2-categories. We believe the extension of our work to either
setting to be straightforward, but have yet to justify that belief.

This paper is an abridged version of the technical report [14]; refer to that
report for omitted proofs.

Overview. In Section 2, we recall Leifer and Milner’s reactive systems; in Sec-
tion 3, we give our general definition of sorting and lift Jensen’s transfer theorem;
in Section 4, we define predicate sortings; in Section 5, we prove that predicate
sortings transfers RPOs; in Section 6, we prove the correspondence theorem; in
Section 7, we demonstrate that predicate sortings can be used to define context-
aware reaction rules; and in Section 8, we conclude.

Notation and Terminology. We will need a tiny bit of standard terminology
from the study of (op-)fibrations (see, e.g., [15]). Let p : E → B be a functor. A
morphism of B has a lift at E iff it is the p-image of a morphism f : E → X .
A morphism f is above p(f). A morphism φ is vertical if it is above an identity.
The verticals above a particular identity idB forms a category, the fibre over B.
A morphism f is opcartesian iff whenever h, f is a span and h is above g ◦ p(f),
then there exists a unique ḡ s.t. p(ḡ) = g and h = ḡ ◦ f . (Two morphisms f, g
form a span if they share domain, a cospan if they share codomain.)

2 Reactive Systems

We give a brief introduction to Leifer and Milner’s reactive systems [2]. First,
terminology and a little intuition. Let B be a category, and let ε be a distinguished
object of B. We shall think of morphisms with domain ε as agents and all other
morphisms as contexts. Notice that the composition C◦a of a context C : X → Y
with an agent a : ε → X yields an agent C ◦ a : ε → Y . A reaction rule (l, r) is
a span of agents, i.e., both l : ε → X and r : ε → X for some X . Intuitively, l
and r are the left- and right-hand sides of rewrite rule. A set R of reaction rules
gives rise to a reaction relation, �−→, by closing reaction rules under contexts:

a �−→ b iff ∃C ∈ B, ∃(l, r) ∈ R. a = C ◦ l, b = C ◦ r. (1)

Altogether, these components constitute a reactive system.

Definition 1 (Reactive systems). A reactive system over a category B com-
prises a distinguished object ε and a set R of reaction rules; the reaction rules
gives rise to a reaction relation by (1) above.

Thus far, we have merely restated well-known concepts in the language of cate-
gory theory. The contribution of Leifer and Milner is their method for deriving
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labeled transitions from any reactive system: Provided the underlying category
has sufficient structure, the bisimulation on these labeled transitions is guaran-
teed to be a congruence. To give the labeled transitions, we will need the concept
of relative pushouts (RPOs).

Definition 2 (Relative pushout). Consider the following diagram.
f0

f1

g0

g1

h0

h1

h

Suppose the outer square commutes. The triple (h0, h1, h) is an RPO for g0, g1
to f0, f1 iff the entire diagram commutes and (h0, h1, h) is universal, that is,
if (h′0, h

′
1, h

′) has h′0 ◦ g0 = h′1 ◦ g1 and fi = h′ ◦ h′i, then there exists a unique k
s.t. h = h′ ◦ k and hi = k ◦ h′i. If (f0, f1, id) is an RPO for g0, g1 to f0, f1, we
say that (f0, f1) is an idem pushout (IPO) for g0, g1.

(For category-theory buffs: The RPO for gi to fi is a pushout of appropriate gi
in the slice-category over the codomain of the fi.)

Intuitively, if (hi, h) is an RPO for gi to fi, then h is the common part of the
contexts fi. The universality condition says that h is as big as possible: If h′ is an
alternative common part, then it must factor h, and there are thus commonalities
in the fi captured by h but not by h′. With this intuition, if fi is an IPO for gi,
the fi are minimal contexts making up for the differences between the gi.

Leifer and Milner proceed to construct their labeled transition systems by
taking as labels such minimal contexts enabling reaction.

Definition 3. For a reactive system (R, ε) over B, we define the standard tran-
sition relation −→ by taking a L−→ b iff there exists a context C and a reaction
rule (l, r) ∈ R s.t. the following diagram commutes, and the square is an IPO.

L

a

l r

bC

As mentioned, if B has all RPOs, then the bisimulation induced by the standard
transitions is a congruence [2].

3 Sortings

The process of adding sort information, then removing morphisms based on that
information is really the construction of a category E, based on some existing
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category B. There is obviously a forgetful functor p : E → B which is surjective
on objects; both Jensen [9] and Milner/Leifer [10] note so. Clearly, this functor
characterizes the sorting — Milner and Leifer states: “We shall often confuse [a
sorting] with its functor” [10, p.44]. Hence, we suggest taking the existence of
such a functor as the definition of a sorting.

Definition 4 (Sorting). A sorting of a category B is a functor into B that is
faithful and surjective on objects.

It is perhaps helpful to think of a sorting functor p as a refinement of homsets:
A homset B(B,B′) is refined into the homsets E(E,E′), where each E and E′

are p-preimages of B and B′. Because p is surjective on objects, every homset
of B is so refined; because p is faithful, each such refined homset simply consists
of a subset of the morphisms of the original homset.

We are interested in sortings that allow us to infer the existence of RPOs
in E from the existence of RPOs in B. Jensen gives a sufficient condition, safety,
for making such inferences. However, Jensen formulates safety in the setting of
bigraphical place-graph sortings, so we would like to lift Jensen’s definition of
safety and his RPO-transfer theorem [9, Theorem 4.32] to our general definition
of sorting. Remarkably, virtually nothing needs to be done: Jensen’s definition,
theorems and proofs are all formulated exclusively in terms of the (induced)
forgetful functor p, so we may transfer his work verbatim to our more general
setting. Thus, Definition 5 and Theorems 6, 8, and 12 are essentially due to
Jensen, although our formulations are much more general than his1. Jensen’s
proofs of Theorems 6, 8, and 12 can be found either in Jensen’s forthcoming
thesis [9] or (restated more verbosely) in [14].

Definition 5 (Transfer of RPOs). A functor p : E → B transfers RPOs
iff whenever the p-image of an E-square s has an RPO, then that RPO has a
p-preimage that is an RPO for s.

This definition is sufficient to infer the existence of RPOs in E from the existence
of RPO in B:

Theorem 6. If B has RPOs and p : E → B transfers RPOs, then E has RPOs
and p preserves RPOs.

In order to characterize RPOs in E, we have concocted the following general-
ization of “opcartesian”. The notion is inspired by Jensen’s notion of minimally
sorted sets of morphisms; it is a vehicle for transferring factorization of contexts
from B to E.

Definition 7 (Jointly opcartesian). Let p : E → B be a functor. A cospan f, g
in E is said to be jointly opcartesian iff whenever f ′, g′ is a cospan, f, f ′ is a
1 In the words of Poincaré [16, p. 34]: “When language has been well-chosen, one is

astonished to find that all demonstrations made for a known object apply immedi-
ately to many new objects: nothing requires to be changed, not even the terms, since
the names have become the same.”
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span, and g, g′ is a span (see the diagram below, left side) with p(f ′) = k ◦ p(f)
and p(g′) = k◦p(g) (see the diagram below, right side), then there exists a unique
lift k̄ of k s.t. f ′ = k̄ ◦ f and g′ = k̄ ◦ f ′.

f
g

f ′

g′

k̄ p(f)
p(g)

p(f ′)

p(g′)

k

Theorem 8. If B has RPOs and p : E → B transfers RPOs, then the diagram
below is an RPO in E iff its p-image is an RPO and h0, h1 are jointly opcartesian.

f0

f1

g0

g1

h0

h1

h

Intuitively, an RPO is the best way to factor a square; h0, h1 jointly opcartesian
ensures that this best factorization can be lifted from B to E.

Now that we have a characterization of IPOs for sortings that transfer RPOs
sortings, we look for a way to establish that a sorting actually does transfer
RPOs. The following generalization of the notion of opfibration will do.

Definition 9 (Weak opfibration). A functor p : E → B is a weak opfibration
iff whenever a morphism f of B has a lift at E, it has an opcartesian lift at E.

This definition relaxes the requirement of an opfibration (see, e.g., [15]), where
each morphism of B must have an opcartesian lift at each preimage of its domain.
However, it does retain the key property that every morphism can be written as
the composition of a vertical and an opcartesian.

Proposition 10. Suppose p : E → B is a sorting. Then p is a weak opfibration
iff every morphism f of E can be written f = φ ◦ f ′ where φ is a vertical and f ′

is opcartesian.

Proof. “=⇒”. For any f : E → E′ ∈ E, p(f) must have an opcartesian lift at E,
say f̄ . But p(f̄) = p(f) factors p(f) ◦ id, so for some vertical φ, f = φ ◦ f̄ .
“⇐=”. Any lift f : E → E′ of p(f) can be written f = φ ◦ f̄ , φ vertical and f̄
opcartesian, whence f̄ is the requisite opcartesian lift. ��
Definition 11 (Reflects prefixes, Vertical pushouts). A functor p : E → B
reflects prefixes iff whenever f is above g ◦h then h has a lift at the domain of f ;
p has vertical pushouts iff the fibres have pushouts and such pushouts are also
pushouts in E.
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Theorem 12. Let p : E → B be a sorting. If p is a weak opfibration, reflects
prefixes, and has vertical pushouts, then p transfers RPOs. If B also has RPOs,
then E has RPOs and p preserves RPOs.

We note that sortings can be composed by composing their functors, and we can
form conjunctions of sortings by taking their pullbacks. Composition preserves
RPO-transfer, and pullbacks preserve both RPO-transfer and the preconditions
for Theorem 12; refer to [14] for proofs and details.

4 Predicate Sortings

The example sortings referenced in the introduction are all intended to ban
morphisms from the underlying category B. The adding of sort information is
but a means to this end; in each case, the authors construct a category E which
resembles B, except that morphisms not satisfying some predicate P are no
longer present. We have identified a common feature of these sortings: When
read as predicates on morphisms of B, they all define de-composible predicates.

Definition 13. A predicate P on the morphisms of a category B is decomposi-
ble iff P (f ◦ g) implies P (f) and P (g).

This commonality may appear remarkable, but it is not, really, once we realize
that the decomposible predicates are precisely those that disallow morphisms
that are factored by morphisms in some given set.

Proposition 14. A predicate P on the morphisms of a category B is decomposi-
ble iff there exists a set Φ of B-morphisms s.t. P (f) iff for any g, ψ, h, f = g◦ψ◦h
implies ψ �∈ Φ.

Proof. Suppose P decomposible; take Φ = {φ | ¬P (φ)}. If P (f) and f = g◦ψ◦h,
then P (ψ), so ψ �∈ Φ. If f = g ◦ψ ◦h implies ψ �∈ Φ, then f = id ◦f ◦ id, so f �∈ Φ,
thus P (f). Define instead for some Φ, P (f) iff f = g ◦ ψ ◦ h implies ψ �∈ Φ.
If P (f ◦ g) and, say, f = h ◦ φ ◦ i, then f ◦ g = h ◦ φ ◦ (i ◦ g), so φ �∈ Φ. ��

In an encoding �−� of a calculus as a reactive system, it is natural to take Φ
to be the complement of the image of the encoding �−�. However, the resulting
predicate is different from just defining “P (f) iff f is in the image of �−�”;
the former definition always allows decompositions of morphisms in the image
of �−� where as the latter does so only if �−� is closed under decomposition in the
first place. Because the encodings listed in the introduction all use sortings that
are manifestations of decomposible predicates, it appears that so far, images of
encodings either turn out to closed under decomposition, or can be closed under
decomposition without adversely affecting the resulting bisimulation.

Proposition 14 gives a connection to BiLog [17,18], a spatial logic for bigraphs.
Given a BiLog formula ψ which characterizes a set Ψ of unwanted morphisms,
the BiLog formula (¬ψ)∀◦ characterizes the morphisms f s.t. f = x ◦ φ ◦ y
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implies φ �∈ Ψ . By Proposition 14, the set of morphisms satisfying (¬ψ)∀◦ is
decomposible, and thus gives rise to a predicate sorting as defined below.

We proceed to construct, for any decomposible predicate P on a category B,
a corresponding sorting p : E → B. The problem we face when constructing any
sorting is that we would like to retain as many morphisms of B as possible, while
guaranteeing that we never inadvertently violate P by composition. Suppose for
instance that we have morphisms f : A → B and g : B → C, and that we have
both P (f) and P (g), but not P (g ◦ f). We must either disallow f and allow g,
or allow f and disallow g. In the predicate sorting, we retain both options: As
preimage of an object B, we take all pairs (X,Y ) of sets of morphisms into and
out of B such that every morphism in X can safely be composed with every
morphism in Y .

Definition 15 (Predicate sorting). Let B be a category, and let P be a
decomposible predicate on the morphisms of B; we define the predicate sort-
ing p : E → B for P . The category E has pairs (X,Y ) as objects, where, for
some object B of B, X is a set of B morphisms with codomain B and Y is a set
of B-morphisms with domain B, subject to the following conditions.

idB ∈ X,Y (id)
f ∈ X ∪ Y =⇒ P (f) (sound)

f ∈ X, g ∈ Y =⇒ P (g ◦ f) (comp)
g ◦ f ∈ X =⇒ g ∈ X (suffix)
g ◦ f ∈ Y =⇒ f ∈ Y (prefix)

There is a morphism f : (X,Y ) → (U, V ) whenever the following holds.

f ∈ Y, f ∈ U (valid)
x ∈ X =⇒ f ◦ x ∈ U (preserve)
v ∈ V =⇒ v ◦ f ∈ Y (reflect)

We put this definition in words. For an object (X,Y ), we require that X,Y
contain the identity (id); that morphisms in X,Y satisfy P (sound); that mor-
phisms inX,Y are composible (comp); thatX is suffix-closed (suffix); and that
Y is prefix-closed (prefix). The first three requirements picks out all possible
combinations of morphisms satisfying P . The latter two requirements ensures
the existence of opcartesians and that the sorting reflects prefixes, respectively;
we will need these properties to transfer RPOs. Notice that decomposibility of P
is integral only to these latter two requirements.

For a morphism f , we require that it is contained in the sets at its domain and
codomain (valid); that it preserves validity of its domain (preserve); and that
it reflects validity at its codomain (reflect). The latter two requirements ensure
that we do not accidentally violate P by successive compositions. (Technically, we
could do without (valid), which follows from (preserve), (reflect) and (id);
we feel that the definition is clearer as it stands.)
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5 Transfer Theorem for Predicate Sortings

In this section, we prove that a predicate sorting p : E → B transfers RPOs. First,
we establish that each fibre is a lattice (Proposition 16); second, we characterize
the opcartesians (Definition 17 and Proposition 18); third, we use this charac-
terization to show that p is a weak opfibration (Proposition 19); and fourth, we
show that p transfers RPOs (Theorem 20). First, each fibre is a lattice.

Proposition 16. If φ : (X,Y ) → (U, V ) is vertical, then X ⊆ U and Y ⊇ V .
Ordered pointwise under ⊆ and ⊇, each fibre is a lattice with joins (X,Y ) �
(U, V ) = (X ∪ U, Y ∩ V ) and meets (X,Y ) � (U, V ) = (X ∩ U, Y ∪ V ).

We characterize the opcartesians. For a morphism f : A → B and a preim-
age (X,Y ) of A, we use (preserve) and (reflect) to define a preimage of B.

Definition 17. Let f : A→ B be a morphism of B, and let X ⊆ {g | cod(g) =
A} and Y ⊆ {h | dom(h) = A}. We define operators • and ◦ by f ◦X = {f ◦ x |
x ∈ X} and Y • f = {g | g ◦ f ∈ Y }. For any set Z of morphisms, we define the
suffix and prefix closures Zs = {h | ∃g. h ◦ g ∈ Z} and Zp = {g | ∃h. h ◦ g ∈ Z}.

Proposition 18. A morphism f : (X,Y ) → (U, V ) is opcartesian if and only if
U = (f ◦X)s and V = (Y • f)p.

Proposition 19. A predicate sorting p : E → B is a weak opfibration.

It is straightforward to establish that p reflects prefixes and has vertical pushouts;
see [14]. Thus, by Theorem 12, we have the desired transfer theorem.

Theorem 20. If B has RPOs, then a predicate sorting p : E → B transfers
RPOs.

6 Correspondence Theorem for Predicate Sortings

Taking the view that sortings exist to get rid of junk morphisms, when is a
sorting good enough? Not just any sorting will do. For instance, for any cat-
egory B and predicate P , we can construct a category E that has, for each f
with P (f), unique objects fX , fY and a morphism f : fX → fY . This category
gives a sorting p : E → B that transfers RPOs and has as image precisely the
morphisms f with P (f), but surely, this sorting is untenable: It supports no
non-trivial compositions, reactions, or transitions. We believe that a sorting will
prove usable if our chosen reactive system in B and restricted to morphisms sat-
isfying P can be recovered in E, and similarly for transitions. We establish that
our predicate sortings maintain this correspondence between reactions and tran-
sitions in Theorem 25 below. First, we must make our notion of correspondence
precise. For a predicate sorting p : E → B, we let E inherit reactions from B.
Inheritance will in turn require a lift of the distinguished object ε, the domain
of agents.
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Lemma 21. Write ε̄ for the pair ((idε)
s, {f : ε → X | P (f)}). Then ε̄ is an

object above ε, and any morphism f : ε→ X with P (f) has a lift at ε̄.

Definition 22 (p-inherited reactive system). Let p : E → B be a sorting,
and let R be a ground reactive system on B. The p-inherited reactive system has
distinguished object ε̄ and reaction rules R̄ defined by

R̄ = {(f, g) | f, g : ε̄→ X for some X, and (p(f), p(g)) ∈ R}.

Conversely, reactions and transitions in E can be translated to B.

Definition 23 (p-induced reactions and transitions). Let p : E → B be a
sorting, and let �−→ be a reaction relation on E. We define the p-induced reaction
relation ��−→� in B by taking for any f, g,

p(f) ��−→� p(g) iff f �−→ g.

Let −→ be the corresponding transition relation. We define the p-induced tran-
sition relation �−→� in B by taking for any f, g, h,

p(f) �
p(h)−→� p(g) iff f

h−→ g.

Having moved reactions up, and reactions and transitions back down, we com-
pare the result to restricting the original B reactions to P .

Definition 24 (P -restricted reactions and transitions). Let �−→ be a reac-
tion relation. We define the P -restricted reaction relation 1�−→2 (in the obvious
way) by

f 1�−→2 g iff f �−→ g and P (f), P (g).

Let −→ be the corresponding transition relation. We define the P -restricted tran-
sition relation 1−→2 by

f 1 h−→2 g iff f
h−→ g and P (f), P (g), P (h), P (h ◦ f).

Theorem 25 (Correspondence). Let B be a category with RPOs, let P be a
decomposible predicate, let p : E → B be the predicate sorting for P , let R be a
reactive system on B, and let R̄ be the p-inherited reactive system on E. Then

1. the p-induced and P -restricted reaction relations coincide, and
2. the p-induced and P -restricted transition relations coincide.

To prove the correspondence theorem, we will need better understanding of the
jointly opcartesians: Using Theorem 8, the jointly opcartesian pairs help us find
IPOs.

Definition 26 (Nearly jointly opcartesian). For p : E → B, a cospan f, g
is nearly jointly opcartesian iff there exists a jointly opcartesian pair f ′, g′ and
a vertical φ s.t. f = φ ◦ f ′ and g = φ ◦ g′.
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Using that each fibre is a lattice, we find that all cospans are nearly jointly
opcartesian.

Proposition 27. In a predicate sorting p : E → B, f, g are jointly opcartesian
iff f = φ ◦ f̄ and g = ψ ◦ ḡ where f̄ , ḡ are opcartesians and φ, ψ are the unique
verticals given by cod(f̄) � cod(ḡ).

Proposition 28. In a predicate sorting p : E → B, every cospan f, g is nearly
jointly opcartesian.

Proof. By Proposition 10, we may write f = ρ ◦ f̄ and g = τ ◦ ḡ where f̄ , ḡ
are opcartesian and ρ, τ are verticals. Take φ, ψ to be the unique verticals given
by f̄ � ḡ. By Proposition 27, φ ◦ f̄ and ψ ◦ ḡ are jointly opcartesians, hence there
exists a vertical α with f = α ◦ φ ◦ f̄ and g = α ◦ ψ ◦ ḡ. ��

Proposition 29. Let p : E → B be a predicate sorting, and consider a cospan

p(X,Y ) B p(U, V )
f g

If f and g have lifts at p(X,Y ) and p(U, V ), respectively, then they have jointly
opcartesian lifts there.

Proof. We have opcartesian lifts f̄ of f and ḡ of g, and because f, g is a cospan,
we may form f̄ � ḡ; Proposition 27 now gives a jointly opcartesian lift. ��

In light of Theorem 8, the above proposition gives us a very tight grip on the
relation between IPOs in B and E. We now use that grip to prove the correspon-
dence theorem.

Proof (of Theorem 25). Part 1. Suppose first that a ��−→� b. Then for some f, g
with a = p(f) and b = p(g), f �−→ g. Thus f = D ◦ e and g = D ◦ e′
with (e, e′) ∈ R̄, so a = p(D) ◦ p(e) and b = p(D) ◦ p(e′), with (p(e), p(e′)) ∈ R,
so a �−→ b; clearly P (a) and P (b), hence a 1�−→2 b.

Suppose instead that f 1�−→2 g. There exists C, r and s with (r, s) ∈ R
s.t. f = C ◦ r and g = C ◦ s. By Lemma 21 we can find lifts of r, s at ε̄, so
by Proposition 29, we have a jointly opcartesian lift r̄, s̄ of r, s at ε. Again by
Lemma 21, we can lift C ◦ r and C ◦ s at ε; so by r̄, s̄ jointly opcartesian, there
is a lift C̄ of C at cod(r̄) = cod(s̄). Clearly (r̄, s̄) ∈ R̄, so we have C̄ ◦ r̄ �−→ C̄ ◦ s̄,
and in turn f = C ◦ r ��−→� C ◦ s = g.

Part 2. Suppose a 1 L−→2 b. Thus there exists (r, s) ∈ R and a context C s.t.
the following diagram commutes and the square is an IPO.

L

a

r s

bC
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We find P (C ◦ r) because P (L ◦ a), and P (C ◦ s) because P (b). By Lemma 21
and Proposition 19, we have opcartesian lifts ā, L ◦ a, r̄, s̄, C ◦ r and C ◦ s at ε̄.
Because ā is opcartesian, we find may a lift of L̄ at the codomain of ā; we may
assume this lift opcartesian. By Proposition 29, we may assume r̄, s̄ jointly op-
cartesian and C ◦ r, C ◦ s cospan, so there exists a lift C̄ of C at cod(r̄) = cod(s̄).
Again by Proposition 29, we may assume L̄, C̄ jointly opcartesian. Altogether,
we have erected the following diagram.

L̄

ā

r̄ s̄

C̄

By Theorem 8, we have constructed an IPO, and clearly (p(r̄), p(s̄)) ∈ R, so we

have a transition ā L̄−→ C̄ ◦ s̄. Because C ◦ s = b, we have obtained the desired
transition a �

L−→� b.
Suppose instead a �

L−→� b. For some f, g, h, we have a = p(f), b = p(g), L =
p(h) and f h−→ g, so there exists (r, s) ∈ R̄ and a C s.t. the following diagram
commutes, and the square is an IPO.

h

f

r s

gC

Clearly, (p(r), p(s)) ∈ R), and by Theorem 20, the image of the square is an

IPO, so there is a transition p(f)
p(h)−→ p(g), that is, a L−→ b. Clearly, P (a), P (L),

P (b) and P (L ◦ a), so we have the desired a 1 L−→2 b. ��

7 Context-Aware Reactions

Ubiquitous computing is inextricably linked to context-aware computing: com-
putations that are aware of and depend on the present context of the computing
agent. Here are two examples. (1) An electronic tour guide device, carried around
by visitors at a museum, should provide information about the physically clos-
est exhibit. (2) Doors in a shop which open automatically unless an RFID-tag
of an item not registered as sold is too close. Notice the dual requirements in
these examples: The first stipulates a positive requirement (the presence of an
exhibit), whereas the second stipulates a negative requirement (the absence of
an unsold item). Thus, for modeling such applications, it is very convenient if we
can specify reaction rules that apply in some but not all contexts. However, as
observed in [19], work on process calculi tends to supply at most a rudimentary
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distinction between active and passive contexts, a distinction insufficient for the
above examples.

We can use sorting to better control reaction: We simply specify our reactive
system directly in the sorted category E. By choosing the right codomain for a
reaction rule (l, r) we specify in what contexts it applies. In particular, we may
use sorting to capture absence of something in the context. In some categories
— in particular bigraphs — we model contexts as morphisms and the presence
of something as factorization. Thus, we say that a : A′ → B′ is present in the
context c : A→ B iff c = x◦a◦y for some x, y. Under this notion of presence, the
predicate sorting can be used to capture absence to the extent of the following
theorem.

Theorem 30. Let p : E → B be the predicate sorting, let f : ε → B be a
morphism of B, and let T be any set of morphisms with domain B. Then f has
a lift f̄ at ε̄ s.t. each g : B → X has a lift at cod(f̄) precisely when g ∈ T iff T
is prefix closed and respects P .

Put another way: If we want the left-hand side of a reaction rule (l, r) to apply
precisely in a set T of contexts, we can do so within any predicate sorting,
provided T is prefix-closed and respects the predicate P . Notice that we may
take P to be everywhere true, should we so desire.

What does the restriction to prefix-closed sets T mean? Reconsidering the
examples with presence and absence, we see that absence is prefix-closed whereas
presence is not. Clearly, if a does not occur in a context c, then it also does not
occur in any sub-context of c; in particular, it does not occur in any prefix of c.
On the other hand, we may very well have a context c that contains some a, but
a prefix of c which does not.

In the case of bigraphs or, more generally, wide reactive systems [4,5], the
monoidal structure enables us to express presence without the use of sortings: If
we insist that (l, r) applies only when a is present in the context, we simply give
the rule as (a ⊗ l, a ⊗ r). Thus, in sorted wide reactive systems, we can model
both presence and absence.

8 Conclusion

Building on earlier work on more specific sortings, ours is the first investiga-
tion of general sortings, or type systems, for reactive systems. However, type
systems have been investigated for related frameworks, notably for hypergraph
rewriting systems in [20], and for process algebras in [21]. Our work is alone in
addressing the impact of sorting on labeled transition systems, bisimulations,
and congruence properties.

König’s typings for hypergraph rewriting systems [20] resembles our sortings
in that the aim of typing is explicitly stated to be identifying hypergraphs satis-
fying a given predicate; that decomposition preserves well-typedness; that com-
position does not necessarily preserve well-typedness; and that there is a notion
of minimal type, roughly comparable to our use of opcartesian lifts. The method
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differs from ours — the setting of hypergraphs not withstanding — in that the
typing relation is required to satisfy subject reduction, whereas we simply dis-
regard type-altering reductions (cf. the P -restriction of reaction, Definition 24).

Honda’s work on typed process algebras [21] is reminiscent of ours in that
it focuses explicitly on controlling which morphisms are composible and which
are not. However, Honda’s notion of process is quite specific to process calculi
compared to our more general setting of reactive systems over categories.

For future work, we see as the most urgent the reconciliation of present work
with precategories, bridging the gap to bigraphs. Observing that our notion of
sorting applies immediately to abstract bigraph, we are hopeful that we can
transfer our results across the quotient functors to precategories.

Other directions include further investigating compositionality of sortings. In
Section 3, we demonstrated how to compose sortings sequentially and how to
form their conjunction; it is natural to wonder about other connectives, particu-
larly negation. Another direction is investigating the use of sortings for encoding
typed calculi in reactive systems. Yet another is that for bigraphs, it would be
interesting if there were stronger connections between BiLog [17,18] and sorted
bigraphs than those noted in Section 4. For instance, BiLog formulas might form
the basis of a syntactic formulation of sorting, which could in turn be useful for
implementations of reactive systems. Finally, it would be interesting to know if
the predicate sorting is in some sense universal.
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Abstract. We develop a variant of Gordon and Hankin’s concurrent object cal-
culus with support for flexible access control on methods. We investigate safe
administration and access of shared resources in the resulting language. Specifi-
cally, we show a static type system that guarantees safe manipulation of objects
with respect to dynamic specifications, where such specifications are enforced
via access changes on the underlying methods at runtime. By labeling types with
secrecy groups, we show that well-typed systems preserve their secrets amidst
dynamic access control and untrusted environments.

1 Introduction

Systems that share resources almost always exercise some control on access to those
resources. The access control typically relies on a set of rules that decide which access
requests to accept; furthermore, those rules may be subject to change to reflect changing
requirements on resource access at runtime. While access control mechanisms are often
easy to deploy—they are both common and various—they are surprisingly difficult to
marshal towards achieving higher safety goals. For instance, users who have access to a
file with sensitive content can often share the content, intentionally or by mistake, with
those who do not have access; even if the privileged users are careful, a change in the
access rules can allow other users to read that content, or write over it.

A convenient view of access control results from its characterization in terms of -
capabilities: a resource may be accessed if and only if a corresponding capability is
shown for its access. For one, this view provides an immediate low-level abstraction
of access control “by definition”; two, the view is independent of higher level spec-
ifications on resource usage (say, in terms of types, or identities of principals). The
separation facilitates higher level proofs, since it suffices to guarantee that the flow
of a capability that protects a resource respects the corresponding high-level intention
on resource usage. We develop methods to provide such guarantees in this paper. The
methods in turn rely on a sound low-level implementation of access control in terms of
capabilities. Fortunately, to that end, a capability for a resource can be identified with a
pointer to that resource. Exporting a direct link to a resource, however, poses problems
for dynamic access control, as discussed by Redell in his dissertation (1974). Redell
suggests a simple alternative that uses indirection: export indirect pointers to a local,
direct reference to the resource, and overwrite this local pointer to modify access to that
resource [30]. We revisit that idea in this paper.
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We study safe dynamic access control in a concurrent object language. Resources are
often built over other resources; dependencies between resources may entail dependen-
cies on their access assumptions for end-to-end safety. For example, suppose two users
read the same file to obtain what they believe is a shared secret key that they then use to
encrypt secret messages between themselves; it does not help if a third user can write a
Trojan key on that file and then decrypt the “secret” messages. A natural way to capture
such dependencies is to group the related resources into objects. (In the example above,
the object would be the file in question, and the resources would be a “key” field and
“read” and “write” methods that manipulate that field.)

We develop a variant of Gordon and Hankin’s concurrent object calculus concς [14]
for our study. In concς , as in most previous object calculi (e.g., [2,4,32]), a method
is accessed by providing the name of the parent object and a label that identifies the
method. For example, for a timer object t in the calculus, with two methods, tick and
set, knowing the name t is sufficient to call (or even redefine) both methods (t.tick,
t.set). We may, however, want to restrict access to set to the owner of t, while allowing
other users to access tick; such requirements are not directly supported by concς . In
languages like Java, there is limited support for method-level access control via access
modifiers—however, such modifiers can only sometimes be changed in a very restricted
way, and moreover they implement a policy design that is fixed by the language.

Our calculus provides veils for implementing flexible access control of methods.
Veils are similar to Redell’s indirect access pointers. More specifically, a veil is an alias
(or “handle”) for the label that identifies a particular method inside an object definition.
A method is invoked by sending a message on its veil; method access is modified by
re-exporting a different veil for its label. A method call crucially does not require the
name of the parent object. An object name, on the other hand, is required for access
modification and redefinition of methods—thus object names are similar to Redell’s lo-
cal references (or “capabilities”). In the sequel, informally, a capability is a reference
to an object, and veils are indirect references to its methods. A capability is meant to
be shared between the owner and other administrators of an object, and veils are meant
to be made available to the users of its methods. Dependencies between object methods
often require their redefinitions and access modifications to be simultaneous—therefore
the calculus replaces concς’s method update with a more general “administration”
primitive. Veils allow a relatively straightforward encoding of the mutex primitives of
concςm (an extension of concς that facilitates encodings of locks, communication
channels, etc.), so we do not include those primitives in the syntax.

We show a type system for the resulting language that guarantees safe manipula-
tion of objects with respect to dynamically changing specifications. Informally, we al-
low object methods to change their exported “type views” at runtime: in other words,
resource administrators can not only control resource usage at runtime, but also dy-
namically specify why they do so (i.e., their higher level intentions). This flexibility
is desirable since persistent resources (e.g., file systems, memory) are typically used in
several different contexts over time. For example, files are often required to pass through
intervals of restricted access; memory locations are dynamically allocated/deallocated
to map different data structures over several program executions. By a combination of
access control (as provided by the language) and static discipline (provided by the type
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system) we can show that the intentions of the users and administrators of those re-
sources are respected through and between such phases of flux. In particular, by label-
ing types with secrecy groups, we show that well-typedness guarantees secrecy under
dynamic access control, even in the presence of possibly untyped, active environments.

Outline of the Paper. In the next section we present a concurrent object calculus with
veils for dynamic access control (the “veil calculus”, for brevity). We accompany the
formal syntax and semantics of our language with commentary on the conceptual and
technical differences with Gordon and Hankin’s original calculus. In Section 3, we
present a type system for the language, show examples of well-typed programs, and
state our main theorem, viz. typing guarantees secrecy under dynamically changing
type views and even under untyped environments. We discuss related work in Section 4
and conclude by summarizing our contributions.

2 The Untyped Veil Calculus

In this section we present a variant of the calculus concς [14]. The novel aspects of
the language lie in the separation of roles for method definition and invocation; this
separation is induced by a fresh treatment of method names via veils.

The syntax is very similar to that of concς; as such, it retains most of the simplicity,
compactness, and expressivity of the original. Although we make minimal changes to
the original calculus (specifically, in the manner of method call and update), the changes
have a clear effect on the suitability of the resulting language as a core calculus for
studying security properties of concurrent objects. As argued in Section 1, the original
calculus cannot separate the ability to call a method (i.e., use a resource) from the ability
to redefine it (i.e., do administration on it); moreover, it cannot distinguish between
method-access abilities within the same object. Persistent resources characteristically
require support for such distinctions for security. The new language improves upon
concς in this respect, since veils can enforce those distinctions quite naturally.

u, v, w ::= results
x variable
m,n, p, q, θ name (capability, veil)

d ::= denotations

θ̃[�̃ �⇒ ς(x)(̃y)b] object
a, b ::= expressions

u result
p �→ d denomination
(νn) a restriction
a 	 b fork
let x = a in b evaluation
�(u) internal method call
�⇐� (y)b internal method update
v〈u〉 external method call
u←� d external update (“administration”)
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Names in the veil calculus fall into two conceptual categories (that we do not distinguish
syntactically): object names, which we call capabilities, and method alias names, which
we call veils. An object is defined by a map from labels to expressions, and a map from
labels to veils. The former map defines the methods of the object. The method bodies
abstract on a “self” variable that gets bound to the name of the object at runtime. Unlike
concς , they also abstract on an “argument” variable—while parameter passing can be
encoded even otherwise, having explicit argument abstraction allows better typings.
The map from labels to veils defines the external aliases for the methods of the object.
As usual, these (finite) maps are written as associated sequences for convenience. We
use the notation ϕ̃ to abbreviate a sequence ϕ1, . . . ϕk , where k is given by |ϕ̃|. Thus

in the object θ̃[�̃ �⇒ ς(x)(̃y)b], the variable x abstracts “self”; for each label �i ∈ �̃, the
name θi is a veil for the method identified by that label; the method’s body bi takes the
parameter yi. The maps are sometimes made explicit by writing the object asΘ[ς(x)Δ],
where Θ(�i) = θi andΔ(�i)(yi) = bi for each �i ∈ �̃.

There are separate “internal” and “external” primitives in the syntax for method call
and update. The internal primitives �(u) and � ⇐� (y)b noticeably do not carry any ob-
ject reference (cf. the forms p.� and p.�⇐� b in concς [14]). Labels by themselves have
no meaning outside objects; hence the use of internal primitives is limited to within
objects. The external primitives, on the other hand, can be used in any context. An ex-
ternal method call v 〈u〉 is a message on a veil. Crucially, an object reference is not
required for invoking a method (cf. [14]). Object references are required for adminis-
tration. Administration is done via external update u←� d, which is a generalization of
concς’s method update: it modifies an object by re-exporting veil bindings and aug-
menting/overriding several method definitions.

The rest of the syntax is the same as that of concς . Informally, the syntactical forms
have the following meanings. (The formal semantics is shown later in the section.)

– u is a result (a variable or name) that is returned by an expression.
– p �→ d attaches the capability p to an object d.
– (νn) a creates a new name n that is bound in the expression a, and executes a.
– a 	 b is the (non-commutative) parallel composition of the expressions a and b;

it returns any result returned by b, while executing a for side-effect. This form,
introduced in [14], is largely responsible for the compactness of the syntax, since
it provides an uniform way to write expressions that return results, and “processes”
that exhibit behaviours. (Of course, expressions that return results can also have
side-effects.)

– let x = a in b binds the result of the expression a to the variable x and then executes
the expression b; here x is bound in b.

– �(u) means a local method call inside an object; see external call.
– �⇐� (y)b means a local method update inside an object; see external update.
– v 〈u〉 means an external call on the veil v, with argument u; in the presence of a

denomination p �→ d where d exports v for a defined method, the corresponding
method expression is exported by substituting veiled calls for internal calls, self
updates for internal updates, p for the abstracted self variable, and u for the formal
parameter. The details of method export are given below.
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– u←� dmeans an external update on the capability u; in the presence of a denomina-
tion u �→ d′, the veils exported by d replace those exported by d′, and the methods
defined by d augment or override those defined by d′; the capability u is returned.

Example 1. Assume that integers can be encoded in the language, and there is a method
handle θpre for decrementing a positive integer. Consider the following code. A server
creates a new timer object, exports the tick and set methods of the timer on veils θtick
and θset, and sets the value of the timer to an integer N by invoking θset. A client
repeatedly ticks the timer by invoking θtick. At some point, the server creates a new
veil θntick, and re-exports the tick method of the timer object on this veil. Consequently,
since the client does not know this new veil, it can no longer tick the timer. (We elide
unnecessary self-bindings ς(x), formal parameters (y), and unit arguments in the code.)

System
def= (νp, θval, θset, θtick) (Server 	 Client)

Server
def= p �→ θvalθsetθtick[ val �⇒ val, # timer on capability p, with

set(y) �⇒ let = val⇐� y in y, # set exported on veil θset
tick �⇒ let z = val in # tick exported on veil θtick

let z′ = θpre〈z〉 in set(z′) ] 	
θset〈N〉 	 . . . 	 # timer gets activated...
(νθntick) p←� θvalθsetθntick[ val �⇒ val ] # timer gets deactivated

Client
def= (θtick	 . . . 	 θtick) # timer ticks

We show a chemical semantics for the language, much as in [14]. Following the pre-
sentation in [13], we employ a grammar of evaluation contexts to tighten the rules.

E ::= evaluation contexts
• hole
let x = E in b evaluation
E 	 b fork side
a 	 E fork main
(νn) E restriction

Informally, an evaluation context is an expression container with exactly one hole. By
plugging an expression a into the hole of an evaluation context E , we obtain the ex-
pression E [[a]]. (In general, plugging may not be capture-free with respect to names or
variables.) We define structural congruence of expressions as usual.

Structural congruence a ≡ b # fn (resp. bn) collects free (resp. bound) names

(STRUCT RES)
n /∈ fn(E) ∪ bn(E)

(νn) E [[a]] ≡ E [[(νn) a]]

(STRUCT PAR)
fn(a) ∩ bn(E) = ∅

a 	 E [[b]] ≡ E [[a 	 b]]

(STRUCT EQV)
≡ is an equivalence

Next, we define reduction of expressions. Not surprisingly, perhaps, there are no re-
duction rules for internal call and update: we restrict the sites of action to the external
primitives. The reductions for external call and update, (Red Call) and (Red Upd), have
some important differences from the corresponding reductions in concς . First, when a



268 A. Chaudhuri

method body is exported on call reduction, the free labels in the body are “frozen” via
substitutions of veiled calls for internal calls, and self updates for internal updates. The
export translation �Θ

x is shown below. Second, while object update is a straightforward
generalization of method update, such an update also re-exports veil bindings for the
methods of the object. In general, the update can block or unblock method calls that are
invoked on past or present veils: thus it serves as an access control mechanism in the
language. Update is therefore synonymous with administration in this paper.

In the following, we use the notationΔ′, Δ to mean the map obtained by augmenting
the mapΔ withΔ′, while overriding bindings for the common labels.

Export a�Θ
x and structural reduction a −→ b

Θ(�) = v

�(u)�Θ
x

def= v〈u〉
(� ⇐ � (y)b)�Θ

x
def= x ← � Θ[� �⇒ ς(x)(y)b�Θ

x ]

(a 	 b)�Θ
x

def= a�Θ
x 	 b�Θ

x (let z = a in b)�Θ
x

def= let z = a�Θ
x in b�Θ

x

((νn) a)�Θ
x

def= (νn) a�Θ
x

a = u, p �→ d, v〈u〉, or u ← � d

a�Θ
x

def= a

(RED CALL)
d = Θ[ς(x)Δ]

Θ(�j) = θ Δ(�j)(y) = b

(p �→ d)	 θ〈m〉 −→ (p �→ d) 	 b�Θ
x {p/x, m/y}

(RED UPD)
d = [ς(x)Δ] d′ = Θ′[ς(x)Δ′]

d′′ = Θ′[ς(x)Δ′, Δ]
(p �→ d)	 p ← � d′ −→ (p �→ d′′)	 p

(RED EVAL)
let x = n in b −→ b{n/x}

(RED CONTEXT)
a −→ b

E [[a]] −→ E [[b]]

(RED STRUCT)
a ≡ a′ a′ −→ b′ b′ ≡ b

a −→ b

Freezing labels (by a veil map) in the export translation makes intuitive sense: it
assigns a definite meaning to a method expression outside the syntactical scope of its
parent object. Freezing labels also facilitates the enforcement of static object invariants
(Section 3) amidst runtime administration; indeed labels in isolation cannot provide any
runtime access guarantees.

Notice that an update returns the object reference (as in [14]): therefore, say, if an
internal update is the rightmost branch of a method definition, a call to the method might
return a reference to its parent object. This result is potentially dangerous—a user of the
method can obtain administrative abilities on the object. We however do not complicate
the semantics to prevent such “errors”, partly because they are easy to catch statically.
The update in question can of course be localized by a “let” if necessary.

To illustrate the semantics, next we show some sample reductions for parts of the
code of Example 1. Here, let Θ(tick) = θtick, Θ′(tick) = θntick, Δ(val) = val,
Δ′(val) = N , Δ′′(val) = N − 1, and let the remaining bindings be as given by the
initial denomination of p in the code.

p �→ Θ[ς(x)Δ] 	 θset〈N〉 −→ p �→ Θ[ς(x)Δ] 	
let = p←� Θ[val �⇒ N ] in N

−→ p �→ Θ[ς(x)Δ′] 	 N # activate
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p �→ Θ[ς(x)Δ′] 	 θtick −→ p �→ Θ[ς(x)Δ′] 	
let z = θval in let z′ = θpre〈z〉 in θset〈z′〉

−→� p �→ Θ[ς(x)Δ′′] 	 N − 1 # tick

p �→ Θ[ς(x)Δ′′] 	 p←� Θ′[val �⇒ val] −→ p �→ Θ′[ς(x)Δ] 	 p # deactivate

3 Flux-Robust Typing

In this section we show a type discipline for systems with concurrent objects that ex-
port dynamic “type views”. More specifically, we allow methods to change types at
runtime: the type of a method corresponds dynamically to the type of the veil it exports.
For example, suppose the owner of a file wants to change the type of the content from
“public” to “secret”. Clearly, the veil for the content field must be changed: while the
previous veil could have been public, the new veil has to be secret. If the file addition-
ally has read and write methods that depend on the content field, their types change
accordingly: therefore the veils for these methods need to be changed as well.

Changing veils is however not enough for end-to-end secrecy. (This inadequacy is
typical of access control mechanisms, as mentioned in Section 1.) A user who can now
read the file on its new veil will regard the content as secret (even if it is not). Suppose
that the user reads the (previously public) content θ on the new veil, and exports θ as a
handle to read a secret key k that he has written to another file: it now becomes possible
to publicly read k by invoking θ. Indeed, it is almost always possible to exploit such
“type interpretation” errors to leak secrets. (For instance, interpreting secret content as
public can be equally bad.) To prevent such errors, the content field must be overridden
to reflect its new type. By the same argument, then, it appears that the read and write
methods need to be overridden as well—we can however do better. Typically read and
write have types that are parametric with respect to the type of the content: informally,
whenever the content type isX , the read and write methods have types (1)X and (X)1
(where 1 is the unit type). Therefore, those methods reflect their new types as soon as
the content field is overridden.

We summarize these insights in the following general principles that govern the type
system below. First, an object update is consistent only if the types of the new veils
match up with the types of the method definitions. Second, type consistency forces
some methods to be overridden; methods whose types are parametric with respect to
the types of the overridden methods however need not be overridden themselves. This
form of polymorphism is typically exhibited by higher-order (generic) functions, com-
positionally defined procedures, or (in the degenerate case) methods that have static
types, i.e., whose types do not change. We prefer to call these methods “natural” to
avoid nomenclatural confusion with any particular brand of polymorphism.

3.1 A Type System for Secrecy Despite Flux

The primary goal of the type discipline is flux robustness, i.e., type safety despite dy-
namic changes to type assumptions for methods. Access control is used in an integral
way to enforce safety. In the type system, methods are qualified as “flat” or “natural”.
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Flat methods must be overridden whenever veils change. Natural methods may be over-
ridden; if they are, they must remain polymorphically typed, as indicated above.

To specify and verify secrecy, we introduce a system of principals. More specifically,
we use indices to identify “owners” of code, and let the type declaration for a name
specify the group of indices within which that name is intended to be confined. We then
use type safety to verify that each such intention is preserved at runtime.

Secrecy groups as presented are close to those developed in [10]; the basic concepts
appear earlier in, e.g., the pi calculus with group creation [9] and the confined lambda
calculus [23]. Let ∞ be a countable universe of indices—this is the largest group, also
called “public”, since a name that belongs to this group may be shared by all principals.
Other groups (trusted) are proper subsets of∞, or group variables (ranged over by X ).

ρ ::= qualifiers
! flat method
" natural method

H, I ::= groups
∞ countable universe of indices (public)
G trusted

G ::= trusted groups
X group variable
{. . .} proper subset of∞

S, T, U ::= types
X type variable

ObjG [�̃ : (̃S)T ρ] capability type scheme
VeilG(u.� : (S)T ) veil type
(∃x)T dependent union type
Null null type
Un untrusted type

Typed processes declare types for new names (with (νn : T ) a, instead of (νn) a in
Section 2). Informally, the type sorts have the following meanings:

– X ranges over type variables. Group and type variables appear in capability signa-
tures (see below).

– A capability signature ObjG [�̃ : (̃S)T ρ] is a type scheme that assigns types (Si)Ti
and qualifiers ρi to the methods �i ∈ �̃ of a denoted object. The group G corre-
sponds to the set of administrators for that object. The scheme binds group and
type variables that are shared by the types of the methods in the signature. We in-
terpret a type scheme as an universally quantified type over its bound variables,
while leaving the bound variables implicit (à la polymorphic types in ML [26]).

– A veil type VeilG(u.� : (S)T ) is dependent on a capability u, and instantiates the
type scheme for a method � in the signature of that capability. The veil expects an
argument of type S and returns a result of type T . The group G corresponds to the
set of users—the “access-control list”—for the method referenced by the veil. We
use dependence in the veil type to prevent the same veil from being exported by
different objects. (A similar “no-confusion” property is required, for instance, of
datatype constructors [11].)
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– Dependent union types (∃x)T allow capability dependencies to be passed without
explicit communication of the capabilities themselves. The type system thus sup-
ports the separation of roles of veils and capabilities (as intended) despite enforcing
necessary dependencies between them.

– The type Null is given to an expression whose result, if any, is ignored.
– Finally, the type Un is given to any expression whose result, if any, is untrusted.

For example, the signature of a file capability might look like:

Obj{Owner}[content : (1)X�, read : (1)X�, write : (X)1�]

where 1 def= Obj[ ]. If, say, the content is of type T , a veil for write may have the type:

(∃z)Veil{Writer,Owner}(z.write : (T )1)

As another example, an authenticated encryption object may be given the signature:

Obj{KeyManager}[key : X�, authencrypt : (Y )(∃z)VeilX (z.decrypt : (X)Y )�]

where the group X of the decryption handle returned by encryption can be controlled
by KeyManager. Let, e.g., R

def= {Reader,KeyManager},W def= {Writer,KeyManager},
RW

def= R ∪ W , key type TX
def= ObjR[ ], and content type TY

def= ObjRW [ ]. Then
authencrypt may be exported on a veil with type

(∃z′)VeilW (z′.authencrypt : (TY )(∃z)VeilRW (z.decrypt : (TX)TY ))

The relationship between types and groups is made explicit by a reach function, defined
below. Informally, the reach of a type is the group within which the inhabitants of that
type may be shared (but not without). For example, Un has reach ∞. Group and type
variables do not constrain the reach of the type they appear in. Otherwise, the topmost
group that appears in a type is taken to be the reach of that type.

Type reach ‖T ‖ with group variables X equated to∞
‖X‖ = ∞ ‖(∃x)T‖ = ‖T‖ ‖Un‖ = ∞ ‖ObjG [ : ]‖ = G ‖VeilG( : )‖ = G

Let σ range over substitutions of group and type variables, that is, σ : (X → H)+(X →
T ). We define substitution below; it is mostly standard, except for the substitution of
∞ for a group variable that annotates a type, which “rounds off” that type as untrusted.
We say that σ is a proper substitution for U if Uσ is defined.

Group and type substitution Gσ, Uσ
Xσ = σ(X ) {. . .}σ = {. . .} Xσ = σ(X) ((∃x)T )σ = (∃x)Tσ Un σ = Un

Gσ �= ∞
ObjG [� : (̃S)T ρ]σ = ObjGσ[� : ˜(Sσ)Tσρ]

Gσ = ∞ Sσ = Un Tσ = Un

ObjG [� : (̃S)T ρ]σ = Un

Gσ �= ∞
VeilG(u.� : (S)T )σ = VeilGσ(u.� : (Sσ)Tσ)

Gσ = ∞ Sσ = Un Tσ = Un

VeilG(u.� : (S)T )σ = Un
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Next, we show typing rules. Let Γ be a sequence of type assumptions u : T . The
rules judge well-formed assumptions Γ , 3, good types Γ , T , good subtyping Γ ,
T <: U , and well-typed expressions Γ ,I a : T . In the rules for Γ , T <: U , we
implicitly include the condition Γ , T in the antecedent. In the rules for Γ , T and
Γ ,I a : T , whenever there are no , judgments in the antecedent, we implicitly include
the condition Γ , 3.

In the judgment Γ ,I a : T , the group I under , indicates the “trust level” under
which the program is to be typed: any result in the program must have a type whose
reach intersects I. Informally, principals with indices in I are allowed to collude—
their programs may contain results that have types whose reaches include at least one
of the indices in I, but may not contain any result whose type is “out of reach” (i.e.,
whose reach does not include any index in I). For instance, ,∞ is the most liberal
typing relation. In fact , is monotone:H ⊆ I implies ,H ⊆ ,I .

Let VeilG(u.� : (S)T ) ∈ veiltype(u.� : (S)T ) for all trusted groups G, and Un ∈
veiltype(u.� : (Un)Un). Finally, let σ∞ range over special substitutions that map group
variables to ∞ and type variables to Un, that is, σ∞ : (X →∞) + (X → Un).

Typing rules Γ , 3, Γ , T, Γ , T <: U, Γ ,I a : T

(HYP NONE)
∅ � �

(HYP NEXT)
Γ � T u /∈ dom(Γ )

Γ, u : T � �
(TYP VAR)
Γ � X

(TYP EXST)
Γ, x : X � T

Γ � (∃x)T

(TYP OBJ)
� distinct ∀{�i ∈ �}. Γ � Si, Ti

Γ � ObjG [� : (̃S)T ρ]

(TYP VEIL)
u ∈ dom(Γ ) Γ � S, T

Γ � VeilG(u.� : (S)T )

(TYP UN)
Γ � Un

(SUB REFL)
Γ � T <: T

(SUB TRAN)
Γ � T <: S Γ � S <: U

Γ � T <: U

(EXP SUB)
Γ �I a : T Γ � T <: U

Γ �I a : U

(DEP GRNT)
x /∈ dom(Γ )

Γ � T{u/x} <: (∃x)T

(DEP ASSM)
x not free in U X fresh
Γ, x : X, u : T �I a : U

Γ, u : (∃x)T �I a : U

(SUB OBJ)

� : (̃S)T ρ ⊆ �′ : ˜(S′)T ′ρ′

Γ � ObjG [�′ : ˜(S′)T ′ρ′ ] <: ObjG [� : (̃S)T ρ]

(NULL EXP)
Γ � T <: Null

(EXP RES)
I ∩ ‖T‖ �= ∅ Γ (u) = T

Γ �I u : T

(EXP NEW)
Γ, n : T �I a : U

Γ �I (νn : T ) a : U

(EXP FORK)
Γ �I a : T Γ �I b : U

Γ �I a 	 b : U

(EXP EVAL)
Γ �I a : T Γ, x : T �I b : U

Γ �I let x = a in b : U

(EXP CALL)
Γ �I v : VeilG(w.� : (S)T )

Γ �I u : S I ∩ ‖T‖ �= ∅

Γ �I v〈u〉 : T

(EXP CALL UN)
Γ �I v : Un
Γ �I u : Un

Γ �I v〈u〉 : Un
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(NULL DEN)

Γ �I p : ObjG [� : (̃S)T ρ] dom(Θ) ∪ dom(Δ) ⊆ � (̃S)Tσ = (̃S′)T ′

∀{�i ∈ dom(Θ)}. Γ �I Θ(�i) : U ′
i ∈ veiltype(p.�i : (S′

i)T
′
i )

∀{�i ∈ dom(Δ)}. Γ, yi : S′
i �I Δ(�i)(yi)�Θ

x {p/x}σ : T ′
i

∀{�i ∈ dom(Δ) | ρi = �}. ∀σ∞.

Γ, z : U ∈ veiltype(p.� : (̃S)Tσ∞), yi : Siσ∞ �I Δ(�i)(yi)�z/

x {p/x}σ∞ : Tiσ∞

Γ �I p �→ Θ[ς(x)Δ] : Null

(DEN UN)
Γ �I p : Un ∀{�i ∈ dom(Θ)}. Γ �I Θ(�i) : Un

∀{�i ∈ dom(Δ)}. Γ, yi : Un �I Δ(�i)(yi)�Θ
x {p/x} : Un

Γ �I p �→ Θ[ς(x)Δ] : Un

(EXP UPD)

Γ �I u : ObjG [� : (̃S)T ρ] dom(Θ) ∪ dom(Δ) ⊆ � {�i | ρi = �} ⊆ dom(Δ)

(̃S)Tσ = (̃S′)T ′ ∀{�i ∈ dom(Θ)}. Γ �I Θ(�i) : U ′
i ∈ veiltype(u.�i : (S′

i)T
′
i )

∀{�i ∈ dom(Δ)}. Γ, yi : S′
i �I Δ(�i)(yi)�Θ

x {u/x}σ : T ′
i

∀{�i ∈ dom(Δ) | ρi = �}. ∀σ∞.

Γ, z : U ∈ veiltype(u.� : (̃S)Tσ∞), yi : Siσ∞ �I Δ(�i)(yi)�z/

x {u/x}σ∞ : Tiσ∞

Γ �I u ← � Θ[ς(x)Δ] : ObjG [� : (̃S)T ρ]

(EXP UPD UN)
Γ �I u : Un ∀{�i ∈ dom(Θ)}. Γ �I Θ(�i) : Un

∀{�i ∈ dom(Δ)}. Γ, yi : Un �I Δ(�i)(yi)�Θ
x {u/x} : Un

Γ �I u ← � Θ[ς(x)Δ] : Un

Notice that Null is not a “good” type—we have Null as a type only because it allows
us to give compact rules for well-typed expressions. (Dep Assm) and (Dep Grnt) are
standard assume/guarantee rules for propagating dependencies. (Den Un), (Exp Call
Un), and (Exp Upd Un) can type arbitrary “untrusted” expressions whose names and
type declarations are all public.

(Exp Call) checks that veil invocation is type-safe, i.e., the type of the result matches
that suggested by the veil type. (Exp Res) and (Exp Call) check if the typing group
intersects the reach of an expected result type. These checks do not constrain irrelevant
type assumptions, even if those types are out of reach of the typing group.

(Null Den) and (Exp Upd) are largely similar. There, σ ranges over proper substitu-
tions for group and type variables that are bound by the capability signature. Addition-
ally, σ∞ ranges over all proper partial substitutions that map some of those variables to
∞ and Un. Both rules check if the capability signature is properly instantiated (via σ)
by the types of the new veil bindings and the new method bodies. Crucially, every ap-
plication of (Null Den) and (Exp Upd) can present a different instantiation for the type
scheme of the same capability. This allows “dynamic specification” of type assump-
tions for the methods of an object. For those methods that are qualified natural, (Null
Den) and (Exp Upd) also check if the method bodies can be typed polymorphically to
match their type schema, with fresh veil bindings and partially instantiated types (via
σ∞). The checks are necessary because we do not require natural methods to be over-
ridden on each update of the object, yet want them to be robust to any changes in type
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assumptions within the object. (Indeed, (Exp Upd) requires only those methods that are
qualified flat to be overridden on update.) There are only finitely many σ∞ to consider
(since there are only finitely many bound group and type variables in the signature).
Group variables suffice to account for instantiations with trusted groups; the substitu-
tions σ∞ account for those instantiations that may map some group variables to ∞,
thereby collapsing some types to Un and changing type structure. (Similar subtleties
appear in a secrecy type system for asymmetric communication [1] while exploiting
polymorphism across trusted types and Un.)

Example 2. Assume that name matching can be encoded in the language. Recall the
example with authenticated encryption objects. Assume that p has the shown signature,
θenc has the shown veil type, k has type TX , and θkey has type (∃z′)VeilR(z′.key :
TX). Then the following denomination is well-typed under ,{KeyManager}. A proper
σ∞ that must be considered when typechecking authencrypt maps X to ∞, and
X and Y to Un; another such is the empty substitution that does not instantiate any
variable.

p �→ θkeyθenc[ key �⇒ k, authencrypt(y) �⇒
(νq : ObjX [decrypt : (X)Y �]) (νθdec : VeilX (q.decrypt : (X)Y ))

let x′ = key in q �→ θdec[ decrypt(x) �⇒ if x is x′ then y ] 	 θdec ]

Next, say we can type Reader’s code ar under ,{Reader} and Writer’s code aw under
,{Writer}. Informally, ar can obtain the key k by invoking θkey; aw can encrypt a term
of type TY by invoking θenc, and share the resulting decryption handle θdec with ar;
and ar can retrieve the encrypted term by invoking θdec with argument k. However,
ar can never encrypt a term with θenc, and aw can never decrypt a term encrypted
with θenc.

Example 3. Suppose that Bonnie and Clyde wish to start a session sometime in the
future, with a session secret generated by Clyde. Moreover, they wish to use a file p
owned by Bonnie to establish that secret when they are ready. We show a safe, well-
typed protocol in which the file is used in at least three different ways over time. Bonnie
initializes the file content to a new name θnw, binding its access to a name θc known to
Clyde; the content θnw is a future write handle to the file. Additionally, she programs
the file to transition into a publicly usable phase as soon as that content is read off
(since she has other tasks for the file). Since Clyde knows θc, he can read the file
to obtain θnw. Later, Bonnie brings the file back into restricted usage, with θnw as its
new write handle. She then listens for the secret she expects from Clyde. Accord-
ingly Clyde creates a new secret and writes it to the file by invoking (the earlier ob-
tained) θnw. Both Bonnie and Clyde now share the new secret, and can safely start their
session.

Let B
def= {Bonnie}, C def= {Clyde}, BC def= B ∪ C, 1 def= Un, SecBC def= ObjBC [ ], and

a; b def= let x = a in b for fresh x. Assume p : ObjB[content : (1)X�, write : (X)1�],
θc : VeilBC(p.content : (1)(∃z)VeilBC(z.write : (SecBC)1)), θuc : Un, and
θuw : Un. Then we can type Bonnie’s code b under ,B and Clyde’s code c under ,C .
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b = (νθnw : VeilBC(p.write : (SecBC)1))
(νθw : VeilB(p.write : ((∃z)VeilBC(z.write : (SecBC)1))1))
p �→ θcθw[ content �⇒ ς(x) x←� θucθuw[ content �⇒ content ]; θnw,

write(y) �⇒ content⇐� y; ] 	
. . .

(νθnc : VeilB(p.content : (1)SecBC))
p←� θncθnw[ content �⇒ content ];
let x = θnc in . . .

c = let x = θc in (νk : SecBC) x〈k〉; . . .

3.2 Properties of Well-Typed Code

The main result for the type system of Section 3 is that well-typed code never leaks
secrets beyond declared boundaries, even under arbitrary untrusted environments. The
result relies on a standard but non-trivial preservation property: well-typed expressions
preserve their types on execution. This property justifies our typing approach.

Proposition 1 (Preservation). Let Γ ,I a : T . If a −→ b, then Γ ,I b : T .

Additionally, the type system has two important properties. First, the type given to an
expression is not beyond reach, i.e., at least one index in the typing group falls within
the reach of the expression type. (Additionally, reaches are preserved by subtyping.)

Proposition 2 (Reach soundness). Let Γ ,I a : T �= Null. Then ‖T ‖ ∩ I �= ∅.

Second, the type system can accommodate arbitrary expressions, as long as they do not
contain trusted names. This property is important, since we cannot assume that attackers
attempting to learn secrets would politely follow our typing discipline.

Proposition 3 (Typability). Let a be any expression without free labels or variables.
Suppose all declared types in a are Un, and Γ (n) = Un for all free names n in a. Then
Γ ,I a : Un for all I.

Finally, we present the main result. Let a be trusted code typed under group I, and b be
(perhaps partially) untrusted code typed under the complement group∞−I. In general,
b may be any adversarial code written jointly by an arbitrary attacker in collusion with
trusted principals outside I; the trusted part of b may even share trusted names with a.
Then if the principals in I eventually declare an exclusive secret n, this secret can never
be learnt by executing b in composition with a.

Theorem 1 (Secrecy). Let Γ ,I a : S and Γ ,∞−I b : T . If a 	 b −→� (νm̃ :
Ũ ′) (νn : U) c such that ‖U‖ ⊆ I, then c �−→� n.

The proof is based on a simple argument: if n can be learnt, then T must be the same
as U—but the reach of T must contain at least one index in ∞ − I, i.e., outside I
(contradiction). A weaker version of the theorem that deals with top-level secrets also
holds: for all namesm such that ‖Γ (m)‖ ⊆ I, it must be the case that a 	 b �−→� m.
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4 Conclusion

Static analyses have been quite helpful in guaranteeing high-level safety properties of
distributed systems: indeed, a significant body of work focuses specifically on safe re-
source usage [13,5,22,24,25,6,7,8,29]. Some analyses use access levels, as declared
via static type annotations, to guarantee the absence of access violations at runtime
[21,28,7,29]. In our previous work [10], we go further by studying the interplay of
static secrecy specifications with dynamically acquired permissions, and verify that ac-
cess checks help respect the specifications at runtime. A similar approach is reflected
in hybrid typechecking [12], a type system for secure information flow in a Java-like
language [3], and a type system that supports dynamic revocation [19].

An alternative, and perhaps more natural stance is to allow specifications to be
inherently dynamic to reflect changing assumptions during execution. Dynamic specifi-
cations are often desirable when reasoning about resources in the long run. When addi-
tional runtime guarantees can be exploited, dynamic specifications typically also allow
finer analyses than static specifications. Along those lines, one body of work studies
the enforcement of policies specified as security automata [31,18]. Yet another stud-
ies systems with declassification, i.e., conservative relaxation of secrecy assumptions
at runtime [27]. There is also some recent work on compromised secrets [15,17] in
the context of network protocols. In comparison, our analyses apply more generally to
changing assumptions at runtime. Perhaps closest to our work are analyses developed
for dynamic access control in languages with locality and migration [20,16]. Similar
ideas also appear in a type system for noninterference that allows the use of dynamic
security labels [33].

Our contributions in this paper are two-fold. We develop low-level access control fea-
tures in an existing object language to make it suitable as a core calculus for studying se-
curity properties of concurrent, stateful resources. We then show a typing approach for
verifying high-level intentions on resource manipulation in the resulting language. The
type system allows dynamic access control specifications, and crucially relies on corre-
sponding low-level guarantees provided by the language runtime to verify those spec-
ifications. This combination helps in developing precise security analyses for shared
resources that are used under changing assumptions over time.
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the calculus. In addition, he and Cormac Flanagan helped with comments on an earlier
draft. This work was partly supported by the National Science Foundation under Grants
CCR-0208800 and CCF-0524078, and by Livermore National Laboratory, Los Alamos
National Laboratory, and Sandia National Laboratory under Contract B554869.
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Abstract. Several applications of graph rewriting systems (notably,
some encodings of calculi with name passing) require rules which, besides
deleting and generating graph items, are able to coalesce some parts of
the graph. This latter feature forbids the development of a satisfactory
concurrent semantics for rewrites (intended as a partial order description
of the steps in a computation). This paper proposes the use of graphs
with equivalences, i.e., (typed hyper-) graphs equipped with an equiva-
lence over nodes, for the analysis of distributed systems. The formalism
is amenable to the tools of the double-pushout approach to rewriting, in-
cluding the theoretical results associated to its concurrent features. The
formalism is tested against the encoding of a simple calculus with name
mobility, namely the solo calculus.

Keywords: Concurrent graph rewriting, dpo approach, graphical en-
coding of nominal calculi, graph process semantics.

1 Introduction

Recent years have seen an increasing use of graphical formalisms for the modeling
of concurrent and distributed systems. Graph-like structures naturally provide
a formal yet flexible view of system states, while the rewriting rules suitably
model local state transformations. Among the different formalisms proposed in
the literature, the so-called double pushout (dpo) approach offers a large variety
of theoretical and practical tools for the visual specification of a system (as wit-
nessed by [6] and the many areas where it found applications), abstracting away
from the often unnecessary details of the state representation. As an example,
dpo rewriting techniques for simulating reductions in nominal calculi [17,4], as
presented in [9,10], views a (possibly recursive) process as a graph, thus modeling
reductions by rewrites. The use of graphs allows for getting rid of the problems
concerning the implementation of reduction over the structural congruence, such
as e.g. α-conversion of (bound) names, since equivalent processes turn out to be
mapped into isomorphic graphs.

However, the widespread diffusion of the formalism raises unresolved issues
concerning the analysis of its concurrency aspects. Consider again the graphical
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encodings for nominal calculi we mentioned above: a concurrent semantics for
the graph rewriting formalism would provide a concurrent semantics for process
reduction, but unfortunately these encodings fall outside the canon of dpo con-
current semantics. More specifically, the matching morphisms (those morphisms
identifying the occurrence of the left-hand side of a rule into the graph to be
rewritten) are forced to be injective. More importantly, the right-hand side of
the rules resulting from the encoding are specified by non-injective morphisms
(operationally, they force some node coalescing in the graph to be rewritten).

Such features are general enough to deserve to be properly addressed. Recall
that concurrency in the dpo approach was originally defined by using the shift
equivalence [6], which equates those derivations that could be related via the
repeated application of an interchange operator swapping consecutive rewriting
steps that are sequentially independent (roughly, such that they act on disjoint
parts of the graph). Graph processes, as proposed in [5], generalise the notion of
non-sequential process from the Petri net mold, representing concurrency and
causal dependency in a synthetic manner as a partial ordering on the rewrites
occurring in a derivation. Shift equivalent derivations correspond to isomorphic
processes. Additionally, each total order on rule instances, compatible with the
partial order of the graph process, uniquely characterises a derivation which is
shift equivalent to the original one [1] (complete concurrency property). The
above theory has been developed for rules with injective right-hand morphisms.
When considering coalescing rules, as argued in [14,11], a connection between
graph processes and shift-equivalent derivations may still be drawn, but no par-
tial order can be distilled anymore from a graph process.

In order to allow the use of coalescing rules, while retaining a satisfactory
theory of concurrency, we advocate the use of rewriting over a novel family of
structures, graphs with equivalences, which are ordinary (hyper-)graphs equipped
with an equivalence relation over their nodes. The underlying intuition is simple:
the coalescing of nodes is replaced by the handling of equivalence classes over
nodes. Avoiding the fusion of these graph items (and thus preserving the identi-
ties of the nodes involved in a computation) allows for recovering the theoretical
results associated to the concurrent features of the dpo approach: the paradigm
of graph processes for representing shift-equivalent derivations can be lifted to
the new formalism, and the complete concurrency property once more holds.

For the sake of presentation, the formalism is tested against the encoding of
(a fragment of the) solo calculus [16], one of the dialects of those nominal cal-
culi whose distinctive feature is name fusion [12,18]. The choice of such a simple
calculus is functional to the main focus of the paper, but it is noteworthy that
the formalism is expressive enough to properly recast the graphical encodings of
nominal calculi proposed in e.g. [9,10]. With respect to those encodings, where
the presence of node coalescing rules forbade the development of a suitable con-
current presentation of reductions, the use of equivalences on nodes allows the
extraction of a meaningful notion of causal order from a process.

The paper has the following structure. In Section 2 we introduce the for-
malism of graphs with equivalences, which is proved to be amenable to the dpo
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approach to rewriting. In Section 3 we develop a concurrency theory for rewriting
of graphs with equivalences. Section 4 presents an encoding of the solo calcu-
lus into graphs with equivalences, showing how it allows for an analysis of its
concurrency properties. Finally, Section 5 concludes the paper, discussing open
issues and directions of future research.

2 Rewriting Graphs with Equivalences

In this section we introduce the category of graphs with equivalences, which are
graphs endowed with an equivalence over the set of nodes. Rewriting systems
over such structures are proposed as a technically convenient replacement of
rewriting over ordinary graphs where rules may coalesce nodes.

2.1 The Category of Graphs with Equivalences

A (hyper-)graph G is a tuple 〈VG, EG, cG〉 for VG the set of nodes, EG the
set of edges and cG : EG → V ∗

G the connection function. An (hyper-)graph
morphism f : G → H is a pair f = 〈fV : VG → VH , fE : EG → EH〉 satisfying
cH(fE(e)) = f∗V (cG(e)) for any e ∈ EG. The corresponding category is denoted
by Graph.

Definition 1 (graphs with equivalences). A graph with equivalences (e-
graph) is a pair G = 〈G,∼G〉 where G is a graph and ∼G⊆ VG × VG is an
equivalence over the set of nodes. Given two e-graphs G and H, a morphism
f : G → H is a graph morphism f : G → H such that for all n, n′ ∈ VG, if
n ∼G n

′ then f(n) ∼H f(n′). The category of e-graphs and their morphisms is
denoted by EGraph.

An e-graph G is intended to provide an alternative representation for the graph
G/∼G obtained by quotienting G with respect to ∼G. Formally, we can define a
quotient functor Q : EGraph→ Graph defined on objects as Q(G) = G/∼G =
〈V/∼G , E, c

′〉 where c′([e]∼G) = [v1]∼G . . . [vn]∼G if c(e) = v1 . . . vn. Given f :
G → H we have Q(f) defined by Q(f)([v]∼G) = [f(v)]∼G .

In order to define rewriting over e-graphs some considerations are in order.
Observe that monos in EGraph are morphisms f : G → H such that f :

G → H is a mono in Graph. This is easily proved observing that Graph is
equivalent to the full subcategory of EGraph where objects are e-graphs with
all non-equivalent nodes (i.e., e-graphs G where ∼G is the identity). Regular
monos are monos f : G → H which reflect as well as preserve the equivalences
of nodes, i.e., such that for all n, n′ ∈ VG if f(n) ∼H f(n′) then n ∼G n′.
Note that regular monos over e-graphs induce monos over the corresponding
quotient graphs, i.e., if f : G → H is regular mono then Q(f) : Q(G)→ Q(H) is
injective.

The category EGraph has all pushouts, which are computed by taking the
pushout in Graph, endowed with the equivalence arising as the “union” of the
equivalences of the components.
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2.2 Rewriting e-Graphs

We next define rewriting systems over e-graphs according to the algebraic double-
pushout (dpo) approach to rewriting, as presented in [6,7]. For technical reasons
it is convenient to work with typed e-graphs, which are e-graphs labelled over a
structure that is itself an e-graph (see e.g. [5] for the idea of graph typing).

Given an e-graph T, the category of e-graphs typed over T is the slice category
EGraph ↓ T, later denoted T-EGraph. Explicitly, the objects of the category
are the e-graph morphisms f : G → T with target T, and arrows are e-graph
morphisms making the obvious diagram commutes. Given a T-typed e-graph G,
we write |G| for the underlying e-graph and tG for the typing arrow tG : |G| → T.

Rewriting systems over typed e-graphs will be used as a replacement of rewrit-
ing systems over ordinary graphs where rules can coalesce nodes. Intuitively, the
coalescing of nodes in rewriting systems over graphs becomes the generation of
an equivalence between such nodes in the setting of e-graphs.

Definition 2 (e-graph production). A T-typed e-graph production is a span
L l← K r→ R in T-EGraph such that l and r are mono. It is called left-linear
if l is regular mono. A typed e-graph transformation system ( e-gts) is a tuple
〈T, P, π〉 where T is a fixed graph, P is a set of production names, and π is a
function mapping each name to a T-typed production. An e-gts is called left-
linear if all its productions are left-linear.

Observe that, given a left-linear production p, in the graph production Q(L)
Q(l)←−

Q(K)
Q(r)−→ Q(R) the left morphism is mono, while the right morphism may

coalesce some nodes.

Definition 3 (derivation). Given a T-typed production p : L l←− K r−→ R,
a match of p in a T-typed e-graph G is a morphism mL : L → G. A direct
derivation from G to H via production p at a match m is a diagram as depicted
in Fig. 1, where (1) and (2) are pushout squares in T-EGraph. It is called strict

if the match is regular mono. We write G
p/m
=⇒ H, where m = 〈mL,mK ,mR〉, or

simply G =⇒ H.

Roughly, concerning the graphical part, the application of a production p first
removes all the items of G matched by L − l(K), leading to the context graph
D. Then the items of R− r(K) are added to D, thus obtaining H .

Concerning the equivalence part, the fact that l is a regular mono intuitively
means that equivalences among nodes are never deleted, that is, two nodes which

L
mL

K
l r

mK

R
mR

G D
l∗ r∗ H

Fig. 1. A direct derivation
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are equivalent in the e-graph L will still be equivalent in the e-graph R. Hence,
the equivalence in D is just the restriction of the equivalence in G. Instead,
whenever r is not a regular mono, as an effect of taking the second pushout,
some nodes which were not equivalent in D might become equivalent in H. On
the formal side, the regular mono requirement for l ensures that the pushout
complement, when it exists, is unique.

In several applications, e.g., in the encoding of nominal calculi, it is necessary
to consider injective matches only. When dealing with e-graphs, this property
corresponds to the requirement of having regular mono matches. The rest of the
paper will focus on strict derivations and left-linear e-gts, hence both qualifica-
tions “strict” and “left-linear” will be omitted.

A drawback of the approach is given by the fact that a single node in the
standard approach can be represented by an equivalence class of possibly un-
bounded size. Therefore, in order to model node deletion, also an unbounded
number of rules deleting equivalence classes of arbitrary size must be inserted
into a transformation system. However, notice that for modelling purposes, it is
often not restrictive to consider only rules which never delete nodes: indeed, this
is what happens on most graphical encodings of process calculi. Node deletion is
then simulated by leaving a node isolated, thus assuming an implicit mechanism
for performing garbage collection.

3 Concurrency in E-Graph Rewriting

In this section we show that the notion of sequential independence, characterising
independent steps in a computation, may be extended to the setting of e-graphs.
More importantly, also the notion of process may be generalised, thus providing
a partial order description of concurrency in computations: a generalization that
fails when considering standard graphs with coalescing rules.

3.1 Sequential Independence and Shift-Equivalence

The notion of sequential independence is aimed at characterising direct deriva-
tions which do not interfere with each other and thus which could be potentially
applied in any order (and concurrently). The definition below, a stronger version
of the standard one, is inspired to the notion proposed in [14] for dpo rewriting
with injective matches.

Definition 4 (sequential independence). Let G
p1/m1=⇒ H

p2/m2=⇒ M be a
derivation as in Fig. 2. Then, its components are sequentially independent if
there exists an independence pair among them, i.e., two e-graph morphisms
i1 : R1 → D2 and i2 : L2 → D1 such that l∗2 ◦ i1 = mL2 , r∗1 ◦ i2 = mR1 and r∗2 ◦ i1
is regular mono.

Requiring r∗2 ◦ i1 to be regular mono is motivated by the interplay between
the equivalences the application of a rule may produce and the request for the
matches to be regular mono. Roughly, the second direct derivation must not
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L1

mL1

K1
l1 r1

mK1

R1

mR1

L2

mL2

K2
l2 r2

mK2

R2

mR2

G D1
l∗1 r∗

1

H D2
l∗2 r∗

2

M

Fig. 2. (Strong) sequential independence for derivation ρ = G
p1/m1=⇒ H

p2/m2=⇒ M

equate items which are read by the first one: otherwise, the application of the
two productions could not be swapped, keeping the matches regular mono.

Proposition 5 (interchange operator). Let ρ = G
p1/m1=⇒ H

p2/m2=⇒ M be a
derivation, and let its components be sequentially independent via an indepen-

dence pair ξ. Then, a derivation ICπ(ρ) = G
p2/m

∗
2=⇒ H∗ p1/m

∗
1=⇒ M can be uniquely

chosen, such that its components are sequentially independent via a canonical
independence pair ξ∗.

The interchange operator can be used to formalise a notion of shift-
equivalence [6], identifying (as for the analogous, better-known permutation
equivalence of λ-calculus) those derivations which differ only for the scheduling
of independent steps. This equivalence abstracts also from the concrete identity
of items involved in a derivation, i.e., it considers derivations up-to isomorphism
(defined component-wise, in the obvious way).

Definition 6 (shift-equivalence). Two derivations ρ and ρ′ are shift-
equivalent, written ρ ≡s ρ

′, if repeatedly applying the interchange operator to
ρ we can obtain a derivation isomorphic to ρ′.

The shift-equivalence class [ρ]s of a derivation ρ can be considered as a rep-
resentation of a concurrent derivation which abstracts from the order of non-
interfering rewriting steps.

3.2 Processes for e-Graphs

A more concrete, yet equivalent notion of abstract derivation for an e-gts is
obtained by generalising the so-called graph process semantics [1]. As for the
similar notion on Petri nets [13], a graph process is aimed at describing a deriva-
tion abstracting away from the ordering of causally unrelated steps, and thus it
offers at the same time a concrete representative for a class of shift-equivalent
derivations. We will see that, differently from what happens in the case of graph
transformation systems with coalescing rules, the notion of process for e-graphs
provides a faithful partial order representation of concurrency in a derivation.

Definition 7 (e-graph process). Let G be an e-gts and ρ = G0
p1/m1=⇒

. . .
pn/mn=⇒ Gn a derivation (upper part of Fig. 3). The e-graph process associated

to ρ is a tuple φ = 〈Oφ, φT , φP , I,F〉, where Oφ = 〈Tφ, Pφ, πφ〉 is an e-gts and
φT : Tφ → T is an e-graph morphism and φP : Pφ → P is a function, defined as
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L1p1 :
mL1

K1
l1 r1

mK1

R1

mR1

Lipi :
mLi

Ki

li ri

mKi

Ri

mRi

Lnpn :
mLn

Kn

ln rn

mKn

Rn

mRn

G0 D1

l∗1 r∗
1

G1 ... Gi−1 Di

l∗i r∗
i

Gi ... Gn−1 Dn

l∗n r∗
n

Gn

〈Tφ,φT 〉

Fig. 3. Colimit construction for derivation ρ = G0
p1/m1=⇒ . . .

pn/mn=⇒ Gn

– 〈Tφ, φT 〉 is a colimit object (in T-Graph) of the diagram representing deriva-
tion ρ, as depicted in Fig. 3;

– Pφ = {〈pj , j〉 | j ∈ {1, . . . , n}}. For all j, πφ(〈pj , j〉) is essentially the pro-
duction pj, but retyped over Tφ by the morphisms uniquely induced by the
colimit (see Fig. 3). Moreover, φP (〈pj , j〉) = pj;

– I and F are the graphs G0 and Gn, typed over Tφ by the morphisms induced
by the colimit. They are called source and target of the process and denoted
src(Π(ρ)) and trg(Π(ρ)).

The process associated to a derivation ρ, as defined above, is denoted by Π(ρ).

The colimit construction applied to a derivation ρ essentially constructs the type
graph as a copy of the source graph plus the items created during the derivation.
Productions are instances of production applications. Additionally, the colimit
operation “collects” the generated equivalences: the equivalence on the e-graph
arising as type graph of Π(ρ) is the “union” of the equivalences of the graphs
occurring in ρ.

It can now be shown that two derivations are shift equivalent iff the cor-
responding processes are isomorphic, and thus processes properly capture the
notion of concurrency as expressed by shift-equivalence.

Proposition 8 (Shift equivalence vs processes). Let ρ and ρ′ be deriva-
tions. Then ρ ≡s ρ

′ if and only if the processes Π(ρ) and Π(ρ′) are isomorphic.

The result above is standard in graph rewriting theory for rules where both
morphisms are monos. It was generalized to strict derivations and rules coalescing
nodes in [11, Thms 1–2]. However, in that setting it was impossible to provide a
technique for extracting from a process any information about the dependencies
between the single direct derivations occurring in it (see [11, Section 4.2]).

3.3 Full Concurrency for e-Graph Processes

In order to extract from a process φ sound information about the dependencies
between events, as for rewriting over ordinary graphs, we define the pre-set,
post-set and context of a production, which roughly identify the items which are
deleted, produced and preserved by a production.
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Definition 9 (pre-set, post-set, context). Let φ = 〈Oφ, φT , φP , I,F〉 be a
process, where Oφ = 〈Tφ, Pφ, πφ〉. For any p ∈ Pφ we define

•p = tLp(|Lp| − lp(|Kp|)) p• = tRp(|Rp| − rp(|Kp|)) p = tKp(|Kp|)

considered as sets of nodes and edges, and we say that p consumes, produces
and preserves items in •p, p• and p, respectively.

The mutual relationships between the pre-sets, post-sets and contexts of pro-
ductions naturally lead to a precedence relation between the productions in a
process (generalising to e-graphs the asymmetric conflict relation [3]).

Definition 10 (precedence relation). Let φ be a process as in Def. 9. The
precedence relation is the binary relation ↗φ over the set Pφ of productions,
defined by p↗φ p

′ if (1) p• ∩ (•p′ ∪ p′) �= ∅ and p �= p′ or (2) p ∪ ∩•p′ �= ∅.

Observe that when p′ uses something produced by p necessarily p′ follows p
(point 1). Similarly, when p′ consumes an item read by p, the only possible order
of execution is p followed by p′ (point 2).

However, ↗φ alone does not suffice to faithfully mirror the relationship be-
tween productions since additional dependencies arise whenever productions
“read” equivalences among nodes and generate new ones. Hence, we now char-
acterise the equalities between nodes needed and generated by any production.

Definition 11 (read and produced equivalences). Let φ be a process as in
Def. 9. For any p ∈ Pφ we define

req(p) = tLp(∼Lp) and grel(p) = tRp(∼Rp −tKp(∼Kp))

and call them the (symmetric) relations read and produced by p. Given a set of
productions X ⊆ Pφ we write geq(X) for the set (

⋃
p∈X grel(p)∪ ∼src(φ))∗.

Note that since all matches are regular monos, the application of a production
never generates an already existing equivalence. This implies that any equiva-
lence between nodes has a uniquely determined history, whose events are thus
causes for productions which read that equivalence.

Proposition 12 (generating relation). Let φ be a process as in Def. 9. Then
for any production p ∈ Pφ there exists a least subset of productions eq(p) ⊆ Pφ
such that req(p) ⊆ geq(eq(p)).

Now, all events in eq(p) must precede p in the computation, as expressed by the
relation defined below.

Definition 13 (e-precedence relation). Let φ be a process as in Def. 9. The
e-precedence relation is the binary relation ↗e

φ over the set Pφ of productions,
defined by

↗φ ∪(
⋃
p∈Pφ

eq(p)× {p})
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Then it can be shown that relation ↗e
φ faithfully captures the dependencies

between events in a process, i.e., we can prove the following result.

Proposition 14 (full concurrency). Let φ be a process. Then the productions
of φ, applied to in any order compatible with ↗e

φ, rewrite src(φ) into trg(φ) and
all such derivations are shift equivalent.

This “permutation” result does not hold for graph rewriting rules that may
coalesce nodes, hence the notion of process fails to work when dealing with
standard graphs. The reason for this failure is due to the fact that node identity
is lost after a fusion, while node equivalences allow for a natural way of taking
into account these additional dependencies.

4 Encoding a Simple Process Calculus

In this section we put the e-graph formalism at work, showing that it allows for
encoding a simple (the simplest available, in fact) process calculus, namely, the
monadic solo calculus [16], one of the dialects of those nominal calculi whose
distinctive feature is name fusion [12,18]. We will see that the tools introduced
in the previous section, like shift-equivalence and process semantics, allow for
providing a characterisation of concurrent reductions in the solo calculus.

4.1 The Monadic Fragment of the Solo Calculus

We next shortly introduce the monadic variant of the solo calculus, its structural
equivalence and the associated reduction semantics.

Definition 15 (processes). Let N be a set of names, ranged over by
x, y, w, . . .. The set of processes Proc is generated by the syntax

P ::= 0, σ, (νx)P, P1 | P2 for σ ∈ {x(y), xy}

The operators x(y) and xy are denoted as input and output, respectively, even if
their symmetric behaviour makes the distinction (typical instead of other calculi)
immaterial; collectively, each instance of them is called a solo, to emphasise
its lack of connections, except for some possible name sharing, with the other
operators. Finally, the first argument of the two operators, indicated by x, is
usually called the channel where the communication of information takes place.

We assume the standard definitions for the set of free names of a process P ,
denoted by fn(P ). Similarly for α-convertibility, with respect to the restriction
operators (νy)P : the name y is bound in P , and it can be freely α-converted.
Using these definitions, the behaviour of a process P is described as a relation
obtained by closing a set of basic rules under a suitable congruence.

Definition 16 (reduction semantics). The reduction relation for processes
is the relation Rσ ⊆ Proc × Proc, closed under the structural congruence ≡
induced by the equations in Fig. 4, generated by the following inference rules
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(r1)
y �= w

(νw)(x(y) | xw | P ) → P{y/w}
(r2)

y �= w

(νy)(x(y) | xw | P )→ P{w/y}

(r3)
x(y) | xy → 0

(r4)
P → Q

(νx)P → (νx)Q
(r5)

P → Q

P | R→ Q | R
where P → Q means that 〈P,Q〉 ∈ Rσ.

The top rules characterise the communication between restricted processes. Con-
sider the second: the process xw is ready to communicate the name w along the
channel x; it then synchronises with the process x(y), and the bound name y is
thus substituted by w on all the occurrences inside the residual process P . Hence,
the communication has a global effect on the process as a whole. Note that one
of the names among {y, w} has to be bound, so that, in principle, the rule does
not to alter the number of free names floating around and the possible choice
requires the presence of two different rules. The third rule expresses the fact
that there is no reason to bind a name during a reduction, if no substitution has
actually to occur. The latter two rules simply state the closure of the reduction
relation with respect to the operators of restriction and parallel composition.

The axioms for structural congruence in Fig. 4 state that a process is a collec-
tion of solos floating around, and interacting by forcing some name fusion. The
only difference with respect to the monadic fragment of the calculus proposed
in [16] is the lack of a match operator [x = y], avoided to simplify the presen-
tation, and the explicit presentation of the three reduction rules, which in [16]
are summarised as a unique rule equipped with constraints on the substitution
induced by the name fusion.

4.2 The Graphical Encoding of Solos

This section informally presents an encoding of solos based on e-graphs. It re-
sembles the encoding using standard graphs presented in [11, Section 5], basi-
cally replacing node coalescing rules with rules generating node equivalences. Its
formal definition is not presented for space limitation: it is easily obtained by
adapting the proposals for mobile ambients and π-calculus in [9,10].

In order to help intuition, we begin with a description of a suitable normal
form for structurally congruent processes. First notice that any process P is
equivalent to a process of the shape (νx1) . . . (νxn)(σ1 | . . . | σm) where all xi’s
are different, all σj ’s are solos, and the set X = {x1 . . . xn} contains only names
occurring in S = σ1 | . . . | σm, that is, X ⊆ fn(S). Thus we can denote a process
in normal form as (νX)P , for P a set of solos, since the order of the restriction
operators and of the solos is immaterial.

P | Q = Q | P P | 0 = P P | (Q | R) = (P | Q) | R
(νx)(νy)P = (νy)(νx)P (νx)0 = 0 (νx)(P | Q) = P | (νx)Q for x �∈ fn(P )

Fig. 4. The set of structural axioms
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in

c ◦

out

Fig. 5. The type graph Tσ

Definition 17 (disjoint normal form). Let P be a solo process and let (νX)P
be its normal form. We call disjoint normal form of P an expression of the kind
(νX)Dξ, where D is a set of solos with disjoint names such that X ∩ fn(D) = ∅
and ξ : fn(D) → fn(P) is a surjective name substitution satisfying Dξ = P.

After renaming the solos, the substitution ξ picks a canonical representative for
each equivalence class of names. For example, the process Pe = (νw)(x(y) |
xw | w(z) | yz) can be described by the disjoint normal form (νw)Deξe where
De = {x2(y2), x1w2, w1(z2), y1z1} and ξe is the obvious substitution.

The above characterisation naturally suggests a representation using typed
e-graphs. The type e-graph Tσ, represented in Fig. 5, has one node and three
different edges, corresponding to the operators of the calculus. The equivalence
on nodes is the identity, i.e., Tσ is essentially a standard graph. The typing will
be represented by labelling graph edges with in, out and c.

Let P be a process, and (νX)Dξ its disjoint normal form. Then the typed
e-graph GP associated to P has as many edges and nodes as operators and
names, respectively, occurring in D. The effect of the substitution ξ is repre-
sented by using the equivalence ∼GP between nodes: given two nodes x and y
we have x ∼GP y iff ξ(x) = ξ(y) or ξ(x) = y. So, consider again the process
Pe = (νw)(x(y) | xw | w(z) | yz) and its disjoint normal form. Its encoding is
represented in Fig. 6(a), where nodes, for the sake of clarity, are equipped with
the name they represent. Equivalence classes are represented by a dotted rec-
tangle, encompassing those nodes belonging to the class. In the example there
are four equivalence classes: {y1, y2}, {x1, x2}, {z1, z2} and {w,w1, w2}. Some
intuition may be gained by looking at the graph Q(GPe) depicted in Fig. 6(b),
obtained by collapsing equivalent nodes (this was indeed the encoding proposed
for process Pe in [11, Fig. 11]).

4.3 Encoding Reductions

We now introduce the e-gts Gσ in Tσ-EGraph, showing how it simulates the
reduction semantics for solo processes. It it basically contains just three produc-
tions (i.e., one for each axiom of the reduction system), plus some “instances” of
them. The first production pσ1 is depicted in Fig. 7: the e-graph on the left-hand
side (center, right-hand side) is Lσ

1 (Kσ
1 and Rσ

1 , respectively). The action of the
rule is described by the names of the nodes: as an example, the nodes identified
by y and wi’s, distinct in Lσ

1 , are made equivalent in Rσ
1 . The node identifiers are

of course arbitrary: they are used just to characterise the span of morphisms.
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out ◦z1

in ◦z2 ◦w1 ◦y1

c ◦w

out ◦x1 ◦w2 ◦y2

in ◦x2

(a)

out

in ◦z

c ◦w ◦y

out ◦x

in

(b)

Fig. 6. (a) The e-graph GPe encoding a process Pe and (b) the quotient graph Q(GPe)

in ◦y

c ◦w1 ◦x1

out ◦w2 ◦x2

◦y

◦w1 ◦x1

◦w2 ◦x2

◦y

◦w1 ◦x1

◦w2 ◦x2

Fig. 7. The first production of Gσ

The rule mimics (a disjoint variant of) the first axiom of the reduction seman-
tics, as given in Def. 16. Constraining the matches to be regular monos ensures
that the production is not applied to a graph where nodes y and wi’s are equiva-
lent. Nevertheless, this turns out to be too restrictive, since a reduction step can
be performed if name x coincides with either y or w. Hence, two additional pro-
ductions are needed: they are variations of pσ1 , where nodes xi’s are equivalent
either to the node y or to the nodes wi’s. We leave these productions unnamed,
since they play a minor role in the paper.

A similar situation occurs when the name y on the input operator, instead of
the name w on the output operator, is bound: it suffices a production pσ2 (together
with two instances) mirroring pσ1 . Most important, a production pσ3 is needed,
where nodes y and wi’s are already coalesced and the restriction operator is not
required, as depicted in Fig. 8. Additionally, an instance where the two names
coincide, and the corresponding nodes are thus equivalent, has to be included.

Observe that, during the reductions, isolated nodes may arise in correspon-
dence of unused names. Hence, in the encoding a process P actually corresponds
to a class of e-graphs, including GP , as defined in the previous section, and all
the e-graphs which differ from GP for the presence of additional isolated nodes.

4.4 Concurrency Via Fusion

Consider the process (νw)(x(y) | xw | w(z) | yz), and its graphical depiction
GPe in Fig. 6(a). A possible derivation consists of the two steps below, applying
rules r1 and r3, respectively.
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in ◦y1

◦x1 ◦y2

out ◦x2

◦y1

◦x1 ◦y2

◦x2

◦y1

◦x1 ◦y2

◦x2

Fig. 8. The third production of Gσ

out ◦
z1

in ◦
z2 ◦

w1 ◦
y1

c ◦
w

out ◦
x1 ◦

w2 ◦y2

in ◦
x2

out ◦
z1

in ◦
z2 ◦

w1 ◦
y1

◦
w
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Fig. 9. The derived graphs of a derivation first applying pσ
1 and then pσ

3

(νw)(x(y) | xw | w(z) | yz) → (w(z) | yz){y/w} = y(z) | yz → 0

Being the context rules immaterial, we end up by applying to the graph in the
left-hand side of Fig. 9 first the rule pσ1 , and then the rule pσ3 . The derivation
(the derived graphs) is shown in Fig. 9, and the associated process is in Fig. 10.

It can be easily seen that the two steps are not sequentially independent.
This is indeed recorded in the process Π(ρ), as depicted in Fig. 10. The pro-
duction pσ1 consumes three edges, reads three equivalence classes (namely, those
for nodes {w,w2}, xi’s and yi’s), and generates the symmetric relation contain-
ing {〈w, yj〉, 〈wi, yj〉 | i, j = 1, 2}. For the sake of readability, productions have
dotted arrows only to (the smallest) equivalence relations including ∼src(ρ) that
they read or generate. Now, pσ3 reads the class {w1, y1}, so that req(pσ3 ) is con-
tained in geq({pσ1}): thus, differently from what happens considering just the
relation ↗, here pσ1 ↗e pσ3 , i.e., the dependency between (the applications of)
the production pσ1 and the production pσ3 is properly recorded.

Let us now consider the process (νw)(x(y) | xw | w(z) | wz), which dif-
fers from the process above just for the name occurring in the right-most solo
(namely, wz instead of yz). The same sequence of rule applications as for the
derivation depicted in Fig. 9 can now be replicated, and the result (the derived
graphs) is presented in Fig. 11. The process Π(ρ′) is depicted in Fig. 12: with
respect to the process in Fig. 10, production pσ3 now reads the equivalence class
containing {w0, w1}, instead of the class containing the w, wi’s and y generated
by pσ1 : thus, req(pσ3 ) is contained in ∼src(ρ′), and no casual dependency holds
between the production occurrences. Hence the components of the derivation
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out ◦
z1 ◦

w0

in ◦
z2 ◦

w1

c ◦
w

out ◦
x1 ◦

w2 ◦y2

in ◦
x2

out ◦
z1 ◦

w0

in ◦
z2 ◦

w1

◦
w

◦
x1 ◦

w2 ◦y2

◦
x2

◦
z1 ◦

w0

◦
z2 ◦

w1

◦
w

◦
x1 ◦

w2 ◦y2

◦
x2

Fig. 11. The derived graphs of another derivation first applying pσ
1 and then pσ

3

out ◦z1

in ◦z2 ◦w0

pσ
3 ◦w1

c ◦w

pσ
1 ◦w2

out ◦x1 ◦y2

in ◦x2
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are sequentially independent, since the coalescing of nodes w, wi’s and y is not
needed for the second direct derivation.

5 Conclusions and Further Works

The paper introduces a novel formalism for the analysis of distributed systems,
graphs with equivalences : typed (hyper-)graphs equipped with an equivalence re-
lation over their nodes. The formalism is amenable to the usual tools of the dpo
approach to graph transformation: in particular, the theoretical results associ-
ated to the concurrent features of the approach (the paradigm of graph processes
for representing shift-equivalent derivations) can be lifted to the new formalism.

We are planning two related strands of research. On the one side, we would
like to properly establish the connection between the category of graphs and of
graph with equivalences, making precise the correspondence briefly hinted at in
Section 2. On the other side, we need to further develop the theory surround-
ing the graph process construction, drawing a link with respect to a suitable
notion of event structure, amenable to model non-determinism in derivations.
The latter characterisation would provide a further sanity check, providing a
concurrent semantics for nominal calculi, to be compared with already existing
proposals.

As a final remark, observe that e-graphs resemble the so-called structures, as
defined in [8]. Indeed, along the same lines of [15, Section 6] that the category
EGraph can be proved quasi-adhesive, thus inheriting part of the rich theory
developed for such formalism. That very same paper develops a general theory
of dpo rewriting for (quasi-)adhesive categories and a theory of processes is
proposed in [2]. Unfortunately, this could not be helpful for our purposes, since
the use of rules where right-hand side morphisms are not regular monos makes
a relevant part of such theory not applicable.
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Abstract. Event structures have been used for giving true concurrent semantics
to languages and models of concurrency such as CCS, Petri nets and graph gram-
mars. Although certain nominal calculi have been modeled with graph gram-
mars, and hence their event structure semantics could be obtained as instances
of the general case, the main limitation is that in the case of graph grammars
the construction is more complex than strictly necessary for dealing with usual
nominal calculi and, speaking in categorical terms, it is not as elegant as in the
case of Petri nets. The main contribution of this work is the definition of a par-
ticular class of graph grammars, called persistent, that are expressive enough to
model name passing calculi while simplifying the denotational domain construc-
tion, which can be expressed as an adjunction. Finally, we apply our technique to
derive event structure semantics for pi-calculus and join-calculus processes.

1 Introduction

The paper by Varacca and Yoshida [23] advocates the definition of true concurrent se-
mantics for π-calculus, renewing the interest in the use of event structures in connection
with process calculi, a long-standing thread initiated by Winskel’s semantics of Milner’s
CCS [24]. Their main contribution is an original typing system on the event structure
for controlling the behavior of linear processes. Actually, they also suggest that their
formalization is the first event structure semantics for the π-calculus, which (as also
discussed in their concluding section) is true just in part.

We argue that the techniques were already available for deriving an event struc-
ture semantics (but not the results in [23]), even if the pieces were not put together
yet. To explain this, we have to go back to the joint work of the third author with
Pistore [19] on the encoding of π-calculus in Graph Transformation Systems (GTS),
under the so-called Double Pushout approach (DPO) [9,10]. While Petri nets can ac-
count for CCS-like languages, it seems that nominal calculi fit better in the GTS ap-
proach, where name creation, dynamic network topology, and causality due to name
passing can be more easily accounted for. However, some of the latest results about
concurrent semantics for GTS were not available at that time, and the existing tech-
niques were not as much sophisticated as available today, so that no explicit definition
of the associated event structure semantics was given. More recently, [1] made some
substantial advancements on the true concurrent semantics of DPO, by explaining in
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Fig. 1. A recollection of event structure semantics

terms of the so-called inhibitor event structures the semantics of a large class of GTS.
This result was achieved as part of a larger research programme aimed at extending
the chain of coreflections defined for Petri nets [20,24,18] first to contextual nets [3]
(using asymmetric event structures) and then to graph grammars (exploiting some anal-
ogy between these two models). The price to pay was the introduction of much more
sophisticated event structures. For DPO grammars the adjunction between unfolding
and event structures breaks down to a functorial construction in just one direction. A
recent result [4] has shown that the missing link can be re-established when considering
the Single Pushout (SPO) approach [17,12]. This is summarized in Figure 1. The cate-
gory of prime algebraic domains is equivalent to the category of prime event structures
(PES), thus all constructions can ultimately lead to PES. It is worth noting that, un-
der a mild assumption on graph grammars, namely node preservation, the elegant SPO
constructions can be transferred also to the DPO approach. To some extent, the above
informal discussion paves the way to the definition of an event structure semantics of
π-calculus, (almost) obtained by applying the PES construction available for GTS to
the encoding in [19].

We observe that the event structure semantics in this case are unnecessarily compli-
cated (by the need of dealing with features pertaining to graph grammars but not needed
in the encoding). Hence, we devise a simpler class of grammars, large enough to allow
the encoding, but restricted as much as needed to obtain a PES via a chain of core-
flections. Incidentally, the class we take is node preserving, and thus we can carry the
construction under both the DPO and the SPO approach, still getting the same result.
Our contribution aims to promote GTS as a suitable modeling framework for nomi-
nal calculi. The technique is demonstrated by addressing the case studies of π-calculus
and join-calculus. We remark that this is the first event structure semantics for the latter,
whose synchronization pattern challenges the reuse of other techniques in the literature.

Structure of the Paper. Section 2 summarizes the basics of typed graph grammars un-
der the DPO (§ 2.1) and SPO (§ 2.2) approaches, and their event structure semantics
(§ 2.3). Section 3 defines the class of persistent grammars. Sections 4 and 5 illustrate,
respectively, how to associate PES to π-calculus processes and join calculus processes.
Related works and final remarks are in Section 6.
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2 Typed Graph Grammars and True Concurrency

Given a partial function f : A 
 B its domain is dom( f ) = {a∈A | f (a) is defined}. For
f ,g : A 
 B partial functions, we write f ⊆ g when dom( f )⊆ dom(g) and f (x) = g(x)
for all x ∈ dom( f ). When dom( f ) = A we say that f is total and write f : A→ B.

A (directed, unlabeled) graph is a tuple G = 〈NG,EG,sG, tG〉, where NG is a set of
nodes (or vertices), EG is a set of edges (or arcs), and sG, tG : EG → NG are the source
and target functions. We shall omit subscripts when obvious from the context.

A partial graph morphism f : G 
 G′ is a couple f = 〈 fN : N 
 N′, fE : E 
 E ′〉
such that: s′ ◦ fE ⊆ fN ◦ s and t ′ ◦ fE ⊆ fN ◦ t. It is total if both components are total.
The inclusions ensure that any subgraph of a graph G can be the domain of a partial
morphism f : G 
 H. Instead, the stronger constraint s′ ◦ fE = fN ◦ s and t ′ ◦ fE = fN ◦ t
would require f to be defined over an edge if it is defined on its source or target nodes.

In typed graph grammars [9], graphs are typed over a structure that is itself a graph,
i.e., the typing is a graph homomorphism. In this setting, category theory serves as a
tool to characterize constructions in a succinct, elegant way, favoring flexibility and
generality. Since category theory is mainly a theory of morphisms, structure / behavior
preserving mappings play a key role. Given a graph of types T , a T-typed graph is a
pair 〈|G|,τG〉, where |G| is the underlying graph and τG : |G| → T is a total morphism.

In GTS the graph |G| defines the (dynamically evolving) configuration of the sys-
tem and its elements (nodes and edges) model resources, while τG defines the (static)
typing of the resources. For example, when encoding Petri nets in GTS the places of
the net form the (discrete) graph of types, while tokens form the configuration of the
system.

A partial (resp. total) morphism between T -typed graphs f : G1 
 G2 is a par-
tial (resp. total) graph morphism f : |G1|
 |G2| consistent with the typing, i.e., such
that τG1 ⊇ τG2 ◦ f . We denote by T -PGraph the category of T -typed graphs and par-
tial morphisms and by T -Graph its subcategory of total morphisms. Focusing on total
morphisms, the DPO approach is based T -Graph, whereas the SPO approach exploits
T -PGraph. Since in this paper we work only with typed notions, we will usually omit
the qualification “typed”, and we will not indicate explicitly the typing morphisms.

In GTS the key notion to glue graphs together is that of a categorical pushout.
Roughly, a pushout pastes two graphs together by injecting them in a larger graph that
is (isomorphic to) their disjoint union modulo the collapsing of some common part. We
recall that a span is a pair (b,c) of morphisms b : A→ B and c : A→ C. A pushout of
the span (b,c) is then an object D together with two (co-final) morphisms f : B→ D
and g : C→D such that: (i) f ◦b = g◦c and (ii) for any other choice of f ′ : B→D′ and
g′ : C→ D′ s.t. f ′ ◦ b = g′ ◦ c there is a unique d : D→ D′ s.t. f ′ = d ◦ f and g′ = d ◦ g.
If the pushout is defined, then c and g is called the pushout complement of 〈b, f 〉.

2.1 DPO Direct Derivations

A (T -typed) DPO production p : (L l← K
r→ R) is a span of injective typed graph mor-

phisms l : K→ L and r : K→ R. The T -typed graphs L, K, and R are called the left-hand
side, the interface, and the right-hand side of the production, respectively. The produc-
tion is called consuming if the morphism l : K → L is not surjective.



298 R. Bruni, H. Melgratti, and U. Montanari

Lp :

g

��
(1)

K
l�� r ��

k

��
(2)

R

h

��
G D

b
��

d
�� H

(a) A DPO direct derivation.

L
g

��

�� q �� R
��
h��

G ��
d

�� H

(b) An SPO direct derivation.

Fig. 2. Graph grammar derivations

Definition 2.1 (DPO graph grammar). A (T -typed) DPO graph grammar G is a tuple
〈T,Gin,P〉, where Gin is the initial (T -typed) graph and P is a set of DPO productions.

Given a graph G, a production p : (L l← K
r→ R), and a match (i.e., a total graph mor-

phism) g : L→G, a direct derivation δ from G to H using p (based on g) exists, written
δ : G⇒p H, if and only if the diagram in Figure 2(a) can be constructed, where both
squares are pushouts in T -Graph: (1) the rewriting step removes from the graph G the
items g(L− l(K)) (images of the left-hand side but not of the interface), yielding the
graph D (with k,b as a pushout complement of 〈g, l〉); (2) then, fresh copies of the items
in the right-hand side R that are not in the image of the interface, namely R− r(K), are
added to D yielding H (as a pushout of (k,r)). The interface K specifies both what is
preserved and how fresh items must be glued to the existing part.

The existence of the pushout complement of 〈g, l〉 is subject to the satisfaction of the
following gluing conditions [10]:

– identification condition: ∀x,y ∈ L if x �= y and g(x) = g(y) then x,y ∈ l(K) (note
however that the match can be non-injective on preserved items: the same resource
can be used with multiplicity greater than one if preserved by the derivation);

– dangling condition: no arc in G−g(L) is attached to a node in g(L− l(K)) (other-
wise the derivation would leave such arc dangling after the removal of the node).

The identification condition is satisfied by the so-called valid matches: a match is not
valid if it requires an item to be consumed twice, or to be both deleted and preserved.

2.2 SPO Direct Derivations

A (T -typed) SPO production is an injective partial graph morphism q : L 
 R. It is
called consuming if the morphism is not total. Without loss of generality, we will as-
sume that q is just the partial inclusion L∩R⊆ R. The typed graphs L and R are called
the left-hand side and the right-hand side of the production, respectively.

Definition 2.2 (SPO graph grammar). A (T -typed) SPO graph grammar G is a tuple
〈T,Gin,Q〉, where Gin is the initial (T -typed) graph and Q is a set of productions.

Given a graph G and a match g : L→G, there is a direct derivation δ from G to H using
q (based on g), written δ : G⇒q H, if the diagram in Figure 2(b) forms a pushout square
in T -PGraph. Roughly, the rewriting step removes from the graph G the image of the
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items of the left-hand side that are not in the domain of q, namely g(L−R), and it adds
the items of the right-hand side that are not in the image of q, namely R−L. The items
in the image of dom(q) = L∩R are preserved by the rewriting step.

The key difference w.r.t. the DPO approach is that in SPO there is no dangling con-
dition preventing a rule to be applied. In fact, as T -PGraph is the base category, when
a node is deleted by the application of a rule, then all the edges having such node as
source or target are deleted by the rewriting step, as a kind of side-effect.

On the contrary, the identification condition and the notion of valid match are still
required to hold for the correct application of a production.

In the special case of node preserving grammars, the effect of SPO and DPO is very
close. An SPO grammar is node preserving if each production q : L 
 R defines a total
map on nodes. Similarly, a DPO grammar is node preserving if in each production p :

(L l←K
r→R) the functions l and r are surjective on nodes. Then there is an isomorphism

between SPO and DPO node preserving grammars that maps each production q : L 
 R

to D(q) : (L l← dom(q) r→ R), with l and r the obvious inclusions.

2.3 Unfolding Constructions and Event Structure Semantics

A DPO/SPO derivation ρ = {Gi−1⇒qi−1 Gi}i∈{1,...,n} in G is a sequence of direct deriva-
tions, with G0 = Gin. A derivation is valid if it involves only valid matches.

We will consider only consuming graph grammars and valid derivations. The restric-
tion to consuming grammars is essential to obtain a meaningful semantics combining
concurrency and nondeterminism. In fact, the presence of non-consuming productions,
which can be applied without deleting any item, would lead to an unbounded number of
concurrent events with the same causal history. This would not fit with the approach to
concurrency (see, e.g., [16,24]) where events in computations are identified with their
causal history (formally, the unfolding construction would not work properly). This cor-
responds, in the theory of Petri nets, to the common requirement that transitions must
have non-empty preconditions. The requirement about valid derivations is needed to
have a computational interpretation that is resource-conscious, i.e., where a resource
can be consumed only once.

To equip graph grammars with event structure semantics, by analogy with Petri nets,
the idea is to first unfold all graph grammar derivations into the same “space of compu-
tations”, collecting all items that can ever be produced and relating them to the applica-
ble direct derivations. Then, we can project such unfolding so to keep just the events
and the causality ≺, concurrency co and conflict # relationship between them.

In the case of Petri nets, the unfolding can be represented as a special kind of acyclic
net, called occurrence net, whose places model all the tokens that can ever be pro-
duced and whose transitions model all the possible firings (events). For example, two
events requesting the same token are in conflict, while an event is causally dependent
on those events that generated the tokens it fetches and two events can be concurrently
executed if they are neither causally dependent nor in conflict. The event structure is
then obtained by keeping the events and forgetting the tokens. The appropriateness of
the construction is supported by categorical arguments: (1) the maps from Petri nets to
their unfoldings and from unfoldings to event structures are functors, i.e. they preserve
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net morphisms; (2) it is possible to go backward, in the sense of deriving a standard
occurrence net from each event structure, and a standard net from each occurrence net
(actually itself); (3) the backward maps are again functors; (4) forward and backward
maps form a particularly nice kind of adjunctions, called co-reflections, which are the
categorical means to relate different domains in the best possible way (formally, the
unit of the adjunction is a natural isomorphism establishing an equivalence between a
full subcategory of the domain of computational models and the denotational domain).

The case of DPO grammars is complicated by the fact that derivations can introduce
subtle dependencies between events. Here the “tokens” are both the nodes and the arcs
of the graph, hence it is possible: (1) to access the same resource concurrently, in read-
only modality so to speak; (2) to have asymmetric conflicts between a direct derivation
that attempts to read a resource and one that wants to fetch it; (3) to have events that
by attempting to remove a node are inhibited by the presence of edges connected to
that node. The consequences are that: (1) it is still possible to unfold DPO grammars in
special acyclic DPO occurrence grammars accounting for all the above features; (2) a
more complicated notion of event structure is needed, called inhibitor event structures;
(3) the constructions are still functorial, but there is no fully satisfactory way back from
inhibitor event structures to occurrence graph grammars.

The case of SPO is still more sophisticated than Petri nets, but more satisfactory
than DPO. In fact: (1) it is possible to unfold SPO graph grammars in special acyclic
SPO occurrence grammars; (2) a more sophisticated notion of event structure is needed,
called asymmetric event structures, which can account for multiple concurrent readings
and asymmetric conflicts; (3) all the constructions are coreflections.

Notably, for the special case of node preserving grammars the DPO construction can
be carried on in close analogy with SPO, yielding the same asymmetric event structures.
We do not have enough space here to formalize the above discussion, but details are not
needed to follow the rest of this paper. Interested readers can check [4] for technicalities.

An important point to mention is that all the above constructions work only for a
special kind of grammars, called semi-weighted and inspired by a similar requirements
on Petri nets. Roughly, semi-weighted grammars enforce disambiguation in the seman-
tics by preventing the generation of “equivalent” resources carrying the same history.
We recall that a typed graph G is called injective if the typing morphism τG is injective.

Definition 2.3 (Semi-Weighted Grammar). A graph grammar G = 〈T,Gin,P〉 is semi-
weighted if Gin is injective and the target of every production p ∈ P is injective.

3 Persistent Graph Grammars

In this section we revisit the general theory developed for SPO and DPO approaches
when considering a special kind of graph grammars, called persistent. Sections 4 and 5
show that such restriction is a reasonable enough compromise between the applicability
of the approach to nominal calculi and the categorical adequacy of the semantics.

A type graph T is persistent if its edges are partitioned in two subsets: E+
T of persis-

tent edges and E−T of removable edges. Given a persistent T , and a T -typed graph G,
we denote by E+

G and E−G the set of edges mapped respectively to persistent edges and
to removable edges of T . In the following assume a persistent type graph T is given.
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Definition 3.1 (Persistent Productions). A DPO production p : (L l← K
r→ R) is per-

sistent if all of the following hold:

– node persistence: NL = l(NK) (i.e., all nodes in L are images of nodes in K);
– removal of removable arcs: E−K = /0 (i.e., no removable arc is in K);
– preservation of persistent arcs: E+

L = l(E+
K ) (i.e., all persistent arcs in L are images

of persistent arcs in K).

Similarly, an SPO production q : L 
 R is persistent if:

– node persistence: NL ⊆ NR (i.e., all nodes in L are also in R);
– removal of removable arcs: E−L ∩ER = /0 (i.e., no removable arc in L is preserved);
– preservation of persistent arcs: E+

L ⊆ E+
R (i.e., all persistent arcs in L are in R).

Definition 3.2 (Persistent graph grammar). A (T -typed, DPO/SPO) graph grammar
G is persistent if all its productions are consuming, semi-weighted and persistent.

We have already analyzed and discussed the requirements about the grammar being
consuming and semi-weighted. A first motivation for the persistence requirement is
the fact that it characterizes a whole class of grammars for which there is no need of
checking the dangling arc condition when applying any direct derivation.

Lemma 3.1. Given any (T-typed) graph G, any persistent DPO production p : (L l←
K

r→ R), and any valid match g : L→G, the dangling arc condition is trivially satisfied.

Lemma 3.2. Given any (T-typed) graph G, any persistent SPO production q : L 
 R,
and any valid match g : L→ G, no side-effect is produced on G.

The proofs of the above lemmas exploit just node persistence. A remarkable conse-
quence of the above properties is that in the unfolding construction we can completely
disregard the precedences between productions induced by the dangling arc condition.

A second motivation is that there is no resource that can be both read and consumed
during a derivation: nodes and persistent arcs can be just produced once and then read;
removable arcs can be produced (once) and removed (once) but never read. A remark-
able consequence of this property is that the event structure associated to the unfolding
does not impose inhibitor conditions between events.

Theorem 3.1. The construction of the prime event structure associated to a persistent
graph grammar is expressed by the chain of coreflections in Figure 3.

The isomorphism between node preserving SPO grammars and node preserving DPO
grammars (see end of § 2.2) makes the result independent from the approach, in the
sense that the PES Ep(Up(G)) associated to a persistent SPO grammar G is isomorphic
to the one associated with the corresponding persistent DPO grammar D(G).

The proof of the main result (for SPO) is carried on along the lines of [4], but it is
omitted because of space limitation. We are confident that the case studies in Sections 4
and 5 can be understood without looking at the details of our constructions. Proofs will
be included in the full version of this work. We just remark that the unfolding func-
tor (Up) and the event structure (Ep) are just the restrictions to the domain of persistent
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Persistent Graph
Grammars
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⊥ ��
Persistent

Occurrence
Grammars Ep

⊥ ��
� ��� Prime Event

Structures
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∼ ��

Np��
Domains

P��

Fig. 3. True concurrent semantics of persistent graph grammars

P ::= 0 | x〈y〉 | x(y).P | !x(y).P | (νx)P | P|P
(a) Syntax

P | 0≡ P P | Q≡ P | Q (P | Q) | R≡ P | (Q | R)
P≡ Q if P≡α Q (νx)(νy)P≡ (νy)(νx)P (νx)P | Q≡ (νx)(P|Q) if x �∈ f n(Q)

(b) Structural equivalence

(SYNC) x〈y〉 | x(z).P→ P{y/z} (!SYNC) x〈y〉 | !x(z).P→ P{y/z} | !x(z).P
(PAR) P→ P′ ⇒ P|Q→ P′|Q (RES) P→ P′ ⇒ (νx)P→ (νx)P′

(c) Reduction Semantics

Fig. 4. Syntax and reduction Semantics of the asynchronous pi-calculus

graph grammars of the functors already designed for (node preserving) graph grammars
(Us and Es). Moreover, asymmetric conflicts are due to ordinary mutual exclusion argu-
ments (and causality) and thus the event structure associated to the unfolding is morally
a PES (in disguise). Hence, the only adjunct that must be redefined is the one associat-
ing a (persistent) occurrence graph grammar to a PES, as otherwise the adjoint functor
Ns would generate a node preserving, but non persistent occurrence graph grammar.

4 Event Structure Semantics for the π-Calculus

In this section we show the encoding of asynchronous π processes as persistent graph
grammars and the construction of their event structure.

Given an infinite set of names N ranged over by a,b,x,y,z, . . ., the asynchronous π
processes over N are defined by the grammar in Figure 4(a). The reduction semantics is
the least relation satisfying the rules in Figure 4(c) (modulo the structural congruence
rules in Figure 4(b)). Free and bound names (written f n(P) and bn(P)) are defined as
usual. A process P is a sequential agent if it is either x〈y〉, x(y).P or !x(y).P′.

For simplicity, we represent π processes as hypergraphs instead of graphs, like in
[19]. A hyperarc can be connected to several nodes. Hence, any hyperarc has an ordered
set of attachment points, which is represented by a sequence. As usual, |s| stands for the
length of the sequence s, and s[i] for 0< i≤ |s| refers to the ith element of s.

Definition 4.1 (Hypergraph). A (hyper)graph is a triple H = (NH ,EH ,φH), where NH

is the set of nodes, EH is the set of edges, and φH : EH → N∗H describes the connections
of the graph. We call |φH(e)| the rank of e and assume that |φH(e)|> 0 for any e.

Note that every hypergraph H can be straightforwardly encoded as a graph G, whose
nodes are the nodes and arcs of H, and whose arcs connect the nodes corresponding
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to edges with the original nodes of H. Formally, G = (NH ∪ EH ,E,s, t), where E =
e∈EH

{e1, . . . ,e|e|}, s(ei) = e and t(ei) = φH(e)[i] for all ei ∈ E .
A process P corresponds to a hypergraph H = (NH ,EH ,φH), where nodes stand for

the names used by P, and hyperarcs denote sequential agents of P. Given e ∈ EH denot-
ing a sequential agent S, the definition of φH attaches e to the nodes corresponding to
the free names f n(S) of S. In particular, |φ(e)| is equal to the number of occurrences of
free variables in S, and φ(e)[i] = nx if nx is the node associated to the variable x and the
ith occurrence of a free name in S corresponds to x (we assume free names in S to be
ordered in some fixed form, e.g., from left to right).

For simplicity, and w.l.o.g., we will consider a canonical form for processes in which
all bound variables are different from each other. The canonical form of P is can(P)= P′

where {[P]}1 = P′,n and {[ ]}n : P→ P×N is defined s.t. {[P]}n = P′,n′ iff P′ is obtained
by renaming (from the left to the right) all bound variables of P with consecutive natural
numbers in the range [n,n′ −1]. Moreover, we assume f n(P)∩N = /0.

{[0]}n = 0,n
{[x〈y〉]}n = x〈y〉,n

{[x(y).P]}n = x(n).P′,n′ where{[P{n/y}]}n+1 = P′,n′

{[(νx)P]}n = (νn)P′,n′ where{[P{n/x}]}n+1 = P′,n′

{[P1|P2]}n = P′1 | P′2,n′ where{[P1]}n = P′1,n
′′ and {[P2]}n′′ = P′2,n

′

{[!P]}n = !P′,n′ where{[P]}n = P′,n′

We associate a type 1S2 to any sequential agent S, defined as follows:

1x〈y〉2= x〈•〉
1x(n).P2= x(n).(P{•/x1 , . . . ,

•/xn}) where {x1, . . . ,xn}= f n(P)\{n}
1!x(n).P2= !x(n).(P{•/x1 , . . . ,

•/xn}) where {x1, . . . ,xn}= f n(P)\{n}
The special mark • denotes an occurrence of a free variable. We say n + 1 the rank

of 1S2 with n the number of occurrences of • in 1S2.
Example 4.1. Consider the following process P = x(z).(z〈y〉 | z〈y〉) | x〈y〉 | x〈x〉. Then
can(P) = x(1).(1〈y〉 | 1〈y〉) | x〈y〉 | x〈x〉. Moreover, the types of all sequential agents in
P are x(1).(1〈•〉 | 1〈•〉) and x〈•〉.
Differently from the encoding of [19], sequential agents differing on their first free
name have different types. For instance, here P1 = x〈z〉, P2 = x〈x〉 and P3 = z〈z〉 are
typed 1P12 = 1P22 = x〈•〉 �= 1P32 = z〈•〉 (contrastingly to the original proposal that
assigns the same type •〈•〉 to all of them). Our definition generates more productions,
but it produces semi-weighted grammars in many more cases, as explained below.

Given a set A of agent types, the type graph associated with A is TA = 〈{x},A,φTA〉
s.t. for all t, φTA(t) = s, and s[i] = x for 0< i≤ |s|= rank(t). The set of TA-typed hyper-
graphs we consider is the least set built using the following constants and operations.

– 0 is the empty graph ( /0, /0, /0).
– x denotes the discrete graph ({x}, /0, /0) containing the node x.
– H1⊕H2 = (NH1 ∪NH2 ,EH1 + EH2 ,φ) is the composition of H1 and H2 , where +

stands for the disjoint union of sets and φ is defined as follows

φ(e) = φH1(e) if e ∈ EH1(e) φ(e) = φH2(e) if e ∈ EH2(e)
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– H1{y/x} is the graph obtained by renaming the node x of H1 by y, i.e., H1{y/x}=
((NH1\{x})∪{y},EH1,φH), where φH(e) = φH1(e){y/x} for all e ∈ EH1 .

– S s.t 1S2 ∈ A is the graph whose nodes are the free names of S and its unique arc
has type 1S2, i.e., H = ( f n(S),{1S2},{1S2 �→ s}), where |s| is equal to the rank of
1S2 and s[i] = x if the ith occurrence of a free name in S is x.

In all cases, the typing morphisms map nodes to x and arcs to their type.

Remark 4.1. The graphs H1 = x〈y〉 and H2 = k〈y〉{x/k} are different since they contain
the same nodes {x,y}, but H1 has a unique arc with type x〈•〉, while the arc of H2 has
type k〈•〉. Differently, H3 = x〈y〉 and H4 = x〈k〉{x/k} are identical. In this case, we will
use the first notation as an abbreviation for the second one.

The next definition provides the mapping from π processes to (hyper)graphs.

Definition 4.2. Given a canonical π process P, its corresponding agent hypergraph is
HP = unw(P), where unw is inductively defined as follows:

unw(0)= 0 unw(x〈y〉)= x〈y〉 unw(x(y).P)= x(y).P
unw(!x(y).P) = !x(y).P unw((νx)P) = unw(P) unw(P1|P2) = unw(P1)⊕unw(P2)

Example 4.2. The agent hypergraph corresponding to the process P in Example 4.1 is
HP = x(1).(1〈y〉 | 1〈y〉) ⊕ x〈y〉 ⊕ x〈x〉.

Then, the graph grammar corresponding to a particular process is defined as follows. We
use I

C
�� O to denote rule patterns that can be instantiated by providing agent types.

Any instance is a production q : L
l← K

r→ R with K = C⊕n(I), L = I and R = O⊕K,
with n(I) being the nodes of I, and where the morphisms are the obvious inclusions.

Definition 4.3 (π process as a graph grammar). The graph grammar corresponding
to a π process P is GP = 〈T,Gin,Q〉, where T contains the types of all possible subagents
of P, Gin = HP = unw(P) and productions q ∈ Q are obtained by instantiating the two
patterns below (where k1〈•〉,k2(y).P and k2(y).P are types of T and z is a fresh name)
with the types of the subagents of P.

GRAPH-SYNC : k1〈z〉{x/k1}⊕ k2(y).P{x/k2} �� unw(P){x/k2}{z/y}

GRAPH-!SYNC : k1〈z〉{x/k1} !k2(y).P{x/k2
}

�� unw(P){x/k2}{z/y}

The rewriting rules do not specify the actual name over which the communication takes
place, but just that the output and the input action take place over the same node.

Example 4.3. Consider P defined in Example 4.1. The corresponding graph grammar
GP = 〈T,Gin,Q〉 is defined as follows:

– T contains a unique node, and its arcs correspond to the different types of all the
sequential agents occurring in P, i.e., ET = {1〈•〉, x〈•〉, x(1).(1〈•〉 | 1〈•〉)}.

– Gin = HP = x(1).(1〈y〉 | 1〈y〉) ⊕ x〈y〉 ⊕ x〈x〉;
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– Q = {p1, p2}, where:

p1 : x〈z〉⊕ x(1).(1〈y〉 | 1〈y〉)
l1←− x⊕ y⊕ z

r1−→ 1〈y〉{z/1} ⊕ 1〈y〉{z/1}⊕ x

p2 : 1〈z〉{x/1}⊕ x(1).(1〈y〉 | 1〈y〉)
l2←− x⊕ y⊕ z

r2−→ 1〈y〉{z/1} ⊕ 1〈y〉{z/1}⊕ x

with l1, l2,r1 and r2 being inclusion morphisms.

By applying rule p1, we can derive Gin ⇒p1 1〈y〉{y/1} ⊕ 1〈y〉{y/1} ⊕ x〈x〉.
The evolution of any process P is described by a finite rewriting system (since the set of
sequential agents contained in P is finite). Moreover, graph productions are persistent
since all nodes are persistent and removable arcs do not appear in contexts. Neverthe-
less, the grammar may not be semi-weighted. In fact, the initial graph Gin in Exam-
ple 4.3 is not injective (it contains two arcs with the same type x〈•〉). Similarly, the
targets of both productions are not injective (they have two arcs with type 1〈•〉). In
what follows, we restrict our analysis to semi-weighted processes, i.e., processes that
produce semi-weighted grammars. Semi-weighted processes disambiguate the produc-
tion of identical elements having the same history. Hence, P can be written as

P′ = x(1).(1〈y〉 | (ν2)(2(3).1〈y〉|2〈2〉)) | x〈y〉 | (ν4)(4(5).x〈y〉|4〈4〉)
where the production of identical elements with the same history is avoided by intro-
ducing an internal reduction. Note that the initial graph

G′in = x(1).(1〈y〉 | (ν2)(2(3).1〈y〉|2〈2〉)) ⊕ x〈y〉 ⊕ 4(5).x〈y〉 ⊕ 4〈4〉
is injective (arcs of graphs x〈y〉 and 4〈4〉 have different types). Similarly, the target of as-
sociated transitions are injective, and hence, the associated grammar is semi-weighted.

Remark 4.2. PGGs do not imply a severe limitation for encoding the π-calculus since
(i) node and arc persistency have no influence, (ii) consuming rules have no effect when
following a reduction approach, (iii) although semi-weighted rules prevent us from en-
coding processes having tokens with identical causal history, it is possible to encode
any process as a PGGs by disambiguating identical tokens (for instance, by introducing
internal reductions).

Example 4.4 (Event Structure). Consider the following asynchronous π process corre-
sponding to the encoding of the synchronous process x〈y〉.c〈c〉.0|x(z).b〈z〉.0.

P = (νk)(x〈k〉|k(a).(a〈y〉|c〈c〉)) | x(k).(νa)(k〈a〉|a(z).b〈z〉)
After obtaining the canonical form of P by renaming all bound names by natural

numbers, the initial graph of the corresponding grammar is

Gin = x〈1〉⊕1(2).(2〈y〉|c〈c〉))⊕ x(3).(3〈4〉|4(5).b〈5〉)
The set of productions is obtained by instantiating the pattern rule for GRAPH-SYNC

with all possible agent types: x〈•〉, 1(2).(2〈•〉|•〈•〉), 2〈•〉, c〈•〉, x(3).(3〈•〉|• (5).•〈5〉),
3〈•〉, 4(5).•〈5〉, b〈•〉}. For instance, one possible instantiation is:

p1 : x〈y〉⊕ (1(2).(2〈v〉|w〈z〉)){x/1}
l1←− x⊕ y⊕ v⊕w⊕ z

r1−→ 2〈v〉{y/2}⊕w〈z〉⊕ x
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�� ��
�� �	a1 = 1(2).(2〈y〉|c〈c〉)

���
��

��
��

��
��

��
�� ��
�� �	a2 = x〈1〉

������
�� ��
�� �	a3 = x(3).(3〈4〉|4(5).b〈5〉)

��������

e1

��������
		����

�� ��
�� �	a4 = 3〈4〉{1/3}

		����
�� ��
�� �	a5 = 4(5).b〈z〉

��
e2



�����
������

�� ��
�� �	a6 = c〈c〉 �� ��

�� �	a7 = 2〈y〉{4/2} �� e3 ���� ��
�� �	a8 = b〈z〉

Fig. 5. Unfolding of the grammar corresponding to the π process P

The corresponding unfolding is in Figure 5. We use a net-like pictorial represen-
tation, where productions are shadow-shaped boxes connected to the consumed and
produced resources by incoming and outcoming arrows respectively. For the sake of
clarity, we omit the representation of graph nodes (i.e., names x and y) and edge attach-
ments, since nodes are preserved by productions and they do not introduce additional
dependencies to those shown in Figure 5. The minimal elements of the unfolding, i.e.,
a1, a2 and a3, are the elements of Gin. Any event stands for the application of a produc-
tion on a set of concurrent events. Note that a6 and a8 causally depend on a1,a2 and a3.
In particular, the output in a6 causally depends on the input action in a3, even though
a1 and a3 share no names.

5 Event Structure Semantics for Join-Calculus

As done for the π calculus, we provide the event structure semantics of join processes
through its mapping to persistent graph grammars. For simplicity, we focus on core
(recursive) join-calculus [13], but our approach smoothly extends to full join.

The syntax of core Join is in Figure 6(a). The occurrences of x and u in x〈u〉 are free,
while x and y occur bound in P = def x〈u〉|y〈v〉�P1 in P2, and u and v occur bound in
x〈u〉|y〈v〉�P1. Free and bound names of P are written respectively f n(P) and bn(P).

The semantics of the join calculus relies on the reflexive chemical abstract machine
model [13]. In this model a solution is a multiset of active definitions and processes
(separated by comma). New definitions may become active dynamically. Moves are
distinguished between structural ≡, which heat or cool processes, and reductions →,
which are the basic computational steps (disjoint reductions can be executed in parallel).
The rewriting rules are shown in Figure 6(b).

As done for π processes, we only consider canonical processes. The canonical form
of P is can(P) = P′ for {[P]}1 = P′,n and

{[x〈u〉]}n = x〈u〉,n
{[P1|P1]}n = P′1 | P′2,n′ where{[P1]}n = P′1,n

′′ and {[P2]}n′′ = P′2,n
′

{[def x〈u〉|y〈v〉�P1 in P2]}n = def n〈n + 1〉|n + 2〈n + 3〉�P′1 in P′2,n
′

where {[P1{n/x,
n+1/u,

n+2/y,
n+3/v}]}n+4 = P′1,n

′′

and {[P2{n/x,
n+2/y}]}n′′ = P′2,n

′
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P = x〈u〉
| P|P
| def x〈u〉|y〈v〉�P in P

(a) Syntax

P | Q ≡ P , Q
def x〈u〉|y〈v〉�P1 in P2 ≡ (x〈u〉|y〈v〉�P1)σ , P2σ

(σ renames x and y with globally fresh names)

x〈u〉|y〈v〉�P, x〈z1〉, y〈z2〉 → x〈u〉|y〈v〉�P, P{z1/x,
z2/y}

(b) Semantics

Fig. 6. Core Join

By analogy with π, we consider subterms x〈u〉 and x〈u〉|y〈v〉�P as sequential agents.
Then, the type 1S2 of a sequential agent S is defined as follows:

1x〈y〉2= x〈•〉
1x〈u〉|y〈v〉�P2= x〈u〉|y〈v〉� (P{•/x1 , . . . ,

•/xn}) where {x1, . . . ,xn}= f n(P)\{u,v}

The mapping of processes to graph grammar is defined below.

Definition 5.1. Given a canonical join process P, its corresponding hypergraph is
HP = unw(P), where unw is inductively defined as follows:

unw(x〈u〉) = x〈u〉
unw(def x〈u〉|y〈v〉�P1 in P2) = x〈u〉|y〈v〉�P1⊕unw(P2)

unw(P1|P2) = unw(P1)⊕unw(P2)

Definition 5.2 (Join process as a graph grammar). The graph grammar GP corre-
sponding to the join process P is GP = 〈T,Gin,Q〉, where T contains the types of all the
subagents of P, Gin = HP = unw(P) and productions q∈Q are obtained by instantiating
the following pattern with the types in T .

k1〈u〉{x/k1}⊕ k2〈v〉{y/k2} (k3〈u1〉|k4〈v1〉�P){x/k3
,y/k4

}
�� unw(P){x/k3 ,

y/k4}{u/u1 ,
v/v1}

Example 5.1. Consider the canonical join process P = def D in 1〈3〉 | 3〈1〉, with
D = 1〈2〉|3〈4〉� 4〈3〉|3〈1〉. Then, the initial graph of the grammar is

Gin = HP = D⊕1〈3〉⊕3〈1〉

and the types {1〈2〉|3〈4〉�4〈•〉| • 〈•〉, 1〈•〉, 3〈•〉, 4〈•〉}. Hence, we have nine possible
rules pk1,k2 , one for any possible combination of k1,k2 ∈ 1,3,4, defined as follows

D{x/1,
y/3}⊕ k1〈u〉{x/k1}⊕ k2〈v〉{y/k2}

l1←−D{x/1,
y/3}⊕u⊕ v

r1−→ D{x/1,
y/3}⊕4〈y〉{v/4}⊕3〈1〉{x/1,

y/3}⊕u

Then, we have the following computation

Gin ⇒p1,3 D⊕4〈3〉{1/4}⊕3〈1〉 ⇒p4,3 D⊕4〈3〉{1/4}⊕3〈1〉

The unfolding of GP can be obtained as for π processes. In this case, the causal
relation of the event structure is the total order e1 ≺ e2, . . ., while the # = /0 and co = /0.
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6 Related Works and Concluding Remarks

We have introduced Persistent Graph Grammars (PGGs) as a convenient model for
equipping nominal calculi with truly concurrent semantics. Our results collect, so to
say, the best of two worlds: the event structure semantics is defined by a chain of core-
flections as in [4] and the encoding of nominal calculi is rather direct as in [19]

We improve on [4] by restricting the format of productions so as to guarantee that
there is no information loss when viewing the asymmetric event structure associated to
the grammar as a PES. The restricted format considerably simplifies the construction
w.r.t. fully general grammars. We improve on [19] by refining the type system so as to
apply the unfolding construction to a much broader class of π-processes that comprises
all those processes whose associated productions are semi-weighted. The generality of
our technique is also supported by the original case study of join calculus.

Being a special case of semi-weighted grammars, PGGs enjoys the nice property
of reconciling the SPO with the DPO approach. Note that two other event structure
semantics proposed in the literature for DPO [8,22] coincide with the one obtained
from the unfolding, which thus can be called the event structure semantics of GTS.

We exploit a “hierarchical” encoding of sequential processes, as opposed to the “flat”
(DPO) encodings of [14,15], where finitely many productions encode all (finite) agents
and where node fusion is requested in the right-hand side of some productions. The
latter feature prevented the straightforward reuse of some techniques, although [5] de-
velops a non-sequential semantics also in the presence of node fusion.

Due to space limitation we leave the comparison with previous non-interleaving se-
mantics of the π-calculus [11,6] to the full version of this paper. The linearity constraint
in [23] shares some similarities with the semi-weightedness criterion and it would be
interesting to see if their type systems can be transferred to graph grammar productions.

Acknowledgement. We warmfully thank Paolo Baldan for his guidance and support
during the writing of the paper. We also thank the referees for their careful revisions.

References

1. P. Baldan. Modelling concurrent computations: from contextual Petri nets to graph gram-
mars. PhD thesis, University of Pisa, 2000.

2. P. Baldan, A. Corradini, and B. König. Verifying Finite-State Graph Grammars: An
Unfolding-Based Approach. Proc. CONCUR’04, LNCS 3170, pp. 83–98. Springer, 2004.

3. P. Baldan, A. Corradini, and U. Montanari. Contextual Petri nets, asymmetric event structures
and processes. Inform. and Comput., 171(1):1–49, 2001.

4. P. Baldan, A. Corradini, U. Montanari, and L. Ribeiro. Concurrency and Nondeterminism in
Graph Rewriting: From Graph Grammars to Asymmetric Event Structures and Backwards.
Technical Report CS-2005-2, University Ca’ Foscari of Venice, 2005.

5. P. Baldan, F. Gadducci, and U. Montanari. Concurrent Semantics for Graph Rewriting with
Fusions. Proc. CONCUR’06. This volume.

6. M. Boreale and D. Sangiorgi. A fully abstract semantics for causality in the pi-calculus. Acta
Informatica, 35(3):353–400, 1998.
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Abstract. We present a type faithful encoding of CDuce into the Cπ-calculus.
These calculi are two variants of, respectively, the λ-calculus and the π-calculus,
characterised by rich typing and subtyping systems with union, negation, and
intersection types.

The encoding is interesting because it sheds new light on the Milner-Turner
encoding, on the relations between sequential and remote execution of func-
tions/services, and on the validity of the equational laws for union and intersec-
tion types in π-calculus.

1 Introduction and Motivations

The language CDuce [11,10] is a functional programming language for XML docu-
ments manipulation, with a very rich type system. Types and subtyping play a central
role in CDuce: for its design (patterns and pattern matching are built around types), for
its execution (functions can be overloaded with run-time code selection), and for its im-
plementation (pattern matching compilation and query computation use static type in-
formation to optimise execution). All these multifarious usages of types rely on a com-
mon foundational core: the semantic subtyping framework. An introduction to seman-
tic subtyping can be found in [8], while [5] discusses several aspects and perspectives;
technical details are given in [11,10]. In a nutshell, given a typed language with some
(possibly recursive) type constructors (e.g.,→, ×, list(), . . . ), semantic subtyping is
a technique to enrich the language with type combinators, i.e. set-theoretic union, inter-
section, and negation types. The behaviour of combinators is specified via the subtyping
relation (rather than via the typing of the terms). The subtyping relation is “semantic”
since instead of axiomatising it by a set of inference rules, one describes a set-theoretic
interpretation of the types � � : Types→P(D) (where P denotes the powerset opera-
tor and D some domain) and then defines the subtyping relation as s≤ t

def⇐⇒ �s�⊆ �t�.
Such a set-theoretic interpretation must satisfy at least three design goals.

1. It must ensure that type combinators have a set-theoretic interpretation. This is done
by imposing that union, intersection, and negation types are respectively interpreted
as the set-theoretic union, intersection, and complement operations of P(D).

2. It must ensure that type constructors have a “natural” interpretation (at least, for
what concerns subtyping), e.g., that product types are interpreted as set-theoretic
products, function types as sets of maps from domain to co-domain, and so on.
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3. It must allow for an interpretation of types as sets of values. This means that if we
take as D the set of values of the language and as interpretation the function that
maps a type to the set of all values of that type, then this new interpretation must
induce the very same subtyping relation as the one used to type values.

Finding a domain D and an interpretation function �−� that satisfy the last two points
is far from being trivial: a set-theoretic interpretation of functional and recursive types
or the circularity between the typing of values and definition of subtyping are difficult
constraints. As described in [8] and outlined later on, semantic subtyping provides a
technique to do so.

In [6] the Cπ-calculus is devised. Cπ is a type system for the π-calculus which ex-
ploits the same principles as CDuce to enrich Pierce and Sangiorgi’s types [16] with
(set-theoretic) unions, intersections, and negations. In the cited paper, a higher-order
extension of the Cπ-calculus with functional values is discussed. However the question
arises whether the extension is necessary or whether it is possible to encode functions as
processes. It is well known that several such encodings are possible from the λ-calculus
into the π-calculus [15,17,18]. In the Join-calculus language [9], the functional part is
simply syntactic sugar for its coding in the concurrent part.

Contributions. In this paper we describe an encoding of CDuce into the Cπ-calculus.
The encoding turned out not to be so straightforward as one may expect. The diffi-
culty arises in finding an encoding of the types that respects the subtyping relation. The
Milner-Turner translation of arrow types [17] respects the subtyping relation in the con-
text of the simply typed λ-calculus, but it breaks down in the presence of intersection
types.

Strictly speaking the technical contribution of this paper is twofold: first it introduces
the local Cπ-calculus, a variant of the Cπ-calculus that admits unrestricted recursion on
types, a feature not allowed in the version of the calculus presented in [6]; secondly
it defines an encoding of CDuce (hence, of intersection, union, and negation types)
into local Cπ that preserves the typing and subtyping relations as well as the reduction
semantics.

But beyond these technicalities, or actually hidden right in the technical details, there
lies the main interest of this work. As we detail in Sections 4 and 5, the translation sheds
new light on the Milner-Turner encoding as it shows the respective roles of argument
and return channel that are used to simulate functions in a concurrent world. In particu-
lar, it shows that in the presence of type-case constructions, the latter must be scrambled
by introducing some noise at the type level so that the receiver cannot gain information
by testing the type of the return channel. The translation is a further confirmation of the
validity of the equational laws for union and intersection types in the π-calculus, since
a different axiomatisation proposed in the literature is incompatible with the Milner-
Turner technique. This is not the only contribution to the type theory of the π-calculus,
since the encoding also outlines the different roles played by the two contra-variant
constructors of Cπ, namely input channel and negation, and shows how they interplay
when considering them from a logical point of view. Finally, at term level the translation
formalises the nice correspondence between functional pattern matching and π-calculus
guarded sums on a same input channel.
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Structure. In Section 2 we present the local variant of the Cπ-calculus. In Section 3
we present the functional core of CDuce. Section 4 is devoted to explaining the main
difficulties we encountered when encoding CDuce types into Cπ types. Section 5 con-
tains the formalisation of the encoding of the language, while Section 6 presents the
correctness results. In Section 7 we conclude by giving some insight on more general
aspects of this work and trying to convey the intuition of why we believe that the main
contribution lies well beyond the technical result we present. For lack of space some
definitions and all proofs are omitted; the interested reader can find them in [7].

2 The Cπ-Calculus

The Cπ-calculus is a variant of the asynchronous π-calculus with pattern matching in
input and rich typing and subtyping systems [6]. We introduce here a further simpli-
fication of the calculus, following ideas of the Join calculus [9] and of the local π-
calculus [14]. The key idea is that if a process is communicated a channel, then it cannot
use that channel in input. Only global channels already known to the process or newly
generated channels can be used in input. This policy is enforced syntactically, even be-
fore processes are typed. In the typing system, this implies that input channel types are
no longer necessary. The consequent subtyping relation is much easier to decide and,
unlike the system for full Cπ-calculus, can be also extended to recursive types.

2.1 Types and Subtyping

A type is coinductively defined by applying type constructors, namely base type con-
structors (e.g. integers, strings, etc...), the channel or product type constructors, or by
applying a boolean combinator, i.e., union, intersection, and negation. More formally,
types are regular trees generated by the following grammar

Cπ Types t ::= b | ch–(t) | t××× t constructors
| 0 | 1 | ¬¬¬t | t∨∨∨ t | t∧∧∧ t combinators

and that are contractive, that is for which on every infinite branch of the tree there are
infinitely many occurrences of constructors. Combinators are self-explaining, with 0
being the empty type and 1 the type of all values. We use b to range over base types.
The channel type constructor ch–(t) denotes the type of channels that can be used to out-
put values of type t. The set of all types (sometimes referred to as “type algebra”) will
be denoted by T . Contractivity ensures, as usual, the absence of meaningless recur-
sively defined types such as t =¬¬¬t. The subtyping relation is defined semantically. This
means that we first give a set-theoretical interpretation of types �−� : T → P(D),
for some domain D , and then define subtyping as inclusion of the interpretations:
s ≤ t

def⇐⇒ �s� ⊆ �t�. It is out of the scope of this work to precisely define D or the
interpretation �−� (see [6] for details). All we need for this work is to precisely define
the subtyping relation these definitions entail. This is completely characterised by the
subtyping relation on the basic types and by the following property:

�s�⊆ �t� ⇐⇒ E(s)⊆ E(t) (1)

where E(−) is defined as follows
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Definition 2.1 (Extensional interpretation). The extensional interpretation of the
types is the function E(−) : T →P(D +D×D +P(D)), defined as follows:

a. E(1) = D +D×D +P(D), E(0) = ∅, E(b) = �b�;
b. E(t1∨∨∨ t2) = E(t1)∪E(t2), E(t1∧∧∧ t2) = E(t1)∩E(t2) , E(¬¬¬t) = E(1)\E(t);
c. E(t1××× t2) = �t1�× �t2�;
d. E(ch–(t)) = {�s� | �s�⊇ �t�}.

The intuition underlying property (1) is that, for what concerns subtyping, we can con-
sider that �t�, i.e. the semantics of t, is precisely E(t). Thus in Definition 2.1, (b.) states
that the type combinators are interpreted as the corresponding set operations and (c.)
that the product type is interpreted as set-theoretic product. Point (d.) gives us the se-
mantics of channels. Intuitively, if a type denotes the set of all values with that type,
then the type ch–(t) denotes the set of all channels in which one can safely put objects
of type t. Therefore it will denote all channels that can contain objects of type s, for
any s ≥ t. Let us write ct for a channel named c and transporting objects of type t. We
have �ch–(t)� = {cs | s ≥ t}. The derived subtyping relation is insensitive to the actual
number of channels of a given type or to their names. We can therefore assume that for
every equivalence class of types, there is only one such channel, which may as well be
identified with �t�, so that the intended semantics of channel types would be

�ch–(t)� =
{
�s� | s≥ t

}
(2)

which by definition of subtyping gives point (d.) of the previous definition. The subtyp-
ing relation of the local Cπ-calculus is decidable and the decision algorithm is much
simpler than the one for the full Cπ-calculus presented in [6].

In order to stress that property (1) and Definition 2.1 completely define the subtyping
relation, let us show as an example how to deduce the contra-variance of the output type
channel constructor: ch–(s) ≤ ch–(t)⇔ �ch–(s)� ⊆ �ch–(t)�⇔ E(ch–(s)) ⊆ E(ch–(t))⇔
{�u� | �u�⊇ �s�} ⊆ {�u� | �u�⊇ �t�}⇔ �t�⊆ �s�⇔ t ≤ s.

Similarly we can derive interesting equations and inequations between types. For
instance, ch–(t)≤ ch–(0) is a special case of the contra-variance we just derived. It states
that every channel c can be safely used in a process that does not write on c. If we define
s = t

def⇐⇒ �s� = �t�, then we have

ch–(t1)∧∧∧ch–(t2) = ch–(t1∨∨∨ t2) (3)

which states that if on a channel we can write values of type t1 and values of type t2,
then we can also write values of type t1∨∨∨ t2, and vice versa. Union of channel types
behaves differently since the inequation below is strict (see [6] for a discussion on this)

ch–(t1)∨∨∨ ch–(t2) � ch–(t1∧∧∧ t2) .

2.2 Patterns

Both Cπ and CDuce feature powerful pattern matching. Patterns perform type-cases,
decompose values by capturing subcomponents in variables, and can be recursive.
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Definition 2.2. Given a type algebra T , and a set of variables V, a pattern p on (V,T )
is a regular tree generated by the following grammar

p : := x | t | p ∧∧∧ p | p||| p | (((p,,,p)))
such that (i) on every infinite branch of p there are infinitely many occurrences of the
pair pattern, (ii) for every subterm p1∧∧∧ p2 of p we have Var(p1)∩Var(p2) = ∅, and
(iii) for every subterm p1|||p2 of p we have Var(p1) = Var(p2) (where x ∈V, t ∈T , and
Var(p) is the set of variables occurring in p).

The semantics of patterns is given in terms of a matching operation that returns either a
substitution for the variables of the pattern or a failure denoted by Ω. Matching can be
defined independently from the language, via the domain D of a model of types. We use
d/p to denote the matching of the element d against the pattern p. Intuitively, x is the
pattern that always succeeds and captures the matched element in x (i.e., d/x returns the
substitution {x �→ d}); t succeeds if the element is in the interpretation of t, in which
case it returns the empty substitution; the intersection succeeds only if both patterns
succeed and it returns the union of the substitutions; the alternation follows a first-
match policy by applying the pattern on the right only if the one on the left failed; the
pair decomposes the element and applies the patterns to the respective sub-components.
See [6] for the formal definition. It can be shown that the set of all elements for which
a pattern p does not fail is the denotation of a type. We denote this type by ���p			, that is
by definition ����p			� = {d | d/p �= Ω}. Matching can be extended to types as stated by
the following theorem:

Theorem 2.3 (A.5 in [11]). There is an algorithm mapping every pair (t, p), where p
is a pattern and t a type such that t ≤ ���p			, to a type environment (t/p) ∈ T Var(p) such
that �(t/p)(x)� = {(d/p)(x) | d ∈ �t�}.

2.3 The Language

The syntax of Cπ is similar to that of the asynchronous π-calculus [3,13], extended
with call-by-value pattern matching (obtained by pattern-guarded sums of inputs on the
same channel) and an extra condition which guarantees “locality” [14].

Processes P ::= αM output
| ∑i∈I ct(pi).Pi patterned input
| P ‖ P parallel
| (νct)P restriction
| !P replication

Channels α ::= x variables
| ct constant

Messages M ::= n constants
| α channel
| (M,M) pair

where I is a possibly empty finite set of indexes, t ranges over the types defined in
Section 2.1 and pi are patterns as defined in Definition 2.2. As customary, empty sum
corresponds to the inert process, denoted by 0. The values of the language are the closed
messages v ::= n | ct | (v,v). We use V to denote the set of all values.

Observe that we force input to happen on channel constants. This ensures that chan-
nels sent by other processes cannot be used in input. Output instead can be performed
on non-constant channels, too. Since pattern matching performs type-case, we must de-
fine the typing of messages before the reduction semantics, see Figure 1. We suppose
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Messages

Γ , n : bn
(const)

si �≤ t

Γ , ct : ch–(t)∧∧∧¬¬¬ch–(s1)∧∧∧ . . .∧∧∧¬¬¬ch–(sn)
(chan)

Γ , x : Γ(x)
(var)

Γ ,M : s≤ t
Γ ,M : t

(subs)
Γ ,M1 : t1, Γ ,M2 : t2
Γ , (M1,M2) : t1××× t2

(pair)

Processes

Γ , P
Γ , (νct)P

(new) Γ , P
Γ ,!P

(repl)
Γ , P1 Γ , P2

Γ , P1‖P2
(para)

t≤ i∈I���pi��� Γ,(t∧∧∧���pi���)/pi , Pi

Γ , ∑i∈I ct(pi).Pi
(input)

Γ ,M : t Γ , α : ch–(t)
Γ , αM

(output)

Fig. 1. Cπ typing rules

that every basic constant n is associated to an atomic basic type bn. The rules, and in
particular rule (chan), are designed so that we can interpret a type as the set of all values
of that type. The interpretation � �V : T →P(V ) defined as

�t�V = {v | ∅ , v : t} (4)

satisfies property (1) and, furthermore, it generates the same subtyping relation as ≤.1

Then, the definition for pattern matching given in Section 2.2 applies for v being a
value and we can use it to define the reduction semantics of Cπ:

ctv ‖ ∑
i∈I

ct(pi).Pi −→ Pj[v/p j]

where P[s] denotes the application of substitution s to process P. The asynchronous out-
put of a value on the channel ct synchronises with a summand in a sum guarded by the
same channel, only if the pattern of the summand matches the communicated value (the
type system ensures the existence of such a pattern). If more than one pattern matches,
then one of them is non-deterministically chosen and the corresponding process exe-
cuted, but before its execution the pattern variables are replaced by the captured values.
As usual, the notion of reduction must be completed with reductions in evaluation con-
texts and up to structural congruence, whose definitions are standard and can be found
in [6]. We use −→∗ to denote the reflexive and transitive closure of−→.

The typing of processes is defined in the lower half of Figure 1. Notice that the
rule for restrictions (new) does not rely on the type environment Γ, since channels are
decorated by the type of their messages, and that in the rule (input) the condition t ≤

i∈I ���pi			 ensures that for every message that may arrive on the channel, there exists at
least one pattern that matches it. The system satisfies subject reduction [6].

1 Without the intersection of the negated channel types in (chan), we could not prove that, say,
cint : ¬¬¬ch–(bool). More generally, the property , v : t ⇔ �, v : ¬¬¬t would not hold, and this
is necessary to �−	V to satisfy (1): cf. Definition 2.1(b). For a broader discussion on such
inference rules with negated types see Section 4.6 of [5].
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3 The Functional Language CDuce

CDuce is a very efficient functional language for rapid design and development of appli-
cations that manipulate XML data [2]. In this work we concentrate on the foundational
aspects of CDuce [11] a detailed survey of which can be found in [8]. In that respect,
CDuce features the same syntactic types as Cπ, with just a single exception, namely,
the channel type constructor is replaced by the function type constructor:

CDuce Types τ ::= b | τ→→→ τ | τ××× τ constructors
| 0 | 1 | ¬¬¬τ | τ∨∨∨ τ | τ∧∧∧ τ combinators

where the same regularity and contractivity restrictions as in Section 2.1 apply. We
use σ,τ to range over CDuce types and to typographically distinguish them from Cπ
ones, these latter still ranged over by s and t. Subtyping is characterised in the same
way as for Cπ, by defining an interpretation from the above types into a domain D
(that we leave unspecified, see [11]) which satisfies property (1). Definition 2.1 is
modified to account for the new type constructor for functions. We have E(−) : T →
P(D +D×D +P(D×DΩ)) (where DΩ = D +{Ω}, the disjoint union of the domain
and of a distinguished error element Ω) while point (d.) of Definition 2.1 becomes:

d. E(σ→→→ τ) = P

(
�σ�× �τ�

DΩ
D×DΩ

)
where X

Y
denotes the complement of X with respect to Y (i.e., Y \X). In words, the

extensional interpretation of σ→→→ τ is the set of graphs such that if the first element is in
�σ�, then the second element is in �τ� (otherwise the second element can be anything,
in particular the error Ω). Therefore, for what concerns subtyping, we can consider that
arrow types are interpreted as follows:

�σ→→→ τ� = { f ⊆D ×DΩ | ∀(din,dout) ∈ f . din ∈ �σ�⇒ dout ∈ �τ�}.

As we did for Cπ, we can use this characterisation to deduce several type equality and
containment relations.2 For the goals of this work an utmostly interesting equation is

(σ→→→ τ)∧∧∧ (σ→ τ′) = σ→→→ τ∧∧∧ τ′ (5)

whose validity can be easily checked by the reader, by applying the definition of E(−).
CDuce is a λ-calculus with pairs, overloaded recursive functions, and pattern match-

ing. This is reflected by the following syntax:

e ::= x | n | ee | (e,e) | μ f i∈I (σi→→→τi)(x).e | match e with p⇒e|p⇒e

where patterns p are those defined in Definition 2.2 (but use CDuce types). The type-
case expression (x = e ∈∈∈ τ)???e1:e2 can be added as syntactic sugar for the matching
expression match e with x∧∧∧τ⇒e1|x∧∧∧¬¬¬τ⇒e2.

2 The error Ω is included in the codomain of the functions since without it every function would
have type 1→→→ 1, therefore every application would be well-typed (with type 1). The error
element Ω stands for the result of ill-typed applications. Thanks to it σ→ τ≤ 1→→→ 1 does not
hold in general, hence, it explicitly avoids the problem above.
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Δ;Γ , n : bn
(const)

Δ;Γ , x : Γ(x)
(var)

Δ;Γ , f : Δ( f )
(fvar)

Δ;Γ , e : σ≤ τ
Δ;Γ , e : τ

(subs)

Δ;Γ , e1 : τ1 Δ;Γ , e2 : τ2

Δ;Γ , (e1,e2) : τ1××× τ2
(pair)

Δ;Γ , e1 : σ→→→ τ Δ;Γ , e2 : σ
Δ;Γ , e1e2 : τ

(appl)

(for σ1 ≡ σ∧∧∧���p1���, σ2 ≡ σ∧∧∧¬¬¬��� p1���)
Δ;Γ , e : σ≤ ���p1 ���∨∨∨��� p2 ��� Δ;Γ,(σi/pi) , ei : τi

Δ;Γ , match e with p1⇒e1|p2⇒e2 : {i|σi �
0} τi
(match)

(for τ≡ i∈I(σi→→→ τi)) (∀i∈ I,h∈ I, j∈J)

σh∧∧∧σi = 0 τ �≤ σ′j →→→ τ′j Δ, f : τ;Γ,x : σi , e : τi

Δ;Γ , μ f τ(x).e : τ∧∧∧ j∈J¬¬¬(σ′j →→→ τ′j)
(abstr)

Fig. 2. CDuce typing rules

Function abstractions use a μ-abstracted name for recursion and specify at their index
several arrow types, indicating that the function has all these types (i.e., their intersec-
tion). This is formally stated by the rule (abstr) in Figure 2 which for each i ∈ I checks
that the body e has type τi under the hypothesis that x has type σi. Note that the types
of μ-abstracted variables are recorded in a distinct environment Δ. The distinction here
is totally useless (we could have used a unique Γ) but it will be handy when we define
the encoding (since μ-abstracted variables are translated into channel constants, then
the encoding will be parametric only in Γ).

The only difficult rule is (match). It first deduces the type σ of the matched expression
and checks whether patterns cover all its possible results (i.e., σ ≤ ���p1 			∨∨∨��� p2			); then
it separately checks the first branch under the hypothesis that p1 is selected (i.e. e is
in σ∧∧∧���p1			) and the second branch under the hypothesis that p2 is selected (i.e., e in
σ∧∧∧¬¬¬��� p1			); finally it discards the return types of the branches that cannot be selected,
which is safely approximated by the fact that the corresponding σi is empty.3

The rules in Figure 2 are the same as those defined in [11] (to which the reader can
refer for more details) with just a single exception: in rule (abstr) we require that the
arrows specified at the index of the function have disjoint domains: ∀i,h< i.σh∧∧∧σi = 0.
This restriction is necessary (but not sufficient) in order to avoid the problem of output-
driven overloading explained in Section 4.2. However, it causes no loss of generality,
since every CDuce function μ f i∈I (σi→→→τi)(x).e can be put into this form by iterating on
its index the rewriting that replaces (σh∧∧∧σk→→→ τh∧∧∧τk)∧∧∧(σk∧∧∧¬¬¬σh→→→ τk)∧∧∧(σh∧∧∧¬¬¬σk→→→

3 The reader may wonder why the system does not return a type error when one of the two
branches cannot be selected. As a matter of fact this is a key feature for typing overloaded
functions, where the body is repeatedly checked under different hypothesis for some of
which the σi of some typecase may be empty. This simple function should clarify the point:
μf(Int→→→Int;Bool→→→Bool)(x).(y = x ∈∈∈ Int)???(y + 1):not(y) when we type the body under the hy-
pothesis x : Int, then the second branch cannot be selected, while under x : Bool is the first one
that cannot be selected. Without the selective union in the typing rule the best type we could
have given to this function would have been (Int∨∨∨Bool)→→→ (Int∨∨∨Bool).
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τh) for every pair of arrows σh →→→ τh, σk →→→ τk such that σh∧∧∧σk �= 0. This rewriting is
sound and it is easy to show that the two functions are operationally indistinguishable
(e.g., by applicative bisimilarity).

As the intersection of negated channels in the rule (chan) ensures that values of Cπ
yield a model that induces the same subtyping relation as the initial one, so does for
CDuce the intersection of negated arrows in the rule (abstr): the interpretation defined
by (4) where values are closed terms generated by v ::= n | μ f i∈I (σi→→→τi)(x).e | (v,v)
and types are CDuce types, enjoys the same properties. Therefore, we can again use
the pattern semantics of Section 2.2 to define the call-by-value operational semantics of
CDuce (we omit the straightforward context rules that can be found in [11]).

v1v2 −→ e[v1/ f ;v2/x] if v1 = μ f τ(x).e
match v with p1⇒e1|p2⇒e2 −→ e1[v/p1] if v/p1 �= Ω
match v with p1⇒e1|p2⇒e2 −→ e2[v/p2] if v/p1 = Ω,v/p2 �= Ω

The calculus satisfies the subject reduction property [2].

4 Roadmap to the Encoding

In this section we discuss the main difficulties encountered in the definition of an en-
coding of CDuce into Cπ. It lists some failed attempts which will clarify the reasons
behind the successful attempt.

4.1 The Milner-Turner Encoding

Since our encoding involves languages with subtyping, the first approach we tried was
to adapt the Milner-Turner (MT) encoding of the call-by-value typed λ-calculus with
subtyping into the typed π-calculus with subtyping, as presented in [17]. The translation
of arrow types presented there is:

(|σ→→→ τ|) = ch–((|σ|)××× ch–((|τ|))) .

The encoding of λ-terms, decorated by their minimum types, is:

(|xτ|)Γ,x:τ
c = c(x)

(|λxσ.eτ|)Γ
c = (ν a(|σ|)×××ch–((|τ|)))(c(a) ‖ !(a(x,b).(|eτ|)Γ,x:σ

b ))
(|eσ→→→τ

1 eρ
2|)Γ

c = (ν a(|σ|)×××ch–((|τ|)))(ν b(|ρ|))((|eσ→→→τ
1 |)Γ

a ‖ a(w).((|eρ
2 |)Γ

b ‖ b(h).w(h,c)))

The encoding of an expression e is parametrised by a type environment Γ such that
Γ , e : τ and by a channel c(|τ|) on which the value of the expression is returned to
the environment. A function is represented by a channel (the “name” of the function)
which can be called by sending the input value and a channel on which the output value
should be returned. These two parameters are used by a replicated process (the “body”
of the function) which returns the output value upon termination. In the encoding of the
application, the encoding of the function is called on the encoding of the argument, and
the returned value is returned as the value of the whole expression. This encoding bears
a strong resemblance with the continuation passing style transform. In this sense, the
return channel of an expression could be seen as the address of the continuation.
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Since we translate only well-typed terms, in the case of the application we must have
ρ≤ σ. The encoding of the application (in particular, the w(h,c) subterm) is well-typed
only if this implies (|ρ|) ≤ (|σ|). This holds true in the simply typed λ-calculus with
subtyping, but fails as soon as we add intersection types. In that case, the translation
of the types does not preserve the identity of types: in CDuce, we have seen that the
identity (5) holds (i.e., (σ→→→ τ)∧∧∧ (σ→→→ τ′) = σ→→→ τ∧∧∧ τ′), while the same does not hold
on the encodings of the types at issue since, in general, it is not true that

ch–(s××× ch–(t))∧∧∧ ch–(s××× ch–(t ′))≤ ch–(s××× ch–(t∧∧∧ t ′)) .

Using this observation we can indeed show that the MT encoding maps a well-typed
CDuce expression into an ill-typed Cπ process.

4.2 Output-Driven Overloading

In order to give an operational intuition of why the MT encoding does not work, recall
that intersections of arrow types are commonly assimilated to the types of overloaded
functions. In CDuce, the identity (σ→→→ τ)∧∧∧ (σ→→→ τ′) = σ→→→ τ∧∧∧ τ′ is justified because
overloaded functions can perform a type-case only on the type of the input. Therefore,
if on the same input a function returns values of type τ and values of type τ′ it must
return only values that have both types.

In Cπ, however, a process that encodes a function receives in input also the return
channel. In principle such process could perform a type-case on this extra piece of
information and then execute different computations according to whether the expected
result is of type τ or τ′. Such “output-driven” overloaded function can, on the same
input, return a value of type τ and a different value of type τ′ (and not in τ). This is a
function that is in (|(σ→→→ τ)∧∧∧ (σ→→→ τ′)|) and not in (|σ→→→ τ∧∧∧ τ′|), therefore we expect
that (|σ→→→ τ∧∧∧ τ′|) � (|(σ→→→ τ)∧∧∧ (σ→→→ τ′)|) which is indeed the case.

4.3 The Distributive Law

At a first analysis, it may seem that the problem is the subtyping relation of Cπ. We
may be tempted to change it by adding the following inequation:

ch–(t1∧∧∧ t2) ≤ ch–(t1)∨∨∨ ch–(t2) .

Since the converse inequality already holds (as seen in Section 2), we would obtain a
“contravariant” distributive law of the channel constructor over the intersection. A simi-
lar distributive law is used by Hennessy and Riely in [12] to define the intersection type.
As explained in [6], the above inequation is not justified in a calculus endowed with dy-
namic type-case. It is also not clear at first sight whether introducing the inequation is at
all possible using a semantic approach. In any case, this new subtyping relation would
not make the translation work either as it would introduce too many equations in the
translation. For example, being int∧∧∧bool= 0, we would get

ch–(0× ch–(int∨∨∨bool)) ≤ ch–(int× ch–(bool))∨∨∨ ch–(bool× ch–(int)).

The type on the left is the encoding of 0→→→ int∨∨∨bool and the other type is the encoding
of (int→→→ bool)∨∨∨(bool→→→ int). This subtyping gives a problem already for the iden-
tity function, which has type 0→→→ int∨∨∨bool but not (int→→→ bool)∨∨∨ (bool→→→ int).
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4.4 The Negation Translation

Intuitively, to find an encoding that respects type equality, we need that, when encoding
the arrow type, the operator that encodes the output type distributes over the inter-
section, while the operator that encodes the input type should not distribute over the
intersection. One possible encoding that satisfies this requirement is the following:

(|σ→→→ τ|) = ch–((|σ|)×××¬¬¬(|τ|)) .
Indeed the negation is a contravariant constructor that distributes over the intersection.
However it was not clear to us what operational interpretation we could attach to this
translation. Under this translation of the types, the MT translation of the λ-terms would
not be well-typed.

This however was the sparkle that brought us to our solution: (i) We want to preserve
the naturalness of the MT encoding, that is, to encode functions calls by RPCs that send
along with the argument a channel on which the call must return the result; thus the
type of the second argument of the call (i.e., the one that encodes the output type τ)
must allow for messages of type ch–((|τ|)). (ii) We also want the type of this argument to
distribute over intersections, in order to respect the subtyping relation; the use of nega-
tion, ¬¬¬(|τ|), seems to help in this direction. Finally, (iii) we want this second argument
to be contravariant (since it is under a ch–(), it will then respect the covariance of the
output type it is meant to encode); but the joint use of two contravariant constructors,
ch–() and ¬¬¬, would make it covariant, thus we may need to add a further negation to
make it contravariant. All this yields, for the encoding of σ→→→ τ, a second argument of
type ¬¬¬(ch–(¬¬¬(|τ|))), which is almost what we are looking for. We say “almost” since it
still does not satisfy (i) insofar as it is not a supertype of ch–((|τ|)); as we will explain
in Section 5.2 one point is still missing from it: ch–(1) — to verify it, simply compute
the difference ch–((|τ|)) \¬¬¬ch–(¬¬¬(|τ|)). So we add it, obtaining for the second argument
the following encoding¬¬¬ch–(¬¬¬(|τ|))∨∨∨ch–(1). This idea is carried out in details and gen-
eralised in the following section.

5 The Encoding

We propose a modification of the Milner-Turner encoding that respects type equality,
and it is very close to the original translation.

5.1 The λ-Channel Constructor

The encoding of the types we propose is parametric with respect to a constructor of Cπ
types that we call “λ-channel” type. This notion is designed to make the translation of
types to respect the type equality (unlike the Milner-Turner and distributive approach),
and to make the translation of terms to make sense (unlike the negation approach).

Definition 5.1. A λ-channel (noted, chλ(−)) is a unary constructor of Cπ types s.t.:
(1.) ch–(t)≤ chλ(t); (2.) chλ(s∧∧∧ t) = chλ(s)∨∨∨ chλ(t); (3.) s≤ t ⇐⇒ chλ(t)≤ chλ(s).

Observe that the three conditions of the definition above correspond to the requirements
(i-iii) we outlined at the end of the previous section. Therefore, Condition (1) is neces-
sary for a meaningful translation of terms, while Conditions (2) and (3) are necessary
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for respecting the identity of types. Using λ-channel types we can now define a mapping
of CDuce types to Cπ-calculus types that respects type equality.

Definition 5.2. The interpretation function {{−}} : TCDuce →TCπ is defined as follows
{{b}} = b {{0}} = 0 {{1}} = 1 {{¬¬¬τ}} = ¬¬¬{{τ}}
{{σ∨∨∨τ}} = {{σ}}∨∨∨{{τ}} {{σ∧∧∧τ}} = {{σ}}∧∧∧{{τ}}
{{σ×××τ}} = {{σ}}×××{{τ}} {{σ→→→ τ}} = ch–({{σ}}×××chλ({{τ}})).

Theorem 5.3. Let σ and τ be CDuce types. Then σ≤ τ ⇐⇒ {{σ}}≤ {{τ}}.

5.2 Incarnations of λ-Channels and Their Intuition

Possible choices for chλ(t) are of the form chλ0(t)∧∧∧ϕ where chλ0(t) =¬¬¬ch–(¬¬¬t)∨∨∨ch–(1)
and ϕ is a constant type such that ch–(0)≤ ϕ.

As the Condition (1) in Definition 5.1 clearly states, the λ-channel chλ(t) essentially
is ch–(t) plus some extra stuff, some “garbage”, that makes the other two conditions
—hence type identity preservation— hold. The extra stuff that is added to ch–(t) is
basically given by chλ0(t). To understand the precise role played by this garbage, it is
interesting to consider the following properties:

a. chλ0(0) = 1
b. chλ0(1) =¬¬¬ch–(0)∨∨∨ ch–(1)
c. �(chλ0(t)∧∧∧¬¬¬ch–(t))∧∧∧ ch–(0)� = {cs | t �≤ s & ¬¬¬t �≤ s}∪{c1}.

The first two properties say that chλ0(−) adds as garbage at most (point (a.)) everything
and at least (point (b.)) all non-channel types plus the channel which outputs everything.
In order to exactly determine which channels chλ0(t) adds to to ch–(t) let us take out
all ch–(t) and consider just the channels that remained: this is exactly what (chλ0(t)∧∧∧
¬¬¬ch–(t))∧∧∧ ch–(0) does. Point (c.) states that these are all channels that can send values
both inside and outside t. That is, these are all the channels for which it is not possible
to predict the result of a test that checks whether the messages they transport are of
type t.

This last observation is the key to understand why the complicated definition of
chλ0(−) is necessary. We have observed that the MT translation does not work because
it allows a “output-driven” overloading whereby a function can have different behav-
iours for different expected types of the result. The more general channel type chλ0(−)
allows (potentially, in the types) the caller to “confuse” such output-driven functions,
by sending “garbage” reply channels. Although in practice, encodings don’t do that, the
possibility of a output-driven function is ruled out also at the level of the types. It is like
the presence of the Police in Utopia: everybody behaves well in Utopia, and the Police
never works. But the presence of the Police is the visible representation of the fact the
everybody behaves well.

To put it otherwise, if we take a channel that has type chλ(s)∨∨∨chλ(t), it is impossible
to deduce whether it is only of type chλ(s) or only of type chλ(t). Even if it can transport
all messages of type, say, t, it could be because the channel was in the garbage gener-
ated by chλ(s). So λ-channels introduce some latent noise that makes it impossible to
determine which output type they encode.



322 G. Castagna, M. Dezani-Ciancaglini, and D. Varacca

Although the constructor is parametric on a type ϕ, non-channel types play no active
role in the encoding. Therefore it is reasonable (and it makes the encoding more under-
standable) to minimise ϕ (that is, ϕ = ch–(0)) so that �chλ(t)� only contains channels. In
particular, this choice implies that chλ(0) = ch–(0) (all channels), chλ(1) = ch–(1) (just
the channel which outputs everything). All the development, however, is independent
from this choice.

5.3 Encoding of the Terms

We describe here the mapping of CDuce terms to Cπ-calculus terms. What we translate
are in fact typing derivations. To simplify the notation, we write eτ assuming that τ is the
type of e in the last step of the derivation. We use a similar convention for the immediate
sub-expressions of e which are in the premises of the last applied rule. The translation
is parametrised by a “continuation channel” α of type ch–({{τ}}). For readability we
decorate the channels with their types only when we restrict them and in rule (fvar). We
also adopt the CDuce’s convention to write x:τ for the pattern x∧∧∧τ. The translation also
requires a straightforward translation of the patterns (it just encodes the types occurring
in them) whose details are omitted.

Definition 5.4. The translation of the expression eτ on a channel α is defined by cases
on the last applied typing rule:

(const) {{nbn}}Γ
α = α(n)

(var) {{xτ}}Γ,x:τ
α = α(x)

(fvar) {{ f τ}}Γ
α = α( f i∈I({{σi}}×××chλ({{τi}}))) (where τ = i∈I(σi→→→ τi))

(pair) {{(eσ1
1 ,e

σ2
2 )τ}}Γ

α = (ν a{{σ1}})(ν b{{σ2}})({{eσ1
1 }}Γ

a ‖ a(w:{{σ1}}).({{eσ2
2 }}Γ

b ‖
b(h:{{σ2}}).α(w,h))) (where τ = σ1×××σ2)

(appl) {{(eσ→→→τ
1 eσ

2 )τ}}Γ
α =(ν a{{σ→→→τ}})(ν b{{σ}})({{eσ→→→τ

1 }}Γ
a ‖ a(w:{{σ→→→ τ}}).({{eσ

2}}Γ
b ‖

b(h:{{σ}}).w(h,α)))

(subs) {{(eσ)τ}}Γ
α = (ν a{{σ}})({{eσ}}Γ

a ‖ a(w:{{σ}}).α(w)) (where σ≤ τ)

(match) {{(match eσ with p1⇒eτ1
1 |p2⇒eτ2

2 )τ}}Γ
α =

(ν a{{σ}})(ν b({{σ1}}×××ch–({{τ1}}))∨∨∨({{σ2}}×××ch–({{τ2}})))((P1 + P2) ‖ Q)
where P1 = b({{p1}},d:ch–({{τ1}})).{{eτ1

1 }}
Γ,σ1/p1
d ,

P2 = b({{p2∧∧∧¬¬¬��� p1���}},d:ch–({{τ2}})).{{eτ2
2 }}

Γ,σ2/p2

d ,

Q = {{eσ}}Γ
a ‖ a(h:{{σ}}).b(h,α)

σ1 = σ∧∧∧���p1���, σ2 = σ∧∧∧¬¬¬��� p1���, τ = {i|σi �
0} τi

(abstr) {{(μ f i∈I(σi→→→τi)(x).e)τ}}Γ
α = (ν f i∈I({{σi}}×××chλ({{τi}})))(α( f ) ‖ body( f ))

where body( f ) = !(∑i∈I f (x:{{σi}},b:ch–({{τi}})).{{eτi}}Γ,x:σi
b

+ f (x: i∈I{{σi}},b: i∈I(chλ({{τi}})∧∧∧¬¬¬ch–({{τi}})).0)
τ = i∈I(σi→→→ τi)∧∧∧ j∈J¬¬¬(σ′j →→→ τ′j).

In rule (fvar), we assume that every μ-abstracted variable f has a corresponding channel
constant f t for every suitable Cπ type t. This allows the encoding to be parametric only
in the Γ environment, and not in the Δ one.
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In a match the expressions e1 and e2 play the role of two functions to be cho-
sen in alternative according to the type of the argument e. Therefore we encode the
match with a patterned sum of the encodings of e1 and e2 in parallel with the encoding
of e.

The translation of a functional term is very similar to the original MT translation. To
deal with overloading, the body of the function features a patterned choice. This choice
includes all different behaviours that the function can produce on different inputs, and
the special sub-term f (x: i∈I{{σi}},b: i∈I(chλ({{τi}})∧∧∧¬¬¬ch–({{τi}})).0, which we call
the functional garbage. The role of this sub-term is to obtain well-typed terms. How-
ever we will see that, within the context of translation of CDuce terms, the functional
garbage choice is never taken. Indeed, carrying on with our analogy, this functional
garbage corresponds to the prison of Utopia: it is there to capture misbehaving terms,
even if we all know that there isn’t any.

6 Correctness of the Encoding

We start by stating that the translation produces well-typed terms.

Theorem 6.1. If Δ;Γ , e : τ, then {{Γ}} , {{eτ}}Γ
c{{τ}}

and {{Γ}},x : ch–({{τ}}), {{eτ}}Γ
x ,

where {{Γ}}= {y : {{σ}} | y : σ ∈ Γ}.

In the following we convene that when we write {{e}}Γ
c , then there are τ and Δ such that

Δ;Γ , e : τ and ch–({{τ}}) is the type of c.
A first observation is that all reductions out of the encoding of a CDuce expres-

sion are deterministic (since patterns in sums are mutually exclusive) and never use the
functional garbage in the body of functions. A functional redex is a redex of the shape
body( f ) ‖ f (v,c). A reduction is safe if it is deterministic and each functional redex is
reduced by choosing an alternative in body( f ) different from the functional garbage.
We denote safe reductions by −→s: as usual −→∗

s is the reflexive and transitive closure
of −→s.

Lemma 6.2. All reductions starting from {{e}}∅
c where e is an arbitrary CDuce expres-

sion are safe.

In order to state the correctness of the encoding, it is crucial to understand how CDuce
values are mapped to Cπ processes. As it is clear from the encoding, a functional value
is mapped into the output of a private channel name in parallel with the encoding of the
function body. We can then say that the Cπ value corresponding to a functional value
is a channel name. The encoding of a pair of CDuce values reduces to a process which
outputs the pair of the corresponding Cπ values in parallel with the function bodies of
all functions which occur in the two values.

To formalise the above we will assume that all function names in the current value
are distinct and fixed, so that we cannot rename them. We define two mappings, one
from CDuce values to Cπ values and one from CDuce values to sets of channel
names.
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Definition 6.3

1. The mapping cpv(−) is defined by induction on CDuce values as follows:

– cpv(n) = n;
– cpv(μ f i∈I(σi→→→τi)(x).e) = f i∈I ({{σi}}×××chλ({{τi}}));
– cpv((v1,v2)) = (cpv(v1),cpv(v2)).

2. The mapping func(−) is defined by induction on CDuce values as follows:

– func(n) = ∅;
– func(μ f i∈I(σi→→→τi)(x).e) = { f i∈I({{σi}}×××chλ({{τi}}))};
– func((v1,v2)) = func(v1)∪ func(v2).

Let body( f ) be defined as in the last clause of Definition 5.4, then the above mappings
can express the normal forms of processes encoding values:

Lemma 6.4. {{v}}∅
c −→∗

s (ν func(v))(c(cpv(v))‖ f∈func(v)body( f )).

More generally, one would like to have that if e is a well-typed CDuce expression
and e−→∗ v, then {{e}}∅

c −→∗
s (ν func(v))(c(cpv(v))‖ f∈func(v)body( f )). Unfortunately,

the corresponding result does not even hold for the MT encoding of λ-calculus into
π-calculus [15], a fortiori nor does for our encoding.

Our encoding of CDuce into Cπ being essentially an extension of the MT encoding
has luckily no more problems than the original one, so we can show similar soundness
results. To formulate these results we need to define for Cπ processes a standard notion
of typed barbed congruence with respect to an environment Γ (Γ � P ∼= Q), see [17].
The main theorem of this section states that if a CDuce expression reduces to a value,
then its encoding reduces to a process which is barbed congruent to the normal form of
the encoding of that value, and vice versa if the evaluation of a CDuce expression does
not terminate, then the evaluation of its encoding does not terminate either.

Theorem 6.5 (Correctness). If e −→∗ v, then {{e}}∅
c −→∗

s P for some P such that
∅� P∼= (ν func(v))(c(cpv(v))‖ f∈func(v)body( f )). If e diverges, then so does {{e}}∅

c .

From this, and from compositionality, it is easy to obtain soundness. Given two CDuce
terms Δ;Γ , e : τ and Δ;Γ , e′ : τ we denote by Δ;Γ� e≈ e′ the standard Morris-style
observational congruence (as defined, for instance, in [17] pag. 478).

Corollary 6.6 (Soundness). If Δ;Γ, e : τ and Δ;Γ , e′ : τ and {{Γ}}�{{e}}Γ
c
∼= {{e′}}Γ

c ,
then Δ;Γ� e≈ e′.

Notice that completeness fails for our encoding, for the same reason as it fails for the
original MT encoding.

7 Conclusion

In this paper we presented a localised version of the Cπ-calculus which allows for fully
recursive types, on top of the already rich type structure of Cπ. We then showed how
this can be used to type-faithfully encode CDuce.
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If we merely stop at the technical result, then the interest of this work is quite limited:
sure, it shows the correspondence between overloading and guarded choices; sure, this
can be seen as the work that paves the way toward a concrete implementation of a
concurrent programming language based on CDuce, similarly to the way the JoCaml
language was derived from OCaml and Join. But again this would look as some solid,
technically impeccable, and extremely boring achievement.

However, we think that the added value of this work lies more in the lessons we
learnt and the techniques we developed, than directly in its result.

Foremost, we learnt that the process that encodes a function has much more power
than the function it encodes. This is because it has more elements to work on, both
the argument and the return channel, and it is thus characterised by a wider spectrum
of possible choices. This looks bluntly obvious, worthy of Monsieur De La Palice’s
troops, but note that this aspect was totally hidden in all previous encodings. Indeed
this is emphasised only by the presence of linguistic branching constructs for which
the type system must cover all alternatives. This is the case of pattern matching, where
the pattern exhaustiveness requirement forces types to take into account all possible
combinations.

This situation requires the introduction of some noise at the level of the types in
order to compensate for the asymmetry between the caller of the function (the service
client) and the executor of the function (the service server). This technique could be
seen as a security policy that the client implements at type level to defend itself from
possible misbehaviour of the server. The client performs a type obfuscation: in this
way it reserves for itself the possibility to send rogue arguments and so it threatens the
server against misbehaviour. We hope that these techniques of type obfuscation could
be generalised to various security scenarios and we aim to explore them in the future.

As noted, the Milner-Turner encoding bears strong resemblance with the continu-
ation passing style (CPS) techniques used in functional programming. All the above
observations can be indeed carried over to such framework. Using these intuitions, we
plan to study CPS transforms for CDuce. This should have a very important practical
impact: CDuce (we mean, the implemented language) was recently extended to deal
with Web-services and active Web pages, and we consider CPS as the key technique to
implement stateless Web sessions on the top of them.

The other important aspect of this work is that it constitutes an independent, though
indirect, confirmation that Cπ yields the right equational theory of union and inter-
section types for the π-calculus. Pierce and Sangiorgi’s subtyping for the π-calculus,
though very elegant, is structurally very poor: it essentially amounts to compare the
levels of nesting of channel constructors with the same polarity. In order to obtain a
much richer and expressive subtyping relation, one can resort to union and intersection
types. However, the problem arises on which equational theory to use for these types.
Cπ gives a precise and semantically grounded answer for it (and for negation types): its
semantic justification for the equational theory, and its correspondence with set-theory
constitute a first strong justification for it.

The equational theory of Cπ is partially justified in practice, since works such as
the PiDuce project carried out at the University of Bologna [4] and the language XPi
developed at the University of Marseille [1], feature restrictions of the Cπ type system
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that fit XML data manipulation. The present work is another, more theoretical, confir-
mation of the validity of the Cπ theory. If we admit that the Milner-Turner encoding is
very natural, then we see how perfectly the laws of Cπ fit the MT encoding, stressing
the asymmetry of the roles of client and server, and pushing the emergence of the type
obfuscation technique. This is what we consider the most important achievement of this
work.
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Abstract. We consider abstraction in probabilistic process algebra. The process
algebra can be employed for specifying processes that exhibit both probabilis-
tic and non-deterministic choices in their behaviour. We give a set of axioms
that completely axiomatises the branching bisimulation for the strictly alternat-
ing probabilistic graph model. In addition, several recursive verification rules are
identified, allowing us to remove redundant internal activity.

Using the axioms and the verification rules, we have successfully conducted a
verification of the Concurrent Alternating Bit Protocol. This is a simple commu-
nication protocol, slightly more ‘sophisticated’ than the well-known Alternating
Bit Protocol. As channels are lossy, sending continuous streams of data through
the channels is a method to overcome this possible loss of data. This instigates
a considerable level of parallelism (parallel activities) and as such requires more
complex techniques for proving the protocol correct. Using our process algebra
we show that after abstraction of internal activity, the protocol behaves as a buffer.

1 Introduction

Being able to specify the probabilistic behaviour of a system, enables a designer to
analyse not only the functional aspects of his system, but also non-functional aspects of
his system, such as performance. Examples of inherently probabilistic systems are data-
link protocols, where decisions in the protocol can be based on a probabilistic process,
and fluctuations in bandwidth and noise (which can be modelled using probabilities)
affect the quality of underlying communications channels. Notice that a probabilistic
choice is inherently different from a non-deterministic choice. The latter is still required
in the specification of systems if, e.g. it is the environment that determines the choice,
or to model interleaving [4,9].

The introduction of abstraction into a framework that already includes probabilities
and non-determinism, however, remains challenging. Recently, an equivalence relation
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called branching bisimulation is described in [2]. Although the relation is explained
using alternative mathematical characterisations, its intricacies remain rather tricky,
which is why we provide a process algebraic characterisation of the relation in this
paper.

Process algebras provide the means for studying behaviours of processes by inves-
tigating the ways in which these can be constructed from basic operators and con-
stants [8,15]. The interplay between the operators, constants and processes is typically
described by axioms. Often, this axiomatic perspective is preferable over more opera-
tional perspectives, since the latter one may be highly dependent on the model and may
involve some complex notions such as equivalences and basic composition methods.
Branching bisimulation for probabilistic systems is a prime example of such a complex
operational perspective, which requires in-depth knowledge of probability theory and
complex notions such as schedulers.

Even though branching bisimulation has received much attention in the non-proba-
bilistic setting, it remains little-studied in the probabilistic setting. Branching and weak
bisimulation are compared in detail in [12], and advantages of branching bisimulation
are pointed out. We focus our attention to branching bisimulation in the alternating
model [13] and propose a complete axiomatisation for it, together with a set of sound
verification rules. The completeness result is for closed (recursion free) expressions.
The verification rules are sound with respect to the branching bisimulation and can be
used to remove inert τ transitions and loops. A subset of the proposed rules already suf-
fices to reduce the behaviour of complex protocols (such as the Concurrent Alternating
Bit Protocol [14]) with respect to branching bisimulation.

The problem of abstraction in probabilistic process algebra has been addressed by
several authors. Bandini and Segala [10] provide complete axiomatisations for recursion
free processes for the weak bisimulation equivalences for the two models for proba-
bilistic systems mainly in use, viz. the alternating and non-alternating model. Recently,
in [11] an extension of the recursion free complete axiomatisation has been defined
over guarded processes for the non-alternating model. However, the language we use
is more expressive and (if a convex combination is not included) the verification rules
we propose cover wider range of branching (weak) equivalent processes. Note here that
branching bisimulation is a finer equivalence than weak bisimulation, therefore, our
rules are sound with respect to the weak bisimulation as defined in [16].

This paper is structured as follows. Section 2 provides a brief overview of branch-
ing bisimulation for probabilistic systems. In Section 3 we introduce the process al-
gebra pBPAτ and discuss its axiomatisation. Section 4 describes several additional
verification rules, and in Section 5 we employ our process algebra and the rules in
a verification of the Concurrent Alternating Bit Protocol [14]. Section 6 ends with
conclusions.

2 Preliminaries

We briefly introduce the semantic model and branching bisimulation. For an in-depth
introduction, we refer to [2]. Probabilistic systems are modelled using finite proba-
bilistic graphs, henceforth simply called graphs. Graphs consist of two types of nodes:
probabilistic nodes and non-deterministic nodes, which are connected by two types of
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directed edges, viz. probabilistic transitions and non-deterministic transitions. The lat-
ter are labelled with actions from a set Act or with the unobservable event, τ (τ �∈ Act).
We assume the existence of a different special terminal node nil, which is not part of
the set of nodes of any graph; nil is used to indicate successful termination.

Definition 1. A graph is a 7-tuple 〈N,P, r,Act,→,�, pr〉, in which N is a non-empty
finite set of non-deterministic nodes; P is a non-empty finite set of probabilistic nodes.
We write S for P ∪ N , Snil for the set S ∪ {nil}, likewise Pnil. The node r ∈ P is
the initial node, also called root; Act is a finite set of action labels; we write Actτ for
Act∪{τ}. The relation→⊆ N ×Actτ ×Pnil is the non-deterministic transition relation
and �⊆ P ×N is a probabilistic transition relation; pr: �→ (0, 1] is a total function
for which

∑
n∈N pr(p, n) = 1 for all p ∈ P .

For the remainder of this section, we assume a graph x = 〈N,P, rx,Act,→,�, pr〉.
We let a, b, c . . . range over Actτ , s, t, n . . . over Snil and M, M′ over the subsets of
Snil. If t ∈ Snil, [t]R denotes the equivalence class of t for some equivalence relation
R defined on Snil. The set of all graphs is denoted G, and x, y, . . . range over G. As
usual, n

a−→ p abbreviates (n, a, p) ∈→ and p � n abbreviates (p, n) ∈�. If t ∈ N
such that t does not have any outgoing edge we write t �−→. A path starting in a node
s0 ∈ Snil is an alternating finite sequence c ≡ s0 l1 . . . ln sn, or an alternating infinite
sequence c ≡ s0 l1 s1 . . . of nodes si ∈ Snil and labels li ∈ Actτ ∪ (0, 1], satisfying:

1. for all nodes sj ∈ N , we require sj
lj+1−→ sj+1, and

2. for all nodes sj ∈ P , we require sj � sj+1 and lj+1 = pr(sj , sj+1).

We write first(c) = s0, and, if c is a finite path, we write last(c) for the last node of
c. The set of all nodes occurring in c is denoted nodes(c). By trace(c) we denote the
sequence of action labels from the set Actτ that occur in c. P(c) is the probability of a
finite path c induced by function pr in the obvious way. The set of all paths starting in
s0 is denoted Path(s0) and the set of finite paths starting in s0 is denoted Pathf (s0). A
path c is a maximal path iff c is a finite path with last(c) = nil or last(c) �−→, or c is an
infinite path. The set of maximal paths starting in s0 is denoted Pathm(s0).

Definition 2. A scheduler of paths starting in a node s0 is a partial function σ:Pathf (s0)
�→ (→ ∪{⊥}) satisfying:

1. σ(c) is defined for all c ∈ Pathf (s0) for which last(c) ∈ N . Then σ(c) = ⊥ or
σ(c) = last(c) a−→ t for some a and t.

2. If last(c) ∈ Pnil and σ(c) is defined, then σ(c) = ⊥.
3. For all c ∈ Pathm(s0) ∩ Pathf (s0) we have σ(c) = ⊥.

Sched(s0) denotes the set of all schedulers of paths starting in node s0. For σ ∈
Sched(s0), we denote the set of scheduled paths starting in s0 by SPath(s0, σ). The
probability P(·) induces a probability space associated to σ ∈ Sched(s0) on the set of
σ-scheduled paths starting in s0. Furthermore, let Bσ(s a=⇒M M′) be the set of all
σ-scheduled paths that, starting in s, traverse through a set of nodesM using τ actions
only, and reach a node in M′ by executing action a:
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Bσ(s a=⇒M M′) = {c ∈ SPath(s, σ) | σ(c) = ⊥ and either
c ≡ s =⇒M · a−→ s′, s′ ∈ M′, or
c ≡ s =⇒M ·� s′, s′ ∈M′, a = τ, or
c ≡ s, a = τ,M = M′},

where c ≡ s =⇒M · a−→ s′ denotes that ∃c′ : c ≡ c′as′, first(c′) = s, last(c′) a−→ s′,
trace(c′) = τ∗ and nodes(c′) ⊆M, and similar for c ≡ s =⇒M ·� s′

The probability over Bσ(s a=⇒M M′) is given by P(Bσ(s a=⇒M M′)), and, since
the set of probabilities is ordered, a maximal probability exists:

Pmax(s
a=⇒M M′) def= max

σ∈Sched(s)
P(Bσ(s a=⇒M M′))

Note that even though the maximal probability is a unique number, there can be more
than one scheduler inducing this maximal probability.

Definition 3. Let x and y be two graphs, and denote the set of their nodes by S. A
relationR on Snil is a branching bisimulation relation iff the following three conditions
are met for all nodes p, q ∈ Snil satisfying pRq:

1. Pmax(p
a=⇒[p]R M′) = Pmax(q

a=⇒[q]R M′) for all a ∈ Act andM′ ∈ Snil/R.

2. Pmax(p
τ=⇒[p]R M′) = Pmax(q

τ=⇒[q]R M′) for allM′ ∈ Snil/R \ {[p]R}.
3. Pmax(p

τ=⇒[p]R {nil}) = Pmax(q
τ=⇒[q]R {nil}).

A branching bisimulation relationR is a rooted branching bisimulation relation iff the
following two additional conditions are met:

4. For allM ∈ Snil/R, we require
∑

n∈M pr(rx, n) =
∑

n∈M pr(ry, n).
5. If rx � nx and nx

a−→ px, then also ry � ny and ny
a−→ py and nxRny and

pxRpy for some ny and py; vice versa for y.

x and y are rooted branching bisimilar, x ↔ rb y, iff there is a rooted branching bisim-
ulationR such that rxRry.

Note that the way Bσ(s a=⇒M M′) is defined demonstrates the idea of branching
bisimulation to preserve the branching structure in all intermediate states that are passed
through, even if silent moves are involved [12]. The third condition in Definition 3
distinguishes successful (nil) from unsuccessful (t �−→) terminal nodes.

3 Probabilistic Process Algebra

The equivalence relation defined in the previous section is difficult to understand: it is
rooted in probability theory and relies on notions such as schedulers. The alternative
characterisations that are studied in [2] provide more insight into the properties of the
equivalence relation, but these characterisations do not provide insights into the way
the equivalence relation can be used in calculations. In other papers branching and

weak bisimulations are defined by means of ”weak” (
τ∗

=⇒) transitions (from a node to
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a distribution) e.g. [17,18], but again additional knowledge and good understanding of
the model are required.

To overcome this problem, we define the probabilistic process algebra pBPAτ which
gives a complete axiomatisation (for closed processes) of branching bisimulation. In ad-
dition, we give several rules that capture branching bisimulation on finite-state graphs.

3.1 pBPAτ

pBPAτ extends a subtheory of ACP, called BPAτ [8] with the means to reason about
probabilistic systems and abstraction. Probabilistic behaviours of processes are cap-
tured by means of a probabilistic choice operator. This binary operator models a choice
between two processes, based on a probability distribution. The implications of adding
this operator to the theory of BPA are studied in detail in [6,5].

Let Act again denote a set of (observable) atomic actions and τ the unobservable
action (τ /∈ Act). The syntax for pBPAτ is given by the following grammar:

S ::= δ | τ | a | S · S | S + S | S �πS | τI(S) | x

for a∈Act and π∈(0, 1), I ⊆ Act and x ∈ V , where V is a set of recursion variables; p,
q, r range over the set of all (process) expressions of pBPAτ . A recursive specification
is a set of equations of the form x = sx(V ), where x is a variable from V and s is
a possibly open pBPAτ expression containing variables from V . We consider guarded
recursive specifications only (see e.g. [8] for definition). By means of guarded recursive
specifications we are able to define infinite processes. pBPAτ expressions that do not
contain any variables are called closed expressions. Throughout this paper, we assume
the following binding strengths: · > + > τI > �, i.e. · binds strongest.

Each pBPAτ expression can be interpreted as a graph. We refrain from giving a
formal interpretation of these expressions (it can be found in [3,5]), but, instead we give
an informal explanation of the intended meaning of the constants and operators. Note
that a closed expression determines a finite graph in which all paths are finite.

The constant δ represents unsuccessful termination with probability 1. An expres-
sion a performs, with probability 1, an observable activity that is modelled by action a
and terminates successfully; the expression τ on the other hand, performs an unobserv-
able activity with probability 1. Figure 1 depicts the graphs that are associated to the
constants δ and τ , and the atomic actions a.

The binary operator · models sequential composition; the process p · q intuitively
behaves as process p, and, upon successful termination, behaves as process q. This is

1

nil

a

1

nil

τ

1

Fig. 1. Graph representation of δ, a (a ∈ Act) and τ
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also reflected in the graph p · q that belongs to the process p · q: it is represented by
the graph with the root of p as its root and for which all non-deterministic transitions
n

a−→ nil in p are replaced by n
a−→ rq, where rq is the root node of q.

Alternative composition (commonly referred to as non-deterministic choice) is mod-
elled by +; process p+ q behaves either as process p or process q, dependent on which
process performs the first action. The graph interpretation of the alternative composi-
tion of two processes, process p, given by (a · p0) �1/2(b · p1) and process q, given by
(a · q0) �3/4(c · q1) is illustrated in Fig. 2.

1
8

p0 p1 q0 q1 p0 q1 p1 q0q0

3
4

1
4

a c

1
2

1
2

a b a a a ac c b b

3
8

3
8 1

8
yields+

Fig. 2. Example for alternative composition of two graphs

The probabilistic extension lies in the addition of the binary operator �π. A prob-
abilistic process p �πq behaves as process p with probability π and as process q with
probability 1 − π. The choice between p and q in process p �πq is resolved differently
from the non-deterministic choice: it is assumed that this type of choice is made before
the first action occurs, but, the exact moment is not known. That is, there is an inter-
nal behaviour of the process which determines the outcome of the choice p �πq which
takes place before p or q performs any action. The outcome of this choice cannot be
influenced by the environment, it can only be observed. To illustrate, the graph inter-
pretations of a probabilistic choice of 1/2 between the processes p and q of Fig. 2 is
depicted in Fig. 3.
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3
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1
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cb

3
8

1
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Fig. 3. Example for probabilistic choice of two graphs

The unary operator τI can be used to hide observable actions that are part of the set
of actions I , i.e. any action a ∈ I , occurring in a process p, is mapped onto τ in the
process τI(p). Given a graph p for the pBPAτ process p, the graph for τI(p) is obtained
by renaming all actions a ∈ I that appear on the non-deterministic transitions into τ .
The complete proof of the following theorem is given in [1].

Theorem 1. Rooted branching bisimulation is a congruence for the operators in pBPAτ.
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3.2 Axiomatising Rooted Branching Bisimulation

An axiomatic perspective on the operators, their interplay, and the equivalences between
pBPAτ expressions are formalised by a set of axioms (see Table 1), which completely
axiomatises rooted branching bisimulation as defined in Section 2.

Table 1. Axioms of pBPAτ . a ∈ Act ∪ {δ}, I ⊆ Act, w, x, y, z ∈ V

A1 x + y = y + x PrAC1 x  πy = y  1−πx
A2 (x + y) + z = x + (y + z) PrAC2 x  π(y  ρz) = (x  π

π+ρ−πρ
y)  π+ρ−πρz

AA3 a + a = a PrAC3 x  πx = x
A4 (x + y) · z = x · z + y · z PrAC4 (x  πy) · z = x · z  πy · z
A5 x · (y · z) = (x · y) · z PrAC5 (x  πy) + z = (x + z)  π(y + z)
A6 x + δ = x
A7 δ · x = δ

TI0 τI(τ ) = τ
TI1 τI(a) = a if a �∈I or a = δ
TI1’ τI(a) = τ if a∈I
TI2 τI(x + y) = τI(x) + τI(y)
TI3 τI(x · y) = τI(x) · τI(y)
TI4 τI(x  πy) = τI(x)  πτI(y)
PrB1 x · τ = x
PrB2 x · ((y + τ · (y + z))  πw) = x · ((y + z)  πw) if y = y + y and z = z + z
PrB3 x · (τ · z  πz) = x · z

We briefly discuss the axioms of Table 1. The axioms A1 through A7 and PrAC1
through PrAC5 are the standard axioms for the concrete probabilistic process alge-
bra pBPA (see [6]), which provide a complete axiomatisation of strong bisimulation.
The axioms TI0 through TI4 are standard axioms for the hiding operator in ACP -like
process algebras (e.g. [8,3,5]). Axioms PrB1 through PrB3 are the more interesting
axioms, which we discuss in some more detail.

Unlike ordinary atomic actions, τ cannot be observed directly, but in some cases,
its presence can be inferred. However, some unobservable actions in a process can be
removed without affecting the (observable parts of the) behaviour of a process. Such
redundant τ actions are also called inert τ actions. In BPAτ there are two rules that
allow us to remove redundant τ actions [8,12]:

B1 x · τ = x, and
B2 x · (τ · (y + z) + z) = x · (y + z).

While axiom B1 remains valid in pBPAτ (here renamed into axiom PrB1), it is not
immediately clear whether axiom B2 should still hold in all cases. As a matter of fact,
B2 does not hold in our setting, as illustrated by the processes a · (τ · ((b �1/3c) +
d) + d) and a · ((b �1/3c) + d). The two processes do not have the same branching
structure, therefore they are not equivalent. The informal explanation is as follows. After
the successful execution of a, the first process reaches a state from which: 1) d can be
executed immediately, 2) b can be executed by a positive probability after making an
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unobservable transition, 3) c can be executed by a positive probability after making an
unobservable transition. On the other hand, after the successful termination of a, the
second process cannot execute d immediately. First, a probabilistic choice has to be
resolved. But by doing this, the process probabilistically chooses between b and c, but
at the same time it excludes any possibilities of executing the other action.

The axioms PrB2 and PrB3 capture exactly the situations in which axiom B2 holds
in the probabilistic setting. Remark that the conditions of the form y = y+y hold for all
probabilistic processes that have their probabilistic choice resolved, i.e. they are “ready”
to perform an (non-deterministic) activity. In other words, y cannot choose probabilis-
tically between processes that are not equivalent. This is expressed in Proposition 1. In
the sequel we refer to these processes as dynamic processes.

Proposition 1. Let x be a graph such that x ↔ rb x + x. There is a rooted branching
bisimulationR such that rxRrx+x and if rx � n and rx � n′, then nRn′. rx and rx+x

denote the roots of x and x + x.

Having the meaning of this condition in mind, the reader may recognise B2 in PrB2, but
applied on a sub-process which appears as a possible outcome of a probabilistic choice.

The axiom PrB3 can be derived from PrB2, but only for processes for which z is a
dynamic process, z = z + z. Nevertheless, this axiom holds for all z, and this is why
PrB3 is added. Both parts of the probabilistic choice lead to the same options.

Our main result is stated in the following two theorems. For detailed proofs see [1].

Theorem 2 (Soundness theorem). The algebra pBPAτ is sound with respect to the
structure (G/↔ rb, δ, ·,+, �π, τI(p),Actτ ).

Theorem 3 (Completeness theorem). Let p and q be closed expressions and let p and
q be their graph interpretations in G. Then p ↔ rb q implies pBPAτ, p = q.

Proof. The proof follows the lines of the completeness proof for BPAτ as given in [12].
Roughly speaking, it goes in several steps: 1. The notions of coloured probabilistic
traces and coloured graphs that capture probabilities are introduced. 2. An equivalence
relation on coloured graphs is defined for which we prove that it coincides with branch-
ing bisimulation (see also [2]). 3. We define a confluent and normalising system of
rewriting rules for coloured graphs. Every rule removes an inert τ -transition or a node
that is a copy of another node from the graph. We show that every coloured graph re-
duces to a unique normal form. 4. We show that every rewriting rule corresponds to an
equation in the algebra.

4 Verification Rules

In a setting without probabilities, the correctness of an implementation (with respect
to a specification) often hinges on fairness assumptions about the resolution of non-
deterministic choices. Algebraically, such fairness assumptions are described through
the use of Koomen’s fair abstraction rules (KFARs) [7]. These rules capture the idea
that in abstracting from a set of internal events (events that will become τ steps), eventu-
ally an observable event will be chosen. The eventuality arises as a result of an implicit
fairness mechanism underlying a non-deterministic choice.
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In the presence of probabilities, a fairness assumption for probabilistic choice is
superfluous. By assigning a non-zero probability to every alternative in a probabilistic
choice we can quantify the otherwise implicit fairness assumptions. Despite the fact
that we do not need fairness assumptions to resolve a probabilistic choice, additional
verification rules for probabilistic processes are still needed to reason about systems in
which internal activity and probability distributions over observable events are involved.

For instance, consider process x = a �πτ ·x, where a is an observable activity. Using
the axioms of pBPAτ , process x cannot be simplified further. Yet, when we examine the
intuition behind this process, we find that with a probability of π, action a is executed
immediately; if a is not executed immediately, there is a probability of π(1 − π) to be
executed upon the second resolution of the choice. The pattern is obvious: action a is
executed with probability

∑
0≤k<n π(1−π)k within n consecutive resolutions of the

probabilistic choice. When n tends to infinity, the probability that a is executed tends to
1, so, in the limit, we find that process x should equal process a (see rule PVR1).

Following a similar line of reasoning and using maximal probabilities with which
observable actions are executed (as defined in Section 2), we identify the following ver-
ification rules.

x = y �πi · x i∈I
τ · τI(x) = τ · τI(y)

(PVR1)

x = y+i · x y = y + y i∈I
τ · τI(x) = τ · τI(y)

(PVR2)

x = (z �πy)+i · x y = y+y i∈I
τ · τI(x) = τ · τI(x′) for x′ = z+y+i · x′ (PVR3)

x = y0+i0 · x1 x1 = y1+i1 · x2 . . . xn = yn+in · x ik ∈ I, ∃ij �= τ

τ · τI(x) = τ · τI(x′) for x′ = y0+y1 . . . yn+i0 · x′
(PKRb

n)

x = z �π(u+i · x) z = z+u z = z+z i∈I
τ · τI(x) = τ · τI(z)

(PVR4)

x = z+i · y y = z �π(u+j · x) z = z + z z = z + u i, j∈I
τ · τI(x) = τ · τI(y′) for y′ = z �π(u+i · y′) (PVR5)

Rule PVR1 has been already discussed. Rule PVR2 is a variant of the KFAR rule for
probabilistic setting. As such it is restricted on dynamic processes (y = y + y). Other
probabilistic variants of the KFAR rules, the rules PKFARb

n, are given in [1].
In addition, we define rules PKRb

n, n ≥ 1, that also resemble the KFAR rules. Actu-
ally if all yk are dynamic processes, by a proper combination of PKRb

n and PVR2 we
can derive PKFARb

n for n ≥ 2. But the PKR rules are applicable in more general cases
since yk, k = 1, . . . , n can be any pBPAτ expressions. Let us consider the specification
x1 = (a �1/2b) + i · x2 and x2 = (c �1/2d) + j · x1 for some internal actions i and
j. For process x1 (the same holds for x2) the maximal probability to execute a, pos-
sibly preceded by finitely many internal activities, is equal to 1. Clearly, it is obtained
by resolving all nondeterministic choices in favour of a and if a is not possible then in
favour of τ . Thus we aim on relating x1 after abstraction to a process in which a can
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be executed with maximal probability 1. Since we conclude the same for b, c and d,
we obtain that x1 shall be related to the process a+ b + c+ d.1 The PKR rules do not
imply this equality directly, but they can be used to reduce the specification to a form
on which rule PVR3 can be applied.

Rule PVR3 expresses that in some cases a τ -loop makes the probability distribution
irrelevant. Take z = a �1/2b and y = c. Note that y = y + y. According to this rule
the presence of the τ -loop in x = ((a �1/2b) �1/3c) + i · x (after abstraction from i)
makes the probability distribution over a, b and c irrelevant. Thus, it allows us to equate
x to x′ = (a �1/2b) + c + i · x′ in which the probabilistic choice between (a �1/2b)
and c is replaced by a non-deterministic choice. By applying the rule once more and
using some technical tricks (introducing new internal actions, renaming them, assuming
that every guarded specification has a unique solution, etc.) we can obtain τ · τI(x) =
τ · τI(a+ b+ c+ i · x) for some set of internal actions I, i ∈ I . Finally, we can apply
the PVR2 rule and remove the remaining τ -loop and obtain τ · τI(x) = τ · (a+ b+ c)
(again, slightly abusing notation).

Rules PVR4 and PVR5 have a condition of the form z = z + u. Informally, it states
that every process which can be reached from z with a positive probability can mimic
all activities of u. Hence, all activities of process u are also captured by process z.

Proposition 2. Let z and u be graphs such that z ↔ rb z+u. There is a rooted branch-
ing bisimulation R such that rzRrz+u and, for all n, n′, t′ such that rz � n, ru � n′

and n′
a−→ t′ for a ∈ Actτ , there exists a transition n

a−→ t for some t ∈ Sz and tRt′.
rz and rz+u denote the root nodes of z and z + u.

Next we focus on rule PVR4 and give only a short example for PVR5. Rule PVR4
expresses a situation in which, due to a τ -loop, a summand u of probabilistic process
x can be dropped without affecting the behaviour of the process x. The two conditions:
z = z + z expressing that z is a dynamic process (see Proposition 1), and z = z + u
stating that all activities of process u are captured by process z (see Proposition 2)
guarantee that every node reachable from the root of the graph for x, x, can perform the
same set of actions that z can perform, and continue with the equivalent behaviour to the
one of z afterwards. These actions can be performed either directly in one step or after
performing a τ -transition back to the root of x. For the latter case, the specification of x
guarantees that the nodes that cannot perform an action immediately (as stated above)
can make the τ step back to the root of x. Under these conditions, the root of x and all
nodes reachable from it in one probabilistic transition, are equivalent. Therefore, they
can all be lumped in a single node, the root of the graph of z as the rule states. This is
not possible if z is not a dynamic process.

Note that this rule (and the processes involved) can be translated into the non-
alternating model (as simple probabilistic automata [17] or as probabilistic automata
[11]). Clearly, it is sound for weak bisimilulation equivalences as defined in [17,18,11].
However, so far there have not been algebraic laws proposed that characterises the prop-
erty of weak bisimulation to relate these processes.

1 Note that at this point and in several discussions later in this section we are not precise since
we omit the τ prefix for the sake of simplicity.
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Rule PVR5 has two conditions: z restricted to dynamic processes, and u must be a
process (possibly not a dynamic process) that is mimicked by z (see Proposition 2). For
simplicity take both z and u to be dynamic processes (in which case u is a sub-process
of z) z = a + b and u = b. Rule PVR5 states that process x = (a + b) + i · ((a +
b) �1/2(b + j · x)) is equal to x′ = (a + b) �1/2(b + i · x′) after abstraction from i
and j. Obviously, PVR5 is an extension of PVR4 to a specification with two equations.
We believe that a generalisation of these rules to any finite specifications is feasible, but
this may require more complex conditions.

Theorem 4 (Soundness of verification rules). The verification rules PVR1,. . . ,PVR5
and PKRb

n, n ≥ 1, are sound for the structure (G/↔ rb, δ, ·,+, �π, τI(p),Actτ ).

5 Application

The main intention of this section is to show that our probabilistic process algebra and
the verification rules from Section 4 can be used for the verification of complex proto-
cols which exhibit both probabilistic and non-deterministic behaviour. We do not aim at
giving a complete description of the protocol. We refer the reader to [19] for more de-
tails. The specifications we provide use two other operators, viz. parallel composition
and encapsulation. The parallel operator ‖ models the interleavings and communica-
tions (synchronisations) of two processes. The unary encapsulation operator ∂H is in
a sense a special renaming operator, renaming all actions from the set H to δ. Using
the elimination theorem for parallel composition, and encapsulation, all guarded recur-
sive equations containing the parallel operator can be rewritten to equivalent guarded
recursive equations using only the operators from the algebra pBPAτ . For a detailed
treatment on these operators in the probabilistic setting, we refer to [6,5].

The CABP is a more complex variant of the well-known Alternating Bit Protocol
(ABP). Both protocols are used to reliably send and receive data via an unreliable chan-
nel, using a system of acknowledgements, also sent via unreliable channels. While the
ABP resends messages that have not been received correctly only after receiving a neg-
ative acknowledgement, the CABP continuously (re)sends the same message until it
receives a positive acknowledgement, confirming a correct delivery of the datum. Due
to this phenomenon many activities are executed in parallel.

5.1 Specification of the CABP

The specification we use for the CABP is based on the description given in [19]. While
in [19], the channels for transmitting data and acknowledgements are modelled using
non-determinism, we shall use probabilities to model the behaviours of the channels.
The CABP is described by six separate processes that need to communicate with one
another. A sketch of the system is provided in Fig. 4. The numbers 1 through 8 represent
the gates at which actions are communicated. Together, the six processes model the en-
tire protocol. We represent the sender and receiver of data by process S and R, respec-
tively. The sender and receiver of an acknowledgement are specified by processes AS
and AR, respectively. In turn, the channel, carrying the data is represented by process
K , and the channel carrying the acknowledgements is represented by process L. We
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Fig. 4. Layout of the Concurrent Alternating Bit Protocol

Table 2. Specification of the sender, the receiver and the channel. The probabilities π and ρ model
the probability that a message is sent correctly and the probability that a message is corrupted.
With a probability of 1−π−ρ the message is lost in a channel.

Sender:
S = RM(0)
RM(b∈Bit) = d∈D r1(d) · SF(d, b)
SF((d, b)∈D×Bit) = s3(d, b) · SF(d, b) + r8(ac) · RM(1− b)

Receiver:
R = RF(0)
RF(b∈Bit) = d∈D r4(d, b) · RS(d, b)

+ d∈D r4(d, 1− b) · RF(b) + r4(⊥) · RF(b)
RS((d, b)∈D×Bit) = s2(d) · s5(ac) · RF(1− b)

Channel:
K = (d,b)∈D×Bit r3(d, b) · Ks(d, b)
Ks((d, b)∈D×Bit) = (s4(d, b)  πs4(⊥)  ρk) · K

group these processes in two logical modules, viz. a moduleM1 responsible for trans-
mitting and receiving data, containing processes S, K and R, and a module M2 re-
sponsible for transmitting and receiving acknowledgements, containing processes AS,
L and AR. The CABP is then described by the parallel composition of these two mod-
ules. Since the behaviour of both modules is quite similar, we here only investigate
the behaviour of module M1. The specifications for the sender, the receiver and the
data channel are given in Table 2. The difference between our specification and the one
appearing in [19] is mainly in the definition of the channel.

We briefly sketch the intuition behind the processes of module M1. The set D de-
notes a finite set of data elements. The sender, modelled by process S uses action r1
to receive a datum from its environment. This datum, augmented with a bit (for ac-
knowledgement purposes), is then repeatedly sent using action s3. Alternatively, an
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acknowledgement is received using action r8. The receiver reads data from the commu-
nication channel K using action r4. A corrupted datum is represented by ⊥ (a mech-
anism for detecting faulty data is assumed). If a non-corrupted, expected datum is re-
ceived (i.e. it carries the expected acknowledgement bit), it is sent to the environment
via action s2 and the acknowledgement sender is triggered via action s5. Finally, the un-
reliable channel uses action r3 for receiving a datum, action s4 for sending a (possibly
corrupted) datum and action k for losing a datum.

We distinguish between the external and the internal behaviour of moduleM1. The
communications between the actions of module M1 are defined using a (commutative
and associative) function γ, given by γ(r3(d, b), s3(d, b)) = c3(d, b) and γ(r4(d, b),
s4(d, b)) = c4(d, b) and γ(r4(⊥), s4(⊥)) = c4(⊥) for all data (d, b)∈D×Bit (here,
c3 and c4 are fresh actions). Process ∂H(S‖R‖K) then describes the internal behav-
iour of module M1, where H = {s3(d, b), r3(d, b), s4(d, b), r4(d, b), s4(⊥), r4(⊥) |
(d, b)∈D×Bit} contains all actions that need to be blocked to enforce communication.
The external behaviour of moduleM1 is the behaviour of moduleM1 after abstracting
from the actions from the set I = {c3(d, b), c4(d, b), c4(⊥), k | (d, b)∈D×Bit}. The
external behaviour of moduleM1 can thus be represented by Y = τI ◦ ∂H(S‖R‖K).

5.2 Verification of the CABP

Our aim is to rewrite the process, representing the external behaviour of module M1
to a simpler process, for which it is easier to check that it behaves the way it is meant
to behave. For lack of space, we will not go into the full detail, but pick out several
interesting bits of the verification. For the full verification, we refer to [1]. Apart from
using the rules we gave in Section 4 and the use of axiomatic reasoning, we employ a
technique called language matching, which is explained and used in [19]. This is not
essential for the verification but it reduces it significantly. Language matching builds on
the idea that certain behaviours of one separate process when considered in isolation,
cannot occur when the process is composed in parallel with some other process(es).
Consider for example process ∂{a,c,d}(x‖y), where x = a · x + c · z and y = d · y,
and the actions a and d are meant to communicate to action b. Clearly, c is a redundant
summand because it gets encapsulated, and it is not involved in communications. The
intuition, how to identify redundant summands, is that actions often occur in a fixed
sequence. The language matching operator, denoted by7Z , where Z is a collection of
traces, checks for a given process if the actions that occur are executed according to
the order, specified by a trace in Z . If so, the remainder of the process is inspected. If
not, then the remainder of the process is apparently not of any interest to the overall
behaviour of the system, and hence, it is replaced by the special symbol8, which is not
present in the alphabet Act.

Analysis of the CABP. We start with analysing the subprocess ∂H′(R‖K), whereH ′ is
the set {r4(d, b), s4(d, b), r4(⊥), s4(⊥) | (d, b)∈D×Bit}. Removing parallelism using
the elimination theorem we arrive at the description for this process, given in Table 3
for which actions k, c4(⊥) and c4(d, b) occur as internal actions.

The sender itself can always receive an acknowledgement of the correct reception
of a message (action r8(ac)), and thereby change the entire global state. However, in
the overall behaviour of the CABP, the reception of an acknowledgement only happens
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Table 3. Process R‖K after encapsulation of the actions in set H ′

X1(b∈Bit) = d∈D r3(d, b) ·X3(b, d) + d∈D r3(d, 1− b) ·X2(b, d)
X2(b∈Bit, d∈D) = (c4(d, 1− b)  πc4(⊥)  ρk) ·X1(b)
X3(b∈Bit, d∈D) = c4(d, b) ·X4(b, d)  πc4(⊥) ·X1(b)  ρk ·X1(b)
X4(b∈Bit, d∈D) = d′∈D r3(d′, b) ·X5(b, d, d′)

+ d′∈D r3(d′, 1− b) ·X6(b, d, d′)
+ s2(d) ·X9(b)

X5(b∈Bit, d, d′∈D) = s2(d) ·X7(b, d′) + (δ  π+ρk) ·X4(b, d)
X6(b∈Bit, d, d′∈D) = s2(d) ·X8(b, d′) + (δ  π+ρk) ·X4(b, d)
X7(b∈Bit, d∈D) = s5(ac) ·X2(1− b, d) + (δ  π+ρk) ·X9(b)
X8(b∈Bit, d∈D) = s5(ac) ·X3(1− b, d) + (δ  π+ρk) ·X9(b)
X9(b∈Bit) = d∈D r3(d, b) ·X7(b, d)

+ d∈D r3(d, 1− b) ·X8(b, d)
+ s5(ac) ·X1(1− b)

when an acknowledgement has been sent earlier. Thus, to filter out the reception of the
ill-timed acknowledgements, we apply the language matching. In short, all alternatives
in the specification for module M1 that are in traces that do not match the language
containing concatenations of traces r1(d) s2(d) s5(ac) r8(ac) for arbitrary d∈D should
be marked with the symbol 8. We define Z = {r1(d) s2(d) s5(ac) r8(ac) | d∈D}∗,
and subsequently study process7Z′ ◦ ∂H(SF (d, b)‖X4(b, d)), where Z ′ = {z | d∈D,
r1(d)z∈Z} contains all traces ofZ from which the first action r1(d) has been removed.
The complete specification for the process Y (b) = 7Z′ ◦ ∂H(RM(b)‖RF (b)‖K) is
given in [1]. We discuss one step of the verification. We derive

7Z′ ◦ ∂H(SF (d, b)‖X4(b, d))
= r8(ac) · 8+ s2(d) · U1 + c3(d, b) · 7Z′ ◦ ∂H(SF (d, b)‖X5(b, d, d))

ProcessU1 is not of our interest at this point. Note that after action r8(ac), the remainder
of the process has become unimportant, as the action r8(ac) is not a valid option at this
point in the overall behaviour. We continue, and derive that

7Z′ ◦ ∂H(SF (d, b)‖X5(b, d, d))
= (r8(ac) · 8+ s2(d) · U2)

�π+ρ(r8(ac) · 8+ s2(d) · U2 + k · 7Z′ ◦ ∂H(SF (d, b)‖X4(b, d))
Again, the exact process U2 is not of our interest at this point (for details see [1]).
It turns out that (by carrying the verification through to the end), we can prove that
τI(U1) = τI(U2), for I not containing the communications with the channelK . Hence,
by hiding the communications that occur on gates 3 and 4, using verification rule PVR5
and then PVR4 (for z = u = r8(ac)·8+ s2(d)·τI(U2))), we derive

τ · τIK ◦ 7Z′ ◦ ∂H(SF (d, b)‖X4(b, d)) = τ · (r8(ac)·8+ s2(d)·τIK (U2))
where IK contains all communications with the channel K . Repeatedly applying the
rules and axioms in a fashion we just sketched (in total there are 10 steps), we can
derive that Y =

∑
d∈D r1(d) · (r8(ac) · 8+ s2(d) · (r8(ac) · 8+ s5(ac) · r8(ac) · Y )).

By carrying the verification to the end, we can derive that the whole CABP behaves as
a reliable buffer, i.e.

τ · τI′ ◦ ∂H′′ (S‖K‖R‖AS‖L‖AR)
= τ ·

∑
d∈D r1(d) · s2(d) · τI′ ◦ ∂H′′ (S‖K‖R‖AS‖L‖AR)
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for I ′ containing all activities over communication gates 3, 4, 5, 6, 7 and 8 (i.e. all ac-
tivities in and between modules M1 and M2), and H ′′ containing all send and read
activities that do not synchronise in the interleaving.

6 Summary

We presented a probabilistic process algebra pBPAτ with capabilities for hiding inter-
nal activity of a process by renaming observable actions to an unobservable action. We
furthermore presented a number of axioms that allow for the removal of inert unob-
servable actions, i.e. unobservable actions whose presence cannot be detected. This set
of axioms forms a complete axiomatisation of branching bisimilarity for the strictly al-
ternating model [2]. Analogously with rules such as Koomen’s Fair Abstraction Rules
(KFARs) [7], which are used in a setting without probabilities, we introduced a num-
ber of rules that proved useful in a setting with probabilities. With this method, without
having to resort to probability theory or schedulers, we can do a complete algebraic ver-
ification of the Concurrent Alternating Bit Protocol [19] that contains non-removable
non-deterministic choices. It turns out that the rules and the axioms we provided are
indeed needed and sufficient to come to the desired result.
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Abstract. Working in the context of a process-algebraic language for
Probabilistic I/O Automata (PIOA), we study the notion of PIOA behav-
ior equivalence by obtaining a complete axiomatization of its equational
theory and comparing the results with a complete axiomatization of a
more standard equivalence, weighted bisimulation. The axiomatization of
behavior equivalence is achieved by adding to the language an operator
for forming convex combinations of terms.

Keywords: stochastic process algebras; process equivalences; continuous-
time Markov chains; equational theories; complete axiomatizations.

1 Introduction

In previous work [SCS03], we presented a process-algebraic language, motivated
by the probabilistic I/O automaton model, that provides a compositional for-
malism for defining continuous-time Markov chains (CTMCs). The constructs
in our language are similar to those in other “Markovian process algebra” lan-
guages that have been studied by a number of other researchers (see [HH02] for
a survey), especially EMPA [BDG98]. In our language, we classify transitions as
either output (“active”) transitions or input (“passive”) transitions. Output tran-
sitions, which can occur spontaneously, have associated positive rates. Rates are
dimensional quantities with units of 1/time, which are regarded as the parame-
ters of exponential probability distributions. When multiple output transitions
are available for a process, the choice between them is made probabilistically
by a “race policy” semantics: an exponentially distributed random future time
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is chosen for the occurrence of each transition (using the associated rate as the
parameter of the distribution) and the transition for which the earliest time is
chosen “wins the race” and becomes the next transition to occur. Input transi-
tions, which can occur for a process only in conjunction with a similarly labeled
output transition performed by its environment, have associated positive weights,
which are dimensionless. When multiple input transitions labeled by the same
action are available, the choice between them is made probabilistically on the
basis of their proportionate weights.

In this paper, we consider a fragment of our language having the following
syntax, where Act is a set of actions, variables a, b, c, . . . are used to range over
Act , and variables t, u, v, . . . are used to range over process terms:

nilI | 〈a?w〉 t | 〈b!r〉 t | t+ t′ | t O‖O′ t′

The informal meaning of the constructs is as follows:

– nilI denotes a process that passively accepts an input from the set I ⊆ Act ,
assigning such an input a weight of 1, and then continues to behave as nilI .

– 〈a?w〉 t denotes an input-prefixed process that can accept an input a ∈ Act
with positive weight w and then become the process t.

– 〈b!r〉 t denotes an output-prefixed process that can spontaneously perform
output action b ∈ Act with positive rate r and then become the process
denoted by t.

– t+ t′ denotes a choice between alternatives offered by t and t′.
– t O‖O′ t′ denotes the parallel composition of t and t′. Here O and O′ are

disjoint sets of output actions controlled by t and t′, respectively.

Synchronization of actions, which occurs between the components of a paral-
lel composition, is restricted to the input/input and input/output cases only.
Output/output synchronization is not permitted. This seems to be the simplest
version of action synchronization that has an intuitively meaningful stochastic
interpretation. As our goal is to understand the relationship between input and
output in the simplest possible setting, we do not complicate the language with
immediate actions, priorities, or other extraneous constructs.

The standard notions of process equivalence in the context of stochastic
process algebra are based on variants of probabilistic bisimulation [LS91], which
is closely related to the concept of lumpability in the theory of Markov chains.
A typical example of such an equivalence is Markovian bisimulation [Hil96], in
which terms regarded as equivalent are required to have the same aggregate tran-
sition rate, and which is such that equivalent terms have identical total transition
probabilities to each equivalence class of terms for each action. In this paper we
use weighted bisimulation, which uses the same fundamental idea and covers the
cases of weight-labeled and rate-labeled transitions.

Behavior equivalence is an alternative to weighted bisimulation equivalence
that we have studied in earlier papers. This equivalence is strictly coarser than
weighted bisimulation equivalence, but still substitutive with respect to the
process algebraic operations listed above. The original motivation of behavior
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equivalence was as a testing equivalence, and in this context a full-abstractness
result was established in [WSS97]. The original definitions were reformulated
in subsequent papers as our understanding of behavior equivalence improved. In
[Sta03] we were able to compare weighted bisimulation equivalence and behavior
equivalence by viewing them both as certain “invariant” equivalences on formal
linear combinations of process terms, rather than as equivalences on individual
terms. We showed, roughly: (1) that weighted bisimulation equivalence can be
characterized as the largest invariant equivalence on combinations of terms that
is in a sense generated by equations between individual terms, (2) that behavior
equivalence can be characterized as the largest invariant equivalence on combi-
nations of terms that in a sense separates terms having distinct aggregate rates,
and (3) that behavior equivalence is strictly coarser than weighted bisimulation
equivalence, even when restricted to individual terms.

For example, the following intuitively reasonable equation between terms in
our language holds for behavior equivalence but not for weighted bisimulation
equivalence:

〈b!r〉 (〈c!πs〉 t+ 〈d!(1−π)s〉 u) = 〈b!πr〉 〈c!s〉 t+ 〈b!(1−π)r〉 〈d!s〉 u

where π can be any value in the interval (0, 1). Intuitively, both sides above
can perform the output b with the same aggregate rate r. After doing so, the
term on the left-hand side evolves to the derivative term 〈c!πs〉 t+ 〈d!(1−π)s〉 u,
which can do output c with rate πs and output d with rate (1 − π)s, for an
aggregate rate of s. In contrast, there is no individual term that expresses the
derivative of the right-hand side after output b has been performed. The best
we can do is to think of this derivative as a probability distribution that assigns
probability π to term 〈c!s〉 t and probability 1 − π to term 〈d!s〉 t. Intuitively,
there is no observable difference between such a probability distribution and the
individual term 〈c!πs〉 t+ 〈d!(1−π)s〉 u, which explains why the original equation
is a reasonable one to expect.

Consideration of the preceding example suggests that an axiomatization of
behavior equivalence might be achieved if we augment the language with an
explicit notation for expressing convex combinations of terms; for example:
〈c!s〉 t π⊕1−π 〈d!s〉 u. We would then be able to express the equivalence between
the derivatives of the left and right-hand sides of the equation above as follows:

〈c!πs〉 t+ 〈d!(1−π)s〉 u = 〈c!s〉 t π⊕1−π 〈d!s〉 u.

In fact, for the ‖-free fragment of the language, an axiomatization of behavior
equivalence can be achieved in this way and the details are the subject of the
present paper. A key point, which took us a long time to discover, is that we
cannot permit the the formation of combinations t π⊕1−π u for arbitrary terms
t and u. Rather, we must require as a condition of well-formedness that terms t
and u have an identical aggregate rate, which then becomes the aggregate rate of
the combined term. Failing to impose this requirement results in the possibility
of having “terms” that do not have unique aggregate rates, which produces
seemingly insurmountable complications in the semantics and axiomatization.
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Another detail that required some care to work out properly concerns keeping
track of the “types” of terms, by which we mean the sets of input and output
actions in which a term is required to participate.

As a result of our investigation, we have further clarified our understanding of
behavior equivalence and its relationship to weighted bisimulation equivalence.
Perhaps the simplest way to summarize what we have learned is to compare
the normal form used in the proofs of completeness for the axiomatization of
weighted bisimulation equivalence with that used in the proof for behavior equiv-
alence. Employing

∑
-notation in a standard way and (for the moment) ignoring

special cases that arise with empty summations, the following is a generic normal
form for a term with respect to weighted bisimulation equivalence:

m∑
i=1

〈ai?wi〉 ti +
n∑

j=1

〈bj!rj 〉 tj

In the above, the ti and tj are recursively required to be normal forms. Moreover,
it is required that for no distinct i and i′ do we have both ai = ai′ and ti equiva-
lent to ti′ and for no distinct j and j′ do we have both bj = bj′ and tj equivalent
to tj′ . Thus, wi is the aggregate weight of ai-transitions to the equivalence class
of ti, and rj is the aggregate rate of bj-transitions to the equivalence class of tj .

In contrast, a generic normal form for a term with respect to behavior equiv-
alence is the following:∑

a∈I

∑
s∈Ra

〈a?wa,s〉 ta,s +
∑
b∈O

∑
s∈Rb

〈b!rb,s
〉 tb,s,

where each set Ra and Rb is nonempty and each term ta,s and tb,s is required
recursively to be a normal form with aggregate rate s. The main point here is
that, once input a has been chosen, there is a unique derivative term ta,s for each
aggregate rate in the set Ra, and once output b has been chosen, there is a unique
derivative term tb,s for each aggregate rate in the set Rb. Terms ta,s and ta,s′

cannot be equivalent for distinct values of s because they have distinct aggregate
rates. Similar considerations hold for tb,s and tb,s′ . A normal form for behavior
equivalence is thus also a normal form for weighted bisimulation equivalence,
but not conversely. So, the essential difference between weighted bisimulation
equivalence and behavior equivalence is that the former will in general draw
distinctions between terms based on the existence of multiple derivatives having
the same aggregate rate, whereas the latter will not.

Note that, although the operator π⊕1−π does not appear in the normal form
for behavior equivalence, achieving a reduction to normal form will in general
require passing through terms in which explicit use is made of this operator.

The remainder of the paper is organized as follows: In Section 2, we summa-
rize the basic definitions pertaining to our process-algebraic language and its
semantics. In Section 3, we define the notion of weighted bisimulation equiva-
lence for our language and present a sound and complete set of axioms for this
equivalence. In Section 4, we define the notion of behavior equivalence, extend
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nilI : I/I ⇒ ∅

t : J/J ⇒ O a ∈ J

〈a?w〉 t : {a}/J ⇒ O

t : J/J ⇒ O b �∈ J

〈b!r〉 t : ∅/J ⇒ O ∪ {b}
t : It/J ⇒ Ot u : Iu/J ⇒ Ou

t + u : It ∪ Iu/J ⇒ Ot ∪Ou

t : It/It ⇒ Ot u : Iu/Iu ⇒ Ou I = (It ∪ Iu) \ (Ot ∪Ou)
t Ot‖Ou u : I/I ⇒ Ot ∪Ou

t : I/J ⇒ O O ⊆ O′ O′ ∩ J = ∅
t : I/J ⇒ O′

Fig. 1. Type-Inference Rules

the language with the convex combination operator π⊕1−π discussed above,
present a sound and complete set of axioms for behavior equivalence in the ex-
tended language, and sketch the main ideas of the completeness proof. Although
we include the parallel composition construct in the language defined in sec-
tion 2, the results of Sections 3 and 4 concern only the ‖-free fragment. We hope
to extend our results to include parallel composition in a future paper.

Though we give here complete definitions for all important notions, space
limitations force us to omit almost all proofs from this paper. The interested
reader can find the omitted proofs in the full version [SCS06] available online.

2 Basic Definitions

2.1 Types

As detailed in our previous paper [SCS03], our PIOA language is equipped with
a set of rules for inferring typing judgements of the form t : I/J ⇒ O, where I,
J , and O are sets of actions. We write , t : φ to assert that a typing judgement
t : φ is inferable. A term t is well-typed if , t : φ for some φ. Let Proc(I/J ⇒ O)
denote the set of all terms t such that , t : I/J ⇒ O.

Intuitively, a typing judgement t : I/J ⇒ O asserts that I is a set of actions
for which input transitions are guaranteed to be enabled at the first step of t,
that J is a set of actions for which input transitions are guaranteed to be enabled
at all steps of t after the first, and O is a set of actions that includes at least all
the outputs that may be produced by t (but which may be larger). The primary
purpose of the typing system is to identify those terms that are input-enabled,
in order to rule out the formation of parallel compositions involving non-input-
enabled terms. Non-input-enabled terms are required in the language to permit
the building up of sets of alternatives using + . The reason why only input-
enabled terms are permitted in parallel compositions is that we do not wish to
allow stochastically unclear situations in which one component in a system is
attempting to perform an output with a definite rate, but is inhibited from doing
so by another component that will not accept that action as an input.
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Figure 1 presents the type-inference rules applicable to the language fragment
we consider here. We have included an additional “weakening” rule (the last
rule), which was not present in our previous paper. The purpose of the weakening
rule is to ensure that if , t : I/J ⇒ O then also , t : I/J ⇒ O′ for all O′ ⊇ O
such that O′ ∩ J = ∅; this is a useful property that did not hold of the typing
system in our previous paper.

Proposition 1. If , t : I/J ⇒ O for some I, J , and O, then

1. I ⊆ J and J ∩O = ∅.
2. There exists Ô such that , t : I/J ⇒ Ô, and such that whenever
, t : I ′/J ′ ⇒ O′ then I ′ = I, J ′ = J , and O′ ⊇ Ô.

A technical issue with our PIOA language is that of “native” versus “non-native”
actions. If t ∈ Proc(I/J ⇒ O), then actions e ∈ J ∪ O are called native to t
and actions outside this set are called non-native. Intuitively, native actions are
those in which t must participate and non-native actions are those that t ignores.
This distinction is important because if t has no transition for a particular output
action in which it must participate, then that action is inhibited from occurring,
whereas if t ignores an action then it may occur freely. Note that whether an action
is considered native or non-native depends on our having fixed a particular type
I/J ⇒ O inferable for t. All such types have the same input sets I and J , but
the output sets O may differ. Thus, in the sequel it will be necessary for us to
parameterize certain notions by the particular output set on which they depend.

2.2 Transition Semantics

In our previous paper, we gave structural operational semantics rules that defined
the transitions that could be taken by terms in our language. Though our present
purposes do not require a full presentation of the transition semantics given in
our previous paper, we do need a notation for the aggregate weight or rate
ΔO

e (t, v) of e-labeled transitions from t to v.
Suppose t ∈ Proc(I/J ⇒ O). Define ΔO

e (t, v) as follows: If e �∈ J ∪ O (non-
native case), then ΔO

e (t, v) = 1 if v = t, and ΔO
e (t, v) = 0 otherwise. If e ∈ J ∪O

(native case), then

1. ΔO
e (nilI , v) =

{
1, if e ∈ I and v = nilI .
0, otherwise.

2. ΔO
e (〈a?w〉 t, v) =

{
w, if e = a and v = t
0, otherwise.

3. ΔO
e (〈b!r〉 t, v) =

{
r, if e = b and v = t
0, otherwise.

4. ΔO
e (t+ u, v) = ΔO

e (t, v) +ΔO
e (u, v).

5. ΔO
e (t Ot‖Ou u, v) =

{
Δ

O\Ou
e (t, t′) ·ΔO\Ot

e (u, u′), if v = t′ Ot‖Ou u
′

0, otherwise.
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In the sequel, if C is a set of terms, then ΔO
e (t, C) will be an abbreviation for the

sum
∑

v∈C Δ
O
e (t, v), which is always finite.

It is important for us that inferable types are preserved under transitions.
Formally, we have the following result, which was stated in our previous paper
and remains true in the presence of the weakening rule.

Proposition 2. Suppose t ∈ Proc(I/J ⇒ O). If ΔO
e (t, u) �= 0, then u ∈

Proc(J/J ⇒ O). In particular, Proc(J/J ⇒ O) is closed under transitions and
terms in Proc(I/J ⇒ O) reach Proc(J/J ⇒ O) after one transition.

A term t ∈ Proc(J/J ⇒ O) is called input-stochastic if for all e ∈ J we have∑
v∈Proc(J/J⇒O)Δ

O
e (t, v) = 1.

3 Weighted Bisimulation

In this paper, we discuss weighted bisimulation equivalence primarily for the
purposes of comparison with behavior equivalence. Modulo minor differences in
the formal setup, the properties of this equivalence are standard, and have been
established before by other authors (e.g. [HR94]). Consequently, in this section
we simply give the basic definitions and state the results briefly without proof.

A weighted bisimulation on Proc(J/J ⇒ O) is an equivalence relation R on
Proc(J/J ⇒ O) such that the following condition is satisfied:

– Whenever t R t′ then for all actions e and all equivalence classes C of R we
have ΔO

e (t, C) = ΔO
e (t′, C).

Terms t and t′ in Proc(I/J ⇒ O) are defined to be weighted bisimulation equiv-
alent if there exists a weighted bisimulation relation R on Proc(J/J ⇒ O) such
that for all actions e and all equivalence classes C of R we have ΔO

e (t, C) =
ΔO

e (t′, C). In this case we write t ∼
O
t′ (there is no need to mention the input sets

I and J which are uniquely determined by t and t′).
Without giving a formal statement (it is similar to the one given later for

behavior equivalence), we comment at this point that a substitutivity result can
be established for weighted bisimulation equivalence, which makes an equational
axiomatization feasible.

3.1 Axioms

Axioms for weighted bisimulation equivalence are shown in Table 1. In axiom
(nil-fold), we have used the summation notation

∑
a∈I〈a?1〉 nilI in an obvious

way. The soundness of axioms (choice-comm) and (choice-assoc) will permit us
in the sequel to manipulate this summation notation in the conventional fashion
without further comment.

Lemma 1. The axioms shown in Table 1 are sound for weighted bisimulation
equivalence.
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Table 1. Axioms for Weighted Bisimulation Equivalence

t + nil∅ = t (choice-unit)

t + u = u + t (choice-comm)

(t + u) + v = t + (u + v) (choice-assoc)

〈a?p〉 t + 〈a?q〉 t = 〈a?p+q〉 t (input-choice)

〈b!r〉 t + 〈b!s〉 t = 〈b!r+s〉 t (output-choice)

If I �= ∅, then
a∈I

〈a?1〉 nilI = nilI (nil-fold)

3.2 Completeness

We say that two terms are identical up to permutation of sums if they can
be proved equivalent to each other using only axioms (choice-comm) and
(choice-assoc).

Let the notions input normal form, output normal form, and normal form be
defined mutually recursively as follows:

– An input normal form is a well-typed term u that is either nilI for some
I �= ∅, or else has the form

∑m
i=1〈ai?pi〉 ti, where we require that:

1. Each ti is a normal form.
2. For no distinct i, i′ do we have ai = ai′ and ti identical to ti′ up to

permutation of sums.
3. u is not an instance (up to permutation of sums) of the left-hand side of

axiom (nil-fold).
– An output normal form is a well-typed term v that is either nil∅ or else has

the form
∑n

j=1〈bj !rj 〉 tj , where we require that:
1. Each tj is a normal form.
2. For no distinct j, j′ do we have bj = bj′ and tj identical to tj′ up to

permutation of sums.
An output normal form is called nontrivial if it is not nil∅.

– A normal form is either an input normal form, an output normal form, or
a sum u + v, where u is an input normal form and v is a nontrivial output
normal form.

Lemma 2. Any ‖-free term t in Proc(I/J ⇒ O) can be proved equivalent to a
normal form using the axioms in Table 1.

Lemma 3. If normal forms t and t′ in Proc(I/J ⇒ O) are weighted bisimula-
tion equivalent, then they are identical up to permutation of sums.

Theorem 1. The axioms in Table 1 are sound and complete for weighted bisim-
ulation equivalence of ‖-free terms.
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4 Behavior Equivalence

4.1 Behavior Maps

We now consider the theory of behavior equivalence. To define behavior equiv-
alence, we need some auxiliary concepts. First is the notion of the aggre-
gate rate rt(t) of a term t ∈ Proc(I/J ⇒ O). This is defined by: rt(t) =∑

e∈O
∑

t′ Δ
O
e (t, t′). The following can then be established by structural induc-

tion:

– If t has the form nilI or 〈a?w〉 u, then rt(t) = 0.
– If t has the form 〈b!r〉 u, then rt(t) = r.
– If t has the form u+ v, then rt(t) = rt(u) + rt(v).
– If t has the form u Ou‖Ov v, where u and v are input-stochastic

(cf. Section 2.2), then rt(t) = rt(u) + rt(v).

Next, we define a rated action to be a pair 〈e, r〉 ∈ Act × [0,∞). A rated trace
is a finite sequence of rated actions. We use ε to denote the empty rated trace.

An observable is a mapping from rated traces to real numbers. We use Obs to
denote the set of all observables. The derivative of an observable Φ by a rated
action 〈e, r〉 is the observable 〈e, r〉−1Φ defined by

(〈e, r〉−1Φ)(α) = Φ(〈e, r〉 α)

for all all rated traces α.
To each term t in Proc(I/J ⇒ O) we associate a behavior map BOt : Obs →

Obs defined by induction on the length of a rated trace as follows:

1. BOt [Φ](ε) = Φ(ε).

2. BOt [Φ](〈e, r〉α) =
∑

u∈Proc(J/J⇒O)Δ
O
e (t, u) · BOu [〈e, r + rt(t)〉−1Φ](α)

Terms t and t′ in Proc(I/J ⇒ O) are defined to be behavior equivalent, and we
write t ≡

O
t′, if BOt = BOt′ .

The following result gives a syntax-directed characterization of BOt that is
useful in proofs. Case (1) is concerned with non-native actions.

Lemma 4. For all terms t ∈ Proc(I/J ⇒ O), all observables Φ, all rated traces
α and rated actions 〈e, r〉:

1. BOt [Φ](〈e, r〉α) = BOt [〈e, r + rt(t)〉−1Φ](α), if e �∈ J ∪O.

2. BOnilJ [Φ](〈e, r〉α) =
{
BOnilJ [〈e, r〉−1Φ](α), if e ∈ J,
0, if e ∈ O.

3. BO〈a?w〉 t[Φ](〈e, r〉α) =
{
w · BOt [〈a, r〉−1Φ](α), if e = a
0, if e ∈ (J ∪O) \ {a}.
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4. BO〈b!s〉 t[Φ](〈e, r〉α) =
{
s · BOt [〈b, r + s〉−1Φ](α), if e = b
0, if e ∈ (J ∪O) \ {b}.

5. BOt+u[Φ](〈e, r〉α) = BOt [Φ](〈e, r + rt(u)〉α) + BOu [Φ](〈e, r + rt(t)〉α).

6. BOt Ot‖Ou u = BO\Ou

t ◦ BO\Ot
u = BO\Ot

u ◦ BO\Ou

t , assuming t and u are input-
stochastic.

Input-stochasticity is required in (6) in order to ensure that rt(t′ Ot‖Ou u
′) =

rt(t′)+rt(u′) for all derivatives t′ of t and u′ of u. Further discussion of behavior
maps and their properties can be found in our previous papers [WSS97, Sta03,
SCS03].

4.2 Combinations

As indicated in the introduction, in order to axiomatize behavior equivalence, we
extend our language by adding a construct for forming (convex) combinations
of terms. Specifically, we add an additional binary operator π⊕1−π , where the
parameter π is a real number in the open interval (0, 1).

The following typing rule applies to this new operator:

t : I/J ⇒ O u : I/J ⇒ O rt(t) = rt(u)
t π⊕1−π u : I/J ⇒ O

This rule requires that, for t π⊕1−π u to be well-typed, terms t and u must
have the same aggregate rate as well as a common type. In this case we extend
the notion of aggregate rate by defining rt(t π⊕1−π u) to be the common value
rt(t) = rt(u).

We formally extend the transition semantics ΔO
e given in Section 2.2 to en-

compass terms containing t π⊕1−π u by adding to the defining clauses given
there the additional clause:

ΔO
e (t π⊕1−π u, v) = π ·ΔO

e (t, v) + (1− π) ·ΔO
e (u, v).

Note that in making the extension we are implicitly re-interpreting the origi-
nal clauses from Section 2.2 by allowing for the possibility of terms containing
π⊕1−π . For example, we now have

ΔO
a (〈a?w〉 (t π⊕1−π u), t π⊕1−π u) = w.

We similarly re-interpret the definition of BOt given earlier in this section to allow
for the possibility of terms containing π⊕1−π . These particular definitions are
intuitively motivated by our desire for t π⊕1−π u to represent a probabilistic
choice between (or superposition of) t and u; as considered, for example, in
[And99]. Formally, we obtain the following result:

Lemma 5. For all terms t, u in Proc(I/J ⇒ O) such that rt(t) = rt(u), for all
observables Φ and all rated traces α we have:

BOt π⊕1−π u[Φ](α) = π · BOt [Φ](α) + (1− π) · BOu [Φ](α).
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Lemma 6. Behavior equivalence is substitutive for input prefixing, output
prefixing, choice, and combination of arbitrary terms, and also for parallel
composition of input-stochastic terms. That is, each of the following assertions
holds for terms t and t′ in Proc(I/J ⇒ O) whenever all the terms mentioned
are well-typed and the equivalences make sense:

1. If t ≡
O
t′ then 〈a?w〉 t ≡

O
〈a?w〉 t′.

2. If t ≡
O
t′ then 〈b!r〉 t ≡

O
〈b!r〉 t′.

3. If t ≡
O
t′ then t+ u ≡

O
t′ + u and u+ t ≡

O
u+ t′.

4. If t ≡
O
t′ then t π⊕1−π u ≡

O
t′ π⊕1−π u and u π⊕1−π t ≡

O
u π⊕1−π t

′.
5. If t ≡

O
t′ then t O‖Ou u ≡O′ t

′
O‖Ou u and u Ou‖O t ≡O′ u Ou‖O t′,

assuming t, t′, and u are input-stochastic.

4.3 Axioms

Axioms for behavior equivalence are shown in Table 2. Note that an equation is
only regarded an axiom if all the terms involved are well-formed and the same
type can be inferred for the left and right-hand sides. Particular care must be
taken when using axioms (input-distr) and (output-distr), to see that these equa-
tions are never applied in such a way as to create combinations whose operands
have different rates.

In contrast to the axioms for weighted bisimulation equivalence, the axioms
for behavior equivalence expose some distinction between input and output. For
example, comparison of axiom (input-comb) and (output-comb) reveals that
in (output-comb) the two output actions are permitted to be distinct. This is
not permitted in (input-comb), because in that case the right-hand side would
never be well-typed. Also, the axiom (input-extract) exhibits a special property
of input that is not shared by output. The content of axiom (interchange) is
that the two types of sums commute freely with each other, subject only to the
conditions on rates imposed by well-typedness.

Note that Table 2 includes all the axioms for weighted bisimulation equiv-
alence, except for the axioms (input-choice) and (output-choice). However, it
is not difficult to show that these axioms are derivable, so that all equations
provable for weighted bisimulation equivalence are also provable for behavior
equivalence.

Lemma 7. The axioms in Table 2 are sound for behavior equivalence.

Proof. We prove the case of (input-extract) to give the basic flavor of working
with behavior maps. We must show that

BO〈a?πp〉 t+(u π⊕1−π v)[Φ](α) = BO(〈a?p〉 t+u) π⊕1−π v[Φ](α)

for all observables Φ and rated traces α. We proceed by induction on the length
of the rated trace α. The basis case α = ε is immediate, because by definition of
behavior maps:

BO〈a?πp〉 t+(u π⊕1−π v)[Φ](ε) = Φ(ε) = BO(〈a?p〉 t+u) π⊕1−π v[Φ](ε).
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Table 2. Axioms for Behavior Equivalence

t + nil∅ = t (choice-unit)

t + u = u + t (choice-comm)

(t + u) + v = t + (u + v) (choice-assoc)

a∈I

〈a?1〉 nilI = nilI (nil-fold)

〈a?p〉 t + 〈a?q〉 u = 〈a?p+q〉 t p
p+q

⊕ q
p+q

〈a?p+q〉 u (input-comb)

〈b!r〉 t + 〈c!s〉 u = 〈b!r+s〉 t r
r+s

⊕ s
r+s

〈c!r+s〉 u (output-comb)

t = t π⊕1−π t (comb-idemp)

t π⊕1−π u = u 1−π⊕π t (comb-comm)

(t π⊕1−π u) ρ⊕1−ρ v = t σ⊕1−σ (u τ⊕1−τ v), (comb-assoc)
whenever πρ = σ and (1− ρ) = (1− σ)(1− τ ).

〈a?p〉 t π⊕1−π 〈a?p〉 u = 〈a?p〉 (t π⊕1−π u) (input-distr)

〈b!r〉 t π⊕1−π 〈b!r〉 u = 〈b!r〉 (t π⊕1−π u) (output-distr)

(t π⊕1−π w) + (u π⊕1−π v) = (t + u) π⊕1−π (w + v) (interchange)

〈a?πp〉 t + (u π⊕1−π v) = (〈a?p〉 t + u) π⊕1−π v (input-extract)

Suppose now that α = 〈e, r〉β. Let s = rt(〈a?πp〉 t+ (u π⊕1−π v)) =
rt((〈a?p〉 t+ u) π⊕1−π v). In case e �∈ J ∪O (i.e. e is non-native), then applying
Lemma 4 (1) and the induction hypothesis we have

BO〈a?πp〉 t+(u π⊕1−π v)[Φ](〈e, r〉β) = BO〈a?πp〉 t+(u π⊕1−π v)[〈e, r + s〉−1Φ](β)

= BO(〈a?p〉 t+u) π⊕1−π v[〈e, r + s〉−1Φ](β)

= BO(〈a?p〉 t+u) π⊕1−π v[Φ](〈e, r〉β).

It remains for us to consider the case e ∈ J ∪O. We compute, using Lemma 4:

BO〈a?πp〉 t+(u π⊕1−π v)[Φ](〈e, r〉β)

= BO〈a?πp〉 t[Φ](〈e, r + s〉β) + BOu π⊕1−π v[Φ](〈e, r + 0〉β)

= π · BO〈a?p〉 t[Φ](〈e, r + s〉β) + π · BOu [Φ](〈e, r〉β) + (1 − π) · BOv [Φ](〈e, r〉β)

= π · BO〈a?p〉 t+u[Φ](〈e, r〉β) + (1− π) · BOv [Φ](〈e, r〉β)

= BO(〈a?p〉 t+u) π⊕1−π v[Φ](〈e, r〉β).

Note that the first and third steps crucially depend on the fact that
the input-prefixed terms 〈a?πp〉 t and 〈a?p〉 t have aggregate rate 0, and
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that s = rt(〈a?πp〉 t+ (u π⊕1−π v)) = rt(u π⊕1−π v) = rt(u) = rt(v) =
rt((〈a?p〉 t+ u) π⊕1−π v).

4.4 Normal Forms

Let the notions input normal form, output normal form, and normal form be
defined mutually recursively as follows:

– An input normal form is a well-typed term u that is either nilI for some
I �= ∅, or else has the form:

∑
a∈I
∑

s∈Ra
〈a?pa,s〉 ta,s, where we require that:

1. I �= ∅.
2. Each ta,s is a normal form, with rt(ta,s) = s.
3. For each a ∈ I the set Ra is a nonempty finite subset of (0,∞).
4. u is not an instance (up to permutation of sums) of the left-hand side of

axiom (nil-fold).
– An output normal form is a well-typed term u that is either nil∅ or else has

the form:
∑

b∈O
∑

s∈Rb
〈b!σb,s·r〉 tb,s, where we require that:

1. O �= ∅.
2. Each tb,s is a normal form, with rt(tb,s) = s.
3. For each b ∈ O the set Rb is a nonempty finite subset of (0,∞).
4. Each σb,s satisfies 0 < σb,s ≤ 1 and

∑
b∈O

∑
s∈Rb

σb,s = 1.
An output normal form is called nontrivial if it is not nil∅.

– A normal form is either an input normal form, an output normal form, or
a sum u + v, where u is an input normal form and v is a nontrivial output
normal form.

Lemma 8. Any ‖-free term t in Proc(I/J ⇒ O) can be proved equivalent to a
normal form using the axioms in Table 2.

4.5 Completeness

Key to the completeness proof is Lemma 9 below, which shows how certain
information about the structure of t can be extracted from its behavior. In case
t is a normal form, this information is essentially the entire structure of t, except
for the ordering of terms in sums. Suppose a type I/J ⇒ O has been fixed and
let ∗ be an arbitrarily chosen (non-native) action in Act \ (J ∪O). Given e ∈ Act
and r ≥ 0, let Ξe,r be the observable defined as follows:

Ξe,r(α) =

⎧⎨⎩
s, if α = 〈∗, s〉,
1, if α = 〈e, s〉〈∗, r〉,
0, otherwise.

We call such an observable a probe.

Lemma 9. Suppose t ∈ Proc(I/J ⇒ O). Then the probe Ξe,r has the following
properties:

1. BOt [Ξ∗,0](〈∗, 0〉) = rt(t).

2. For e ∈ J ∪O, BOt [Ξe,r](〈e, 0〉〈∗, 0〉) =
∑

{u:rt(u)=r}Δ
O
e (t, u).
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Lemma 10. Suppose t and t′ are normal forms in Proc(I/J ⇒ O). If BOt = BOt′ ,
then t and t′ are identical up to permutation of sums.

Theorem 2. The axioms in Table 2 are sound and complete for behavior equiv-
alence of ‖-free terms.

5 Conclusion

By comparing complete axiomatizations (and especially the normal forms aris-
ing in the completeness proofs), we have improved our understanding of the
relationship between two notions of equivalence for processes with Markovian
behavior. In contrast to the axiomatization of weighted bisimulation equiva-
lence, the axiomatization of behavior equivalence exhibits differences in the role
of input actions and output actions.

If we restrict to the output-only fragment of the language, then a com-
plete axiomatization of behavior equivalence is given by axioms (choice-unit),
(choice-comm), (choice-assoc), (comb-idemp), (comb-comm), (comb-assoc),
(output-comb), (output-distr), and (interchange). This axiomatization may be
compared to the axiomatization given in [Ber05] for the “Markovian trace equiv-
alence” notion originally defined in [BC00]. In fact, each of the axioms for
Markovian trace equivalence is sound for behavior equivalence, so (applying
Bernardo’s completeness result) Markovian trace equivalent processes are also
behavior equivalent.

Conversely, given a sequence of actions (i.e. a trace) x ∈ Act∗ and a time T
in [0,∞), it is possible to define an observable Φx,T such that “the probability
of performing an execution compatible with x in average time ≤ T ” is given by∑

α BOt [Φx,T ](α), where α ranges over all rated traces that contain only actions
in O. Thus, behavior equivalent output-only processes are also Markovian trace
equivalent. So, one part of what we have achieved is to show that the introduc-
tion of the operator π⊕1−π permits a finite axiomatization of Markovian trace
equivalence, as opposed to the infinite axiom scheme given in [Ber05].

We have not yet succeeded in extending our results to include parallel com-
position. For weighted bisimulation equivalence there is an evident “expansion
theorem” that permits parallel composition to be eliminated in favor of choice.
For behavior equivalence, one might attempt a similar expansion for the parallel
composition of two normal forms. One difficulty in doing this arises from the fact
that behavior equivalence fails to be substitutive for parallel composition unless
we restrict to input-stochastic terms. Thus we cannot employ various useful ma-
nipulations that move individual input-prefixed terms into and out of the scope
of a parallel operator, as these do not preserve input-stochasticity, in general.
Another subtlety is the following: if t ∈ Proc(I/J ⇒ O) and J ′ ∩ (J ∪ O) = ∅,
then there is no way to eliminate parallel composition from a term of the form
t O‖O′ nilJ′ . Such a term amounts to a kind of “input expansion” of t which,
in the absence of a recursion operator, cannot be otherwise expressed. So in
the absence of recursion (or alternatively, an explicit input expansion operator)
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there can be no expansion theorem that completely eliminates parallel composi-
tion. To attempt an axiomatization of recursion would first require an extension
of the completeness results of the present paper to open terms. We leave these
explorations as subjects for future research.
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Faculty of Informatics, Masaryk University,
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Abstract. We consider a class of infinite-state Markov decision pro-
cesses generated by stateless pushdown automata. This class corresponds
to 1 1

2 -player games over graphs generated by BPA systems or (equiva-
lently) 1-exit recursive state machines. An extended reachability objective
is specified by two sets S and T of safe and terminal stack configura-
tions, where the membership to S and T depends just on the top-of-
the-stack symbol. The question is whether there is a suitable strategy
such that the probability of hitting a terminal configuration by a path
leading only through safe configurations is equal to (or different from)
a given x ∈ {0, 1}. We show that the qualitative extended reachability
problem is decidable in polynomial time, and that the set of all con-
figurations for which there is a winning strategy is effectively regular.
More precisely, this set can be represented by a deterministic finite-state
automaton with a fixed number of control states. This result is a gen-
eralization of a recent theorem by Etessami & Yannakakis which says
that the qualitative termination for 1-exit RMDPs (which exactly cor-
respond to our 1 1

2 -player BPA games) is decidable in polynomial time.
Interestingly, the properties of winning strategies for the extended reach-
ability objectives are quite different from the ones for termination, and
new observations are needed to obtain the result. As an application, we
derive the EXPTIME-completeness of the model-checking problem for
1 1

2 -player BPA games and qualitative PCTL formulae.

1 Introduction

1 1
2 -player games (or Markov decision processes) are a fundamental model in the

area of system design and control optimization [11,8]. Formally, a 11
2 -player game

G is a directed graph where the vertices are split into two disjoint subsets V� and
V©. For every v ∈ V©, there is a fixed probability distribution over the set of its
outgoing transitions. A play is initiated by putting a token on some vertex. The
token is then moved from vertex to vertex by one “real” player � (controller)
and one “virtual” player © (stochastic environment), who are responsible for

� Supported by the research center Institute for Theoretical Computer Science (ITI),
project No. 1M0545.
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selecting outgoing transitions in the vertices of V� and V©, respectively. Player
© does not make a real choice, but selects his next move randomly according to
the fixed probability distribution over the outgoing transitions. A strategy spec-
ifies how player � should play. In general, a strategy may or may not depend on
the history of a play (we say that a strategy is history-dependent (H) or mem-
oryless (M)), and the transitions may be chosen deterministically or randomly
(deterministic (D) and randomized (R) strategies). In the case of randomized
strategies, player � chooses a probability distribution on the set of outgoing
transitions. Note that deterministic strategies can be seen as restricted random-
ized strategies, where one of the outgoing transitions has probability 1. Each
strategy σ determines a unique Markov chain G(σ) where the states are finite
paths in G, and wu → wuu′ with probability x iff (u, u′) is a transition in the
game and x is the probability chosen by player �, or the fixed probability of the
transition (u, u′) when u ∈ V©. A winning objective for player � is some prop-
erty of Markov chains that is to be achieved. A winning strategy is a strategy
that achieves the objective. In the context of “classical” MDP theory, winning
objectives are typically related to long-time characteristics such as the expected
total reward, the expected reward per transition, etc. [11,8]. In the context of
formal verification, winning objectives are often specified as formulae of suitable
temporal logics and their probabilistic variants such as PCTL or PCTL∗ [9].
For games with finitely many vertices, the corresponding decision algorithms
have been designed [9,2,1] and also implemented in verifications tools such as
PRISM (see, e.g., [10]). Recently, the scope of this study has been extended to a
class of infinite-state games generated by recursive state machines (RSM) [6,7].
Intuitively, a RSM is a finite collection of finite-state automata which can call
each other in a recursive fashion, maintaining the (unbounded) stack of activa-
tion records. RSM are semantically equivalent to pushdown automata (PDA),
and there are effective linear-time translations between the two models. A given
RSM can be encoded in PDA syntax by storing the collection of finite-state
automata in the control unit, and the recursive calls/returns are modeled by
pushing/popping symbols onto/from the stack. An important subclass of RSM
are 1-exit RSM, where each finite-state automaton in the collection terminates
in exactly one state. This means that no information can be returned back to
the caller. In PDA terms, this means that whenever a given stack symbol X is
popped from the stack, the same control state pX is entered. Hence, the finite-
state control unit can be encoded directly into the stack alphabet and simulated
in top-of-the-stack symbol. Thus, 1-exit RSM can effectively be represented as
stateless PDA, which are also denoted BPA in the context of concurrency theory.

Now we briefly summarize some of the results presented in [6,7]. To be able to
give a clear comparison with our work, we reformulate these results in PDA/BPA
terminology. A termination objective is specified by two control states p, q and
one stack symbolX of a given PDA. The task of player � is to maximize/minimize
the probability of hitting qε from pX (each “head” rY in a given PDA is ei-
ther probabilistic or non-deterministic; transitions from probabilistic heads are
chosen randomly according to a fixed distribution, while the transitions from
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non-deterministic heads can be chosen by player �). In the case of BPA, there
are no control states and the termination objective is specified simply by the
stack symbol which is to be removed.

In [6,7], it has been shown that optimal minimizing/maximizing strategies
in general 1 1

2 -player PDA games with termination objectives do not always ex-
ist, and that the problem whether there is a strategy such that termination is
achieved with probability 1 is undecidable. The situation is different for 1 1

2 -player
BPA games, where the optimal minimizing/maximizing strategies do exist, and
can be constructed so that they depend only on top-of-the-stack symbol of a
given configuration. Hence, the optimal strategies are stackless, memoryless, and
deterministic (SMD). Furthermore, the corresponding minimal/maximal termi-
nation probabilities are expressible as the least solution of an effectively con-
structible system of non-linear recursive equations. Since the least solution of
this system can effectively be expressed in first-order theory of the reals, this en-
tails the decidability of the quantitative termination problem, i.e., the question
whether the minimal/maximal achievable termination probability is bounded by
a given constant. For the qualitative subcase (i.e., the problem whether the min-
imal/maximal achievable termination probability is equal to one), polynomial-
time algorithms have been designed. On the other hand, in [6] it was noted
that model-checking 1 1

2 -player BPA games against qualitative LTL objectives is
already undecidable.

Our contribution: In this paper we consider 1 1
2 -player BPA games with ex-

tended reachability objectives (EROs). An ERO is specified by two sets of safe
and terminal stack symbols. A configuration is safe/terminal iff its top-of-the-
stack symbol is safe/terminal. A run w satisfies a given ERO iff w visits a
terminal configuration and all configurations preceding this visit are safe. The
goal of player � is to minimize/maximize the probability of all runs satisfying
a given ERO. Note that termination objectives can easily be encoded as EROs
(this may require a new bottom-of-the-stack symbol). However, the properties
of EROs are surprisingly different from the ones of termination objectives (in
contrast, methods for termination can easily be extended to EROs for fully prob-
abilistic PDA [4]). We show that optimal maximizing strategies may not exist
at all, and even if they do exist, they are not necessarily SMD. The optimal
minimizing strategies are guaranteed to exist, but are not necessarily SMD. The
method of expressing the minimal/maximal termination probability by a system
of non-linear equations used in [6] cannot be easily extended to EROs, and the
reasons seem to be fundamental.

At the core of our paper are results about qualitative EROs. We show that the
sets of all configurations for which there exists a strategy such that the probabil-
ity of all runs satisfying a given ERO is equal to zero (equal to one, larger than
zero, less than one, resp.) are regular and the corresponding finite-state automata
can be constructed in polynomial time. In our algorithms, we use the results
about qualitative termination as “black boxes” and concentrate on problems
that are specific to EROs. We note that the subcase “equal to one”, and partic-
ularly the subcase “less than one”, require non-trivial methods and observations.
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As an application, we design an exponential-time model-checking algorithm
for 1 1

2 -player BPA games and the qualitative fragment of the logic PCTL. More
precisely, our algorithm is polynomial in the size of a given BPA and exponential
in the size of a given formula (hence, the algorithm becomes polynomial for
each fixed formula). Since there is a matching EXPTIME lower bound [3], we
yield the EXPTIME-completeness of the problem. As a consequence we also
obtain the EXPTIME-completeness of the model-checking problem for fully
probabilistic BPA and qualitative PCTL (fully probabilistic BPA correspond
to a subclass of 1 1

2 -player BPA games where all heads are probabilistic). This
problem has been studied in [4,3], but the best known upper complexity bound
was EXPSPACE. Finally, let us note that since model-checking 1 1

2 -player BPA
games against qualitative LTL properties is already undecidable [6], our result
cannot be extended to the qualitative fragment of PCTL∗.

2 Basic Definitions

In this paper, the set of all positive integers, non-negative integers, rational
numbers, real numbers, and non-negative real numbers are denoted N, N0, Q,
R, and R≥0, respectively.

We start by recalling basic notions of probability theory. Let A be a finite or
countably infinite set. A probability distribution on A is a function f : A→ [0, 1]
such that

∑
a∈A f(a) = 1. A distribution f is rational if f(a) ∈ Q for every

a ∈ A, positive if f(a) > 0 for every a ∈ A, and Dirac if f(a) = 1 for some
a ∈ A. The set of all distributions on A is denoted D(A).

A σ-field over a set X is a set F ⊆ 2X that includes X and is closed under
complement and countable union. A measurable space is a pair (X,F) whereX is
a set called sample space and F is a σ-field over X . A probability measure over a
measurable space (X,F) is a function P : F → R≥0 such that, for each countable
collection {Xi}i∈I of pairwise disjoint elements of F , P(

⋃
i∈I Xi) =

∑
i∈I P(Xi),

and moreover P(X) = 1. A probabilistic space is a triple (X,F ,P) where (X,F)
is a measurable space and P is a probability measure over (X,F).

Markov Chains. A Markov chain is a triple M = (M,→,Prob) where M is
a finite or countably infinite set of states, → ⊆ M ×M is a transition relation
such that for every s ∈M there is some transition s→ t, and Prob is a function
which to each s ∈ M assigns a positive probability distribution over the set of
its outgoing transitions.

In the rest of this paper we also write s x→ t instead of Prob(s → t) = x.
A path in M is a finite or infinite sequence w = s0, s1, · · · of states such that
si → si+1 for every i. We also use w(i) to denote the state si of w, and wi to
denote the path si, si+1, · · · (by writing w(i) = s or wi we implicitly impose the
condition that the length of w is at least i+ 1). A run is an infinite path. The
sets of all finite paths and all runs of M are denoted FPath(M) and Run(M),
respectively. Similarly, the sets of all finite paths and runs that start in a given
s ∈M are denoted FPath(M, s) and Run(M, s), respectively.
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Each w ∈ FPath(M) determines a basic cylinder Run(M, w) which consists
of all runs that start with w. To every s ∈ M we associate the probabilistic
space (Run(M, s),F ,P) where F is the σ-field generated by all basic cylinders
Run(M, w) where w starts with s, and P : F → [0, 1] is the unique probability
function such that P(Run(M, w)) = Πm−1

i=0 xi where w = s0, · · · , sm and si
xi→

si+1 for every 0 ≤ i < m (if m = 0, we put P(Run(M, w)) = 1).
For all S, T ⊆M and s ∈M , we define the sets

– Run(M, s, S U T ) = {w ∈ Run(M, s) | ∃j ≥ 0 : w(j) ∈ T ∧ ∀i < j : w(i) ∈ S}
– Run(M, s,FT ) = {w ∈ Run(M, s) | ∃j ≥ 0 : w(j) ∈ T}
– Run(M, s,¬FT ) = {w ∈ Run(M, s) | ∀j ≥ 0 : w(j) �∈ T}
– Run(M, s,X S) = {w ∈ Run(M, s) | w(1) ∈ S}

Games, Strategies, and Objectives. A 1 1
2 -player game (or Markov decision

process) is a tuple G = (V,E, (V�, V©),Prob) where V is a finite or countably
infinite set of vertices, E ⊆ V × V is a set of transitions, (V�, V©) is a partition
of V , and Prob is a probability assignment which to each v ∈ V© assigns a posi-
tive probability distribution on the set of its outgoing transitions. For technical
convenience, we assume that each vertex has at least one outgoing transition.
We say that G is finitely-branching if for each v ∈ V there are only finitely many
u ∈ V such that (v, u) ∈ E.

The game is played by a player � who selects the moves in the V� vertices,
and a “virtual” player © who selects the moves in the V© vertices according to
the corresponding probability distribution.

A strategy for player � is a function σ which to each wv ∈ V ∗V� assigns
a probability distribution on the set of outgoing transitions of v. We say that
a strategy σ is memoryless (M) if σ(wv) depends just on the last vertex v,
and deterministic (D) if σ(wv) is a Dirac distribution for each wv ∈ V ∗V�.
Strategies that are not necessarily memoryless are called history-dependent (H),
and strategies that are not necessarily deterministic are called randomized (R).
Hence, we can define the following four classes of strategies: MD, MR, HD, and
HR, where MD ⊆ HD ⊆ HR and MD ⊆ MR ⊆ HR, but MR and HD are
incomparable.

Remark 1. Each MD strategy σ determines a unique function fσ : V� → V .
Conversely, each function f : V� → V such that (v, f(v)) ∈ E for every v ∈ V�

determines a unique MD strategy σf .

Each strategy σ for player � determines a unique play of the game G, which is a
Markov chain G(σ) where V + is the set of states, and wu x→ wuu′ iff (u, u′) ∈ E
and one of the following conditions holds:

– u ∈ V© and Prob(u, u′) = x;
– u ∈ V� and σ(wu) assigns x to (u, u′).

For every w ∈ Run(G(σ)) and every i ∈ N0, we define w[i] to be the last vertex
of w(i) (realize that w(i) is a finite sequence of vertices of the game G).

The logic PCTL. The logic PCTL, the probabilistic extension of CTL, was
introduced by Hansson & Jonsson in [9]. Let Ap = {p, q, . . . } be a countably
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infinite set of atomic propositions. The syntax of PCTL formulae is given by the
following abstract syntax equation:

Φ ::= p | Φ1∧Φ2 | ¬Φ | X �� Φ | Φ1 U �� Φ2

Here p ∈ Ap, ' ∈ [0, 1], and � ∈ {≤, <,≥, >,=, �=}.
Let G = (V,E, (V�, V©),Prob) be a 1 1

2 -player game, and let ν : Ap → 2V be
a valuation. The semantics of PCTL is defined below.

[[p]]ν = ν(p)
[[Φ1∧Φ2]]

ν = [[Φ1]]
ν ∩ [[Φ2]]

ν

[[¬Φ]]ν = V � [[Φ]]ν

[[X ��Φ]]ν = {u ∈ V | ∀σ ∈ HR : P(Run(G(σ), u,X [[Φ]]ν)) � '}
[[Φ1 U ��Φ2]]

ν = {u ∈ V | ∀σ ∈ HR : P(Run(G(σ), u, [[Φ1]]
ν U [[Φ2]]

ν)) � '}

The F�� and G�� operators are defined in the standard way: F��Φ stands for
tt U �� Φ, and G��Φ stands for tt U �1−� ¬Φ, where �̂ is <, >, ≤, ≥, =, or �=,
depending on whether � is >, <, ≥, ≤, =, or �=, respectively.

Various natural fragments of PCTL can be obtained by restricting the PCTL
syntax to certain modal connectives and/or certain operator/number combina-
tions. The qualitative fragment of PCTL is obtained by restricting the allowed
operator/number combinations to ‘� 0’ and ‘� 1’. Hence, aU <1b ∨ F>0c is a
qualitative PCTL formula.

BPA Games. A 1 1
2 -player BPA game is a tuple Δ = (Γ, ↪→, (Γ�, Γ©),Prob)

where Γ is a finite stack alphabet, ↪→ ⊆ Γ × Γ≤2 is a set of rules (where Γ≤2 =
{w ∈ Γ ∗ : |w| ≤ 2}) such that for each X ∈ Γ there is some X ↪→ α, (Γ�, Γ©)
is a partition of Γ , and Prob is a probability assignment which to each X ∈ Γ©
assigns a rational positive probability distribution on the set of all rules of the
form X ↪→ α.

Each 1 1
2 -player BPA game Δ = (Γ, ↪→, (Γ�, Γ©),Prob) determines a unique

1 1
2 -player game GΔ = (Γ ∗, EΔ, (Γ�Γ

∗, Γ©Γ
∗ ∪ {ε}),ProbΔ) where the transi-

tions of EΔ are determined as follows: ε → ε, and Xβ → αβ iff X ↪→ α. The
probability assignment ProbΔ is the natural extension of Prob, i.e., ProbΔ(Xβ →
αβ) = Prob(X ↪→ α), and ProbΔ(ε→ ε) = 1. Note that GΔ is finitely branching.

Given a configuration Xα ∈ Γ ∗, we put head(Xα) = X .

3 11
2-Player BPA Games with Extended Reachability

Objectives

In this section we present several results about 1 1
2 -player BPA games with ex-

tended reachability objectives.

Definition 2. Let G = (V,E, (V�, V©),Prob) be an (arbitrary) 1 1
2 -player game.

An extended reachability objective (ERO) is a pair (S, T ), where S, T ⊆ V are
the subsets of safe and terminal vertices.
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Let (S, T ) be an ERO. For every HR strategy σ and every u ∈ V we define
the σ-value of u, denoted Valσ(u), as follows:

Valσ(u) = P(Run(G(σ), u, S U T ))

Furthermore, we define the upper and lower value of u, denoted Val+(u) and
Val−(u), as the sup and inf of the set {Valσ(u) | σ ∈ HR}, respectively.

If the player � wants to maximize (or minimize) the value of a certain vertex
u, he uses a maximizing (or minimizing) strategy. An optimal maximizing (or
optimal minimizing) strategy for a vertex u is a strategy σ such that Valσ(u) is
equal to Val+(u) (or to Val−(u), resp.).

It has been shown in [2] that optimal maximizing/minimizing strategies al-
ways exist in 1 1

2 -player games with finitely many vertices; moreover, there are ef-
ficiently constructible optimal maximizing/minimizing MD strategies. This does
not hold for games with infinitely many vertices—one can easily give an example
of a game with countably many vertices where an optimal minimizing strategy
does not exist for a certain vertex u, and

1 = inf
σ∈MD

{P(Run(G(σ), u, S U T ))} > inf
σ∈HR

{P(Run(G(σ), u, S U T ))} = 0

We are primarily interested in finitely-branching games, where the situation is
somewhat specific. The following proposition gives a full characterization:

Proposition 3. Let G=(V,E, (V�, V©),Prob) be a finitely-branching 1 1
2 -player

game, u ∈ V , and (S, T ) an ERO. Then

(a) there is an optimal minimizing MD strategy for u;
(b) supσ∈MD{P(Run(G(σ), u, S U T ))} = supσ∈HR{P(Run(G(σ), u, S U T ))}
(c) if there is an optimal maximizing HR strategy for u, then there is also an

optimal maximizing MD strategy for u.

Proposition 3 admits the non-existence of an optimal maximizing strategy for
u. This can indeed happen, even for 1 1

2 -player BPA games (see also [6]):

Example 4. Let Δ = ({X,A,D}, ↪→, ({X}, {A,D}),Prob) be a 1 1
2 -player BPA

game, where
X ↪→ XA, X ↪→ ε, A

1/2
↪→ D, A

1/2
↪→ ε, D

1
↪→ D.

Let S = {X,A,D}∗ and T = {D}{A}∗. One can easily verify that Val+(X) = 1.
However, for every HR strategy σ we have that Valσ(X) < 1.

In the rest of this section we restrict our attention to 1 1
2 -player BPA games.

Due to Proposition 3, from now on we can safely consider just MD strategies be-
cause they are equivalently powerful as HR strategies in the context of extended
reachability objectives.

To simplify our notation, for the rest of this section we fix a 11
2 -player BPA

game Δ = (Γ, ↪→, (Γ�, Γ©),Prob). Realize that all of the previously introduced
game-theoretic notions (strategy, upper/lower value, etc.) apply to G(Δ), not
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directly to Δ. In particular, the vertices of G(Δ) are stack configurations of
Γ ∗, which means that MD strategies generally depend on the whole sequence of
symbols which form a given vertex. An MD strategy σ is stackless (SMD) if it
depends just on the top-of-the-stack symbol of a given vertex.

A termination objective is an ERO where S = Γ ∗ and T = {ε}. In [6,7], it
has been shown that 1 1

2 -player BPA games with termination objectives have the
following properties:

(a) There are optimal SMD minimizing and maximizing strategies.
(b) For each X ∈ Γ , the values Val+(X) and Val−(X) are expressible as the

least solution of an effectively constructible system of non-linear equations.
This allows to express the values Val+(X) and Val−(X) in (R,+, ∗,≤), i.e.,
first-order arithmetic of the reals.

(c) The problems whether Val+(α)=x, where x∈{0, 1}, and whether Val−(α)=
x, where x ∈ {0, 1}, are solvable in polynomial time.

In this paper we consider 1 1
2 -player BPA games with more general EROs, where

the sets S and T are simple:

Definition 5. A set M ⊆ Γ ∗ is simple iff there is a characteristic set C(M) ⊆
Γ such that M =

⋃
Y ∈C(M){Y }Γ ∗. An ERO (S, T ) is simple if S and T are

simple.

The properties (a)–(c) stated above do not hold for BPA games with simple
EROs. In particular, note the following:

(A) An optimal minimizing SMD strategy may not exist (though there must be
an optimal minimizing MD strategy by Proposition 3). An optimal maxi-
mizing strategy may not exist at all (see Example 4), and the existence of
an optimal maximizing strategy does not imply the existence of an optimal
maximizing SMD strategy.

(B) The system of non-linear recursive equations which was used in [6] for ter-
mination objectives cannot be immediately generalized to simple EROs. In-
tuitively, the reason is that the optimal minimizing/maximizing strategy in
a configuration Xα does not depend just on X but also on α, and a small
modification of α may lead to a completely different optimal strategy. This
is because one has to “balance” between the probability of termination and
the probability of hitting a terminal configuration for each stack symbol,
depending on what is achievable for the symbols stored below in the stack.

(C) For a given α ∈ Γ ∗, the problems whether Val−(α) = 0, whether Val+(α) =
0, and whether Val−(α) = 1 are solvable in polynomial time. The decidability
of the problem whether Val+(α) = 1 is left open. Nevertheless, we show that
the problem whether there is an optimal maximizing strategy σ such that
Valσ(α) = 1 is decidable in polynomial time (remember that Val+(α) can
be 1 even if no optimal maximizing strategy exists).
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The property (A) is demonstrated in the following example:

Example 6. Let Δ = ({X,R}, ↪→, ({X,R}, ∅),Prob) be a 1 1
2 -player BPA game,

where X ↪→ XR, X ↪→ ε, R ↪→ R. Let us consider an ERO (S, T ) where C(S) =
{X} and C(T ) = {R}. Then Val+(X) = 1 and there an optimal maximizing
MD strategy, but there is no optimal maximizing SMD strategy.

Let Δ′ = ({X,Y, Z,H,R}, ↪→, ({X,Y, Z,R}, {H}),Prob) be a 1 1
2 -player BPA

game, where

X ↪→ Y R, Y ↪→ H, Y ↪→ ε, R ↪→ R, Z ↪→ Z, H
1/2
↪→ Y Z, H

1/2
↪→ R.

Let us consider an ERO (S, T ) where C(S) = {X,Y, Z,H} and C(T ) = {R}.
Then Val−(X) = 1/2 and there an optimal minimizing MD strategy, but there
is no optimal minimizing SMD strategy.

Now we present a sequence of results from which (C) follows as a simple conse-
quence, and which allow to design the model-checking algorithm for 1 1

2 -player
games and qualitative PCTL formulae presented in Section 4.

For the rest of this section, let us fix a simple ERO (S, T ). Let Δ′ = (Γ,�
, (Γ�, Γ©),Prob ′) be a modification of the gameΔ obtained by replacing all rules
of the form P ↪→ α, where P ∈ C(T ) ∪ (Γ � C(S)), with a single rule P � P
(the other rules are preserved). One can easily verify that for every strategy σ
and every α ∈ Γ ∗ we have that P(GΔ(σ), α, S U T ) = P(GΔ′(σ), α,FT ), and
this fact is heavily used in the proofs of subsequent theorems where we freely
“shift” between Δ and Δ′.

Theorem 7. Let [S U >0T ] be the set of all α ∈ Γ ∗ for which there is a strategy
σ such that P(GΔ(σ), α, S U T ) > 0. Then there are A,B ⊆ Γ computable in
polynomial time such that [S U >0T ] = A∗BΓ ∗.

Proof. Let A = {X ∈ Γ | X �∗ ε} and B = {X ∈ Γ | X �∗ Rβ, where R ∈
C(T ) and β ∈ Γ ∗}. Now observe that α ∈ [S U >0T ] iff α �∗ Rβ for some
R ∈ C(T ) and β ∈ Γ ∗ iff α ∈ A∗BΓ ∗. The sets A,B can be computed using
standard algorithms for PDA reachability. ��

Theorem 8. Let [S U =0T ] be the set of all α ∈ Γ ∗ for which there is a strategy
σ such that P(GΔ(σ), α, S U T ) = 0. Then there are A,B ⊆ Γ computable in
polynomial time such that [S U =0T ] = B∗ ∪ (B∗AΓ ∗).

Proof. We define the sets A and B as follows:

– X ∈ A iff there is a strategy σ such that P(Run(GΔ′(σ), X,F(T ∪{ε}))) = 0
– X ∈ B iff there is a strategy σ such that P(Run(GΔ′ (σ), X,FT )) = 0

It is easy to verify that A and B satisfy the property that [S U =0T ] = B∗ ∪
B∗AΓ ∗.

We show that the sets A and B can be computed as the greatest fixpoint of
a monotonic function Θ : 2Γ × 2Γ → 2Γ × 2Γ , where Θ(M,N) = (M ′, N ′) is
defined as follows:
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– X ∈M ′ iff X ∈M � C(T ) and the following conditions are satisfied:
• If X ∈ Γ�, then there is a rule of one of the following forms: X � Y

where Y ∈M , or X � Y Z where either Y ∈M , or Y ∈ N and Z ∈M .
• If X ∈ Γ©, then all rules of the form X � α satisfy either α = Y where
Y ∈M , or α = Y Z where either Y ∈M , or Y ∈ N and Z ∈M .

– X ∈ N ′ iff X ∈ N � C(T ) and the following conditions are satisfied:
• If X ∈ Γ�, then there is a rule of one of the following forms: X � ε,

or X � Y where Y ∈ N ∪M , or X � Y Z where either Y ∈ M , or
Y, Z ∈ N ∪M .

• If X ∈ Γ©, then all rules of the form X � α satisfy either α = ε,
or α = Y where Y ∈ N ∪ M , or α = Y Z where either Y ∈ M , or
Y, Z ∈ N ∪M .

It is easy to show that:

(1) (A,B) is a fixpoint of Θ.
(2) If (C,D) is a fixpoint of Θ, then C ⊆ A and D ⊆ B.

Hence, the sets A and B can be computed in polynomial time by a simple
iterative algorithm. ��

Theorem 9. Let [S U =1T ] be the set of all α ∈ Γ ∗ for which there is a strategy
σ such that P(GΔ(σ), α, S U T ) = 1. Then there are A,B, C ⊆ Γ computable in
polynomial time such that [S U =1T ] = (B ∪ C)∗AΓ ∗.

Proof. We define the sets A, B and C as follows:

– X ∈ A iff there is a strategy σ such that P(Run(GΔ′ (σ)), X,FT ) = 1
– X ∈ B iff there is a strategy σ such that P(Run(GΔ′ (σ)), X,F(T ∪{ε})) = 1

and P(Run(GΔ′ (σ)), X,FT ) > 0
– X ∈ C iff there is a strategy σ such that P(Run(GΔ′(σ)), X,F{ε}) = 1

Observe that C can be computed in polynomial time using the algorithm of [7].
Moreover, it is easy to show that [S U =1T ] = (B∪C)∗AΓ ∗ and [S U =1(T∪{ε})] =
(B ∪ C)∗ ∪ (B ∪ C)∗AΓ ∗.

We prove that the sets A and B can be computed in polynomial time. The
proof proceeds as follows: first we define a monotone function Θ : 2Γ × 2Γ →
2Γ ×2Γ and show that (A,B) is the greatest fixpoint of Θ. Second, we show how
to compute Θ (and hence also its greatest fixpoint) in polynomial time.

In order to define the function Θ we need to introduce some notation. Let
R,H ⊆ Γ . For every MD strategy π, we define two predicates QR,H and Q′

R,H

over FPath(GΔ′(π), X) as follows: Given a path u ∈ FPath(GΔ′(π), X) of length
n ≥ 0, the predicate QR,H(u) (or Q′

R,H(u)) holds iff u[n] ∈ T and for all
0 ≤ i < n such that u[i] ∈ Γ©Γ

∗ we have that all successors of u(i) are
of the form (H ∪ C)∗RΓ ∗ (or (H ∪ C)∗RΓ ∗ ∪ (H ∪ C)∗, resp.). Now, we put
Θ(R,H) = (R′, H ′) where

R′={X ∈ R ∪ C(T ) | ∃π∃u ∈ FPath(GΔ′ (π), X), QR∪C(T ),H∪C(T )(u) = true}
H ′={X ∈ H ∪C(T ) | ∃π∃u ∈ FPath(GΔ′ (π), X), Q′

R∪C(T ),H∪C(T )(u) = true}
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It follows directly from the definition that Θ is monotone. It remains to show
that (A,B) is the greatest fixpoint of Θ. First, we prove that (A,B) is a fixpoint.

Let Θ(A,B) = (A′,B′). Since A′ ⊆ A and B′ ⊆ B by definition of Θ, it
suffices to show the opposite inclusions. Let X ∈ A and let σ be a strategy which
witnesses that X ∈ A. Let us consider a path of minimal length in GΔ′(σ) from
X to a configuration of T . Since every configuration reachable from X along a
path which does not visit T belongs to [S U =1T ] = (B∪C)∗AΓ ∗, we can conclude
X ∈ A′. Similarly, we can show that B ⊆ B′ which implies thatΘ(A,B) = (A,B).

Now, suppose that (R,H) is a fixpoint of Θ. We prove that R ⊆ A andH ⊆ B.
For every Y ∈ R (or Y ∈ H), let us fix a path uY which witnesses that Y ∈ R (or
Y ∈ H , resp.). It follows from the definition of Θ that if Y ∈ R (or Y ∈ H) then
all successors of all stochastic configurations that appear on uY are of the form
(H∪C)∗RΓ ∗ (or (H∪C)∗RΓ ∗∪(H∪C)∗, resp.). Note that for every configuration
of the form (H∪C)∗RΓ ∗ there is a strategy which forces almost all runs to reach
a configuration of the form RΓ ∗∪ (H(H ∪C)∗RΓ ∗). Let us consider a strategy π
which from configurations of the form {X}Γ ∗ where X ∈ R (or configurations of
the form {X}(H∪C)∗RΓ ∗ where X ∈ H) follows the path uX and for all succes-
sors of stochastic configurations on uX strives to reach configurations of the form
RΓ ∗ ∪ (H(H ∪C)∗RΓ ∗) with probability 1. Now, observe that almost every run
of Run(GΔ′(π), X), where X ∈ R, enters configurations with a head Y ∈ R∪H
infinitely often, which implies that almost every run takes a path uY for some
Y ∈ R∪H . It follows that P(Run(GΔ′(π), X,FT )) = 1. Similarly, we prove that
for X ∈ H there is a strategy π such that P(Run(GΔ′ (π), X,F(T ∪ {ε})) = 1
and P(Run(GΔ′ (π), X,FT ) > 0.

So, we proved that (A,B) is the greatest fixpoint of Θ. Now we indicate how
to compute Θ(R,H) in polynomial time.

We can consider Δ′ as a non-probabilistic BPA (just ignoring the probabil-
ities on transitions from the stochastic configurations). Observe that there is a
path u with the properties stated in the definition of R′ (or H ′) iff in the non-
probabilistic BPA Δ′ the set T is reachable via configurations with all successors
in (H ∪ C)∗RΓ ∗ (or (H ∪ C)∗RΓ ∗ ∪ (H ∪ C)∗, resp.). This variant of reachabil-
ity problem is decidable in polynomial time for BPA processes using standard
techniques. ��

Theorem 10. Let [S U <1T ] be the set of all α ∈ Γ ∗ for which there is a strategy
σ such that P(GΔ(σ), α, S U T ) < 1. Then there are A,B ⊆ Γ computable in
polynomial time such that [S U <1T ] = A∗ ∪ (A∗BΓ ∗).

Proof. Let us define the sets A and B as follows:

– X ∈ A iff there is a strategy σ such that P(Run(GΔ′ (σ), X,F{ε})) > 0
– X∈ B iff there is a strategy σ such that P(Run(GΔ′ (σ), X,¬F(T∪{ε})))> 0

It is easy to prove that A and B satisfy the desired property [S U <1T ] = A∗ ∪
(A∗BΓ ∗). It follows from Theorem 7 that the membership to A is decidable in
polynomial time. For the rest of this proof we fix some X ∈ Γ and examine the
conditions under which X ∈ B.
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One sufficient condition for X∈B is the existence of some Y ∈ Γ�C(T ) and
two strategies σ, π where P(Run(GΔ′ (σ), X,F({Y }Γ ∗))> 0 and P(Run(GΔ′ (π),
Y,F(T∪{ε}))) = 0. The strategies σ and π can be combined into a single strategy
σ′ which behaves like σ until a configuration with the head Y is reached, and
then it behaves like π. Obviously, P(Run(GΔ′ (σ′), X,¬F(T ∪ {ε}))) > 0. The
existence of such Y , σ and π can be decided in polynomial time using Theorem 7
and Theorem 8. However, this condition is not necessary as the following example
illustrates. Let us consider a 1 1

2 -player BPA game with rules

A
1/2
↪→ C, A

1/2
↪→ B, B

3/4
↪→ BB, B

1/4
↪→ ε, C

1
↪→ C.

Note that this example closely ressembles one-dimensional (asymmetric) random
walk. It can be shown that using the only (empty) strategy the probability of
reaching ε or (a configuration with a head) C from A is less than 1 but every Y
reachable from A reaches ε or C with a non-zero probability.

Hence, let us assume that there are no suitable Y , σ and π such that
P(Run(GΔ′(σ), X,F({Y }Γ ∗)) > 0 and P(Run(GΔ′(π), Y,F(T ∪ {ε}))) = 0.
For now, let us assume that X ∈ B and let us fix a strategy σ which witnesses
that X ∈ B.

Claim (1). There are Y ∈ Γ � C(T ) where P(GΔ′(σ), X,F({Y }Γ ∗)) > 0, sets
A ⊆ Γ�C(T ) and R ⊆�, a strategy σ′, and a set of runs V ⊆ Run(GΔ′ (σ′), Y )
such that

1. P(V ) > 0;
2. for all w ∈ V and i ≥ 0 we have that head(w[i]) ∈ A (in particular, Y ∈ A)

and w(i) → w(i+ 1) is induced by a transition rule of R;
3. for every Z ∈ A there are infinitely many i ≥ 0 such that head(w[i]) = Z

and for every rule Z � α ∈ R there are infinitely many i ≥ 0 such that
w(i) → w(i+ 1) is induced by Z � α.

Proof (of Claim (1)). For all A ⊆ Γ and R ⊆ �, we denote LA,R the set of all
w ∈ Run(GΔ′ (σ), X,¬F(T ∪{ε})) such that exactly the heads of A and exactly
the transitions induced by the rules of R occur infinitely often along w. Since
there are only finitely many sets LA,R, Run(GΔ′ (σ), X,¬F(T ∪{ε})) =

⋃
LA,R,

and P(Run(GΔ′(σ), X,¬F(T ∪ {ε}))) > 0, we have that P(LA,R) > 0 for some
A and R. Let us fix such sets A and R.

For every v ∈ FPath(GΔ′(σ), X), we denote Uv the set of all runs w of LA,R
such that v is a prefix of w, w(|v|−1) is a minimum of w (i.e. for all j ≥ |v| we
have that the length of w[j] is not strictly less than the length of w[|v|−1]), and
for all i ≥ |v|−1 we have that head(w[i]) ∈ A and w(i) → w(i+1) is induced by a
rule of R. Clearly, LA,R =

⋃
v∈FPath(GΔ′(σ),X) Uv. It follows that 0 < P(LA,R) ≤∑

v∈FPath(GΔ′(σ),X) P(Uv) and thus there is v ∈ FPath(GΔ′ (σ), X) such that
P(Uv) > 0.

Let us assume that v[|v|−1] = Y α and let w ∈ Uv. Since w(|v|−1) is a
minimum of w, for all i ≥ 0 we have that w(i+|v|−1) = βiα where βi �= ε. We
define Θ(w) = β0, β0β1, β0β1β2, . . .. Now, let us consider a strategy σ′ which,
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along a run Θ(w) of Θ(Uv), behaves similarly as σ over w after the prefix v
(ignoring the context α). It can be proved using standard arguments for Markov
chains that P(Uv) = P(Run(GΔ′ (σ), v)) · P(Θ(Uv)), which implies that

P(Θ(Uv)) =
P(Uv)

P(Run(GΔ′(σ), v))
> 0

Now it is easy to verify that we can safely put V = Θ(Uv). �

For all A′ ⊆ Γ and R′ ⊆�, we put Δ′
A′,R′ = (A′, R′, (A′ ∩ Γ�, A

′ ∩ Γ©),Prob).

Claim (2). Δ′
A,R is a 1 1

2 -player BPA game, and there is a strategy π for Δ′
A,R

such that P(Run(GΔ′
A,R

(π), Y,F{ε})) < 1.

Proof (of Claim (2)). First we take a closer look at the rules inR. Let Z ∈ Γ©∩A
and let Z � D. We claim that (Z,D) ∈ R and D ∈ A. Indeed, all runs of V
enter a configuration having Z as its head infinitely often which implies that
almost all runs of V take the rule Z � D infinitely often. Thus, if (Z,D) �∈ R
or D �∈ A, then P(V ) = 0. Similarly, we prove that if Z � ε then (Z, ε) ∈ R.

Let us consider a rule Z � DE. By the same argument as above we conclude
that (Z,DE) ∈ R and D ∈ A. We show that E ∈ A. Suppose the converse,
i.e., E �∈ A. We claim that then for every ξ > 0 there is a strategy ζ such
that P(Run(GΔ′ (ζ), D,F(T ∪ {ε}))) < ξ, because otherwise P(V ) = 0. Indeed,
if for every ζ we have P(Run(GΔ′ (ζ), D,F(T ∪ {ε}))) ≥ ξ for a fixed ξ > 0,
then almost all runs of V enter E infinitely often, because all runs of V enter a
configuration with the head Z infinitely often and no run of V enters T . Now,
we employ Proposition 3 (a) and conclude that there is a strategy ζ′ such that
P(Run(GΔ′(ζ′), D,F(T ∪ {ε})) = 0. However, D is reachable from X (using a
suitable strategy) which contradicts our assumption. Hence, E ∈ A.

Now let us assume that Z ∈ Γ� ∩ A. Observe that (Z, α) ∈ R for at least
one rule Z � α. Let us assume that (Z,D) ∈ R. We have that Z � D is used
infinitely often along every run of V and thus D ∈ A. Similarly, if (Z,DE) ∈ R
then D ∈ A and using similar arguments as above (for Z ∈ Γ© ∩ A) we can
show that E ∈ A.

The above arguments imply that Δ′
A,R is a 1 1

2 -player BPA game. Now, let
us consider an arbitrary strategy π for Δ′

A,R which behaves similarly as σ′ over
runs of V . The existence of such a strategy is guaranteed by Claim (1). Using
standard arguments for Markov chains, it can be proven that the probability of
V remains the same (i.e., non-zero) in GΔ′

A,R
(π) as in GΔ′ (σ′), which implies

that P(GΔ′
A,R
, Y,F{ε}) < 1. �

So far, we have proved that if X ∈ B, then

– there are Y ∈ Γ � C(T ), A ⊆ Γ � C(T ) and R ⊆ � such that Y ∈ A and
Δ′

A,R is a 1 1
2 -player BPA game;

– there is a strategy σ satisfying P(Run(GΔ′ (σ), Y,F({Y }Γ ∗)) > 0;
– there is a strategy π satisfying P(Run(GΔ′

A,R
(π), Y,F{ε})) < 1.
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Using the strategies σ and π, we can easily define a strategy ζ for Δ′ which wit-
nesses that X ∈ B (ζ behaves like σ until Y is reached and then behaves like π).

Now, it is easy to see that if Δ′
A′,R′ is a 1 1

2 -player BPA game for some A′ ⊇ A
and R′ ⊇ R, then the strategy π can be extended to a strategy π′ in Δ′

A′,R′ which
satisfies P(Run(GΔ′

A′,R′ (π
′), Y,F{ε})) = P(Run(GΔ′

A,R
(π), Y,F{ε})) < 1. Fur-

thermore, if for A′, R′ and A′′, R′′ we have that Δ′
A′,R′ and Δ′

A′′,R′′ are 1 1
2 -player

BPA games, then Δ′
A′∪A′′,R′∪R′′ is a 1 1

2 -player BPA game.
Hence, in order to decide whetherX ∈ B, it suffices to compute the largest sets

A ⊆ Γ�C(T ) andR ⊆ � for whichΔ′
A,R is a 1 1

2 -player BPA game, and to decide
whether there are Y ∈ A, σ, and π such that P(Run(GΔ′ (σ), X,F({Y }Γ ∗)) > 0
and P(Run(GΔ′

A,R
(π), Y,F{ε})) < 1. The problem whether there is π such that

P(Run(GΔ′
A,R

(π), Y,F{ε})) < 1 can be decided in polynomial time using the
algorithm of [7]. The maximal sets A and R can be computed using a simple
fixpoint algorithm. ��

4 Model-Checking Qualitative PCTL for 11
2-Player BPA

Games

In this section we show that the results about 1 1
2 -player BPA games with ex-

tended reachability objectives (see Section 3) can be used to design an essen-
tially optimal model-checking algorithm for the qualitative fragment of PCTL
and 1 1

2 -player BPA games. For technical convenience, we restrict ourselves to
simple valuations, where ν(p) is a simple set for each p ∈ Ap (see Definition 5).

Infinite sets of stack configurations will be represented by deterministic finite-
state automata (DFA) which read the stack bottom-up. Formally, a DFA is a
tuple F = (Q,Σ, δ, q̂, F ) where Q is a finite set of control states, Σ is a finite
input alphabet, δ : (Q×Σ)→ Q is a total transition function, q̂ ∈ Q is the initial
state, and F ⊆ Q is a subset of final states. The function δ is extended to the
elements of Q × Σ∗ in the natural way. A word w ∈ Σ∗ is accepted by F iff
δ(q0, w) ∈ F .

LetΔ be a 1 1
2 -player BPA game with the stack alphabet Γ , and let F be a DFA

with the input alphabet Γ . We say that a stack configuration α ∈ Γ ∗ is recognized
by F iff the reverse of α is accepted by F . Note that stack configurations are
traditionally written as words starting with the top-of-the-stack symbol, but for
technical reasons we prefer to read them in the bottom-up (i.e., right to left)
direction.

In the proof of our next theorem we use the standard technique of simulating
DFA in the stack alphabet (see, e.g., [5]).

Theorem 11. Let Δ = (Γ, ↪→, (Γ�, Γ©),Prob) by a 1 1
2 -player BPA game. Let

ν be a simple valuation and Φ a qualitative PCTL formula. Then there is a
DFA FΦ of size |Δ| · 2O(|Φ|) constructible in time which is polynomial in |Δ|
and exponential in |Φ| such that for all α ∈ Γ ∗ we have that α |=ν Φ iff α is
recognized by FΦ.
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Proof. We proceed by induction on the structure of Φ. The cases when Φ ≡ p,
Φ ≡ Φ1 ∧ Φ2, and Φ ≡ ¬Φ1 follow immediately.

Let Φ ≡ X =1Φ1, and let F1 = (Q1, Γ, δ1, q̂, F1) be the DFA associated with
Φ1. The automaton F associated with Φ should then recognize exactly all α ∈ Γ ∗

such that for every transition α→ β we have that β is recognized by F1. Hence,
we put F = (Q1 ∪ Q′

1, Γ, δ, r̂, Q
′
1), where Q′

1 = {q′ | q ∈ Q1} and the transition
function δ is constructed as follows: Let q ∈ Q1, A ∈ Γ , and let t = δ1(q, A). If
for all rules A ↪→ γ we have that δ1(q, γr) ∈ F1 (where γr denotes the reverse
of γ), then δ(q, A) = δ(q′, A) = t′. Otherwise, δ(q, A) = δ(q′, A) = t. The initial
state r̂ of F is either q̂′ or q̂, depending on whether ε is recognized by F1 or not,
respectively.

The cases when Φ ≡ X <1Φ1, Φ ≡ X =0Φ1, and Φ ≡ X >0Φ1 are handled
similarly.

Now, let us consider the case when Φ ≡ Φ1 U =1Φ2. Note that α |=ν Φ1 U =1Φ2
iff there is no MD strategy σ such that P(Run(GΔ(σ), α, [[Φ1]]U [[Φ2]])) < 1. Let
F1 = (Q1, Γ, δ1, q̂, F1) and F2 = (Q2, Γ, δ2, r̂, F2) be the DFA associated with Φ1
and Φ2. We construct another DFA F which accepts exactly those α ∈ Γ ∗ for
which there exists an MD strategy σ such that P(Run(GΔ(σ), α, [[Φ1]]U [[Φ2]])) <
1. The desired DFA is then obtained simply by complementing the automaton
F . First we construct a 1 1

2 -player BPA game Δ̄ which is obtained from Δ by
encoding the automata F1, F2 into the stack alphabet and simulating them “on-
the-fly”. Formally, Δ̄ = (Γ̄ ,�, (Γ̄�, Γ̄©),Pr ) where Γ̄ = (Γ ∪ {ε})× Q1 × Q2,
Γ̄� = Γ� ×Q1 ×Q2, Γ̄© = (Γ© ∪ {ε})×Q1 ×Q2 and the transition relation �

together with Pr are defined as follows (A, q, and r range over Γ , Q1, and Q2,
respectively):

– (A, q, r) x
� ε iff A x

� ε;
– (A, q, r) x

� (B, q, r) iff A x
� B

– (A, q, r) x
� (B, q′, r′)(C, q, r) iff A x

� BC, δ1(q, C) = q′ and δ2(r, C) = r′;
– (ε, q, r) 1

� (ε, q, r).

For every configuration α ∈ Γ ∗ of the form An · · ·A1 there is a unique con-
figuration [α] ∈ Γ̄ ∗ of the form (An, qn, rn) · · · (A1, q1, r1)(ε, q̂, r̂) where q1 = q̂,
r1 = r̂, and for all 0 ≤ i < n we have that δ1(qi, Ai) = qi+1 and δ2(ri, Ai) = ri+1.
Note that for every α ∈ Γ ∗, the subgraphs of GΔ and GΔ̄ which consist of all
vertices reachable from α and [α] are isomorphic. Let S, T ⊆ Γ̄ ∗ be the simple
sets where

– C(S) = {(x, q, r) | x ∈ Γ ∪ {ε}, δ1(q, x) ∈ F1, r ∈ Q2}
– C(T ) = {(x, q, r) | x ∈ Γ ∪ {ε}, q ∈ Q1, δ2(r, x) ∈ F2}.

Now it is easy to see that {α ∈ Γ ∗ | ∃σ : P(Run(GΔ(σ), α, [[Φ1]]U [[Φ2]])) < 1}
is equal to the set K = {α ∈ Γ ∗ | ∃σ : P(Run(GΔ̄(σ), [α], S U T )) < 1}. By
Theorem 10, there effectively exist the sets A,B ⊆ Γ̄ such that K = {α ∈ Γ ∗ |
[α] ∈ A∗ ∪ (A∗BΓ̄ ∗)}. Hence, the automaton F recognizing the set K can now
be constructed as follows: we put F = (Q,Γ, δ, t̂, F ) where
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– Q = Q1 ×Q2 × {0, 1}.
– For all A ∈ Γ , q ∈ Q1, r ∈ Q2, and i ∈ {0, 1} we put δ((q, r, i), A) =

(δ1(q, A), δ2(r, A), j), where

• j = 0 iff either i = 0 and (q, r, A) ∈ A ∪ B, or i = 1 and (q, r, A) ∈
B;

• j = 1 iff either i = 0 and (q, r, A) ∈ Γ � (A ∪ B), or i = 1 and
(q, r, A) ∈ Γ � B.

– The initial state t̂ is either (q̂, r̂, 0) or (q̂, r̂, 1), depending on whether (ε, q̂, r̂)∈
A ∪ B or not, respectively.

– F = Q1 ×Q2 × {0}.

The cases when Φ ≡ Φ1 U =0Φ2, Φ ≡ Φ1 U >0Φ2, and Φ ≡ Φ1 U <1Φ2 are handled
similarly, using Theorem 7, 8, and 9, respectively.

The complexity of the whole algorithm is easy to evaluate (it suffices to con-
sider the worst subcase Φ ≡ Φ1 U ��Φ2). ��

Since the model-checking problem for qualitative PCTL and fully probabilistic
BPA (i.e., the subclass of 1 1

2 -player BPA games where Γ� = ∅) is known to be
EXPTIME-hard [3], we obtain the following:

Corollary 12. The model-checking problem for qualitative PCTL and 1 1
2 -player

BPA games is EXPTIME-complete. For each fixed formula, the problem be-
comes solvable in polynomial time.

Acknowledgement. We thank an anonymous reviewer for fixing a mistake in the
proof of Theorem 9.
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Abstract. A stochastic graph game is played by two players on a game
graph with probabilistic transitions. We consider stochastic graph games
with ω-regular winning conditions specified as Rabin or Streett objec-
tives. These games are NP-complete and coNP-complete, respectively.
The value of the game for a player at a state s given an objective Φ is
the maximal probability with which the player can guarantee the sat-
isfaction of Φ from s. We present a strategy-improvement algorithm
to compute values in stochastic Rabin games, where an improvement
step involves solving Markov decision processes (MDPs) and nonsto-
chastic Rabin games. The algorithm also computes values for stochastic
Streett games but does not directly yield an optimal strategy for Streett
objectives. We then show how to obtain an optimal strategy for Streett
objectives by solving certain nonstochastic Streett games.

1 Introduction

Graph games. A stochastic graph game [6] is played on a directed graph with
three kinds of states: player-1, player-2, and probabilistic states. At player-1
states, player 1 chooses a successor state; at player-2 states, player 2 chooses a
successor state; at probabilistic states, a successor state is chosen according to
a given probability distribution. The outcome of playing the game forever is an
infinite path through the graph. If there are no probabilistic states, we refer to
the game as a 2-player graph game; otherwise, as a 21/2-player graph game. If
there are only player 1 states and probabilistic states, we refer to the game as a
Markov decision process (MDP).

Games with Rabin and Streett objectives. The theory of graph games with ω-
regular winning conditions is the foundation for modeling and synthesizing reac-
tive processes with fairness constraints [16,15,17]. In the case of 21/2-player graph
games, the two players represent a reactive system (or plant) and its environment
(or controller), and the probabilistic states represent uncertainty. The fairness
constraints of reactive processes lead to ω-regular objectives [13]. Strong-fairness

� This research was supported in part by the NSF grants CCR-0225610 and CCR-
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constraints correspond to Streett objectives; and Rabin objectives are their dual.
Moreover, every ω-regular objective can be specified as a Rabin and a Streett
objective. The quantitative solution problem for a 21/2-player game with a Rabin
objective Φ asks for each state s, for the maximal probability with which player 1
can ensure the satisfaction of Φ if the game is started from s (this probability is
called the value of the game at the state s). An optimal strategy for player 1 is
a strategy that enables player 1 to win with that maximal probability. The ex-
istence of pure memoryless optimal strategies for 21/2-player games with Rabin
objectives was established recently [3] (a pure memoryless strategy chooses for
each player-1 state a unique successor state; it uses neither randomization nor
the history of the game). The existence of pure memoryless optimal strategies
implies that the quantitative solution problem for 21/2-player games with Rabin
objectives can be decided in NP; and the problem is NP-hard even for 2-player
games [10]. Hence 21/2-player games with Rabin objectives are NP-complete,
and dually, coNP-complete for Streett objectives. The optimal strategies for the
Streett player require memory, but finite-memory optimal strategies exist.

Algorithms. Emerson-Jutla [10] showed that 2-player Rabin and Streett games
(without probabilistic states) are NP-complete and coNP-complete, respectively.
Several algorithms are known to solve 2-player Rabin and Streett games: re-
cursive algorithms on game graphs [10]; algorithms obtained by reduction to
checking the emptiness of weak alternating automata [12]; and algorithms based
on ranking functions [14]. These algorithms are much better than a brute-force
enumeration of all possible pure memoryless strategies, especially for Rabin ob-
jectives with few Rabin pairs. For example the algorithm of [14] works in time
O(m ·nd+1 ·d!) for game graphs with n states and m edges, and Rabin objectives
with d pairs. For 21/2-player games (with probabilistic states), Condon [6] proved
containment in NP ∩ coNP and gave a strategy-improvement algorithm for the
restricted case of reachability objectives. A strategy-improvement scheme iter-
ates local optimizations of a pure memoryless strategy; this works if the iteration
can be shown to converge to the global optimum [11]. For 21/2-player games with
parity objectives (parity objectives are a complementation-closed subclass of Ra-
bin and Streett objectives) containment in NP ∩ coNP was shown in [5] and a
strategy-improvement algorithm was given in [4]. However, for 21/2-player games
with general Rabin objectives, no algorithm has been known other than either
a brute-force enumeration of the set of all possible pure memoryless strategies
(choosing the best one as the optimal strategy), or a reduction of Rabin objec-
tives to parity objectives. However, first reducing Rabin to parity objectives, and
then applying the strategy-improvement algorithm for 21/2-player parity games,
yields a worst-case complexity of double-exponential time.

Our results and techniques. We present a direct strategy-improvement algorithm
for 21/2-player Rabin games. The improvement step involves solving MDPs with
Streett objectives and solving 2-player Rabin games. Our algorithm combines
techniques for 2-player Rabin games and for 21/2-player reachability games,
employing a novel reduction from 21/2-player Rabin games (with quantitative
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winning criteria) to 2-player Rabin games (with qualitative winning criteria). A
similar idea has been used to obtain a strategy-improvement algorithm for 21/2-
player parity games [4]; however, our present algorithm is more subtle for the
following reasons. First, for parity objectives pure memoryless optimal strategies
exist for both players, and the analysis of the strategy-improvement algorithm
for 21/2-player parity games can be restricted to pure memoryless strategies.
However, the complement of a Rabin objective is a Streett objective: optimal
strategies for Streett objectives require memory for 21/2-player games, and pure
optimal strategies require memory even for MDPs. A key insight to our analysis
is as follows: once a pure memoryless strategy for a player is fixed, we obtain an
MDP, and in MDPs with Streett objectives, randomized (not necessarily pure)
memoryless optimal strategies exist. Since pure memoryless optimal strategies
exist for 21/2-player games with Rabin objectives, we consider only pure mem-
oryless strategies for the player with the Rabin objective. Then the analysis of
the counter-optimal strategies for the other player is restricted to randomized
memoryless strategies. Second, the algorithm for 21/2-player parity games relies
on the existence of a strategy-improvement algorithm for 2-player parity games.
The present algorithm does not depend on any specific algorithm to solve 2-
player Rabin games, but uses as a black-box any algorithm to solve 2-player
Rabin games for the improvement step.

Our strategy-improvement algorithm requires exponentially many improve-
ment steps in the worst case; the running time can be bounded by O(2n·log n ·(m ·
d)·(n·d)d+2·(d+1)!) for game graphs with n states andm edges, and Rabin objec-
tives with d pairs. We also present a randomized strategy-improvement algorithm
with an expected subexponential number of iterations, using the techniques of [1]
(note that since improvement steps need to solve 2-player Rabin games, the im-
provement steps may take exponential time). The expected running time of the
randomized algorithm can be bounded byO(2

√
n·logn·(m·d)·(n·d)d+2 ·(d+1)!). By

determinacy, the Rabin algorithms obtain the values for Streett objectives also,
but they do not directly yield optimal strategies for stochastic Streett games,
because optimal Streett strategies in general are not pure memoryless. We show
that how, once the values are computed, we can construct optimal strategies for
Streett objectives by solving certain 2-player games with Streett objectives.

2 Definitions

We consider several classes of turn-based games, namely, two-player turn-based
probabilistic games (21/2-player games), two-player turn-based deterministic
games (2-player games), and Markov decision processes (11/2-player games).

Game graphs. A turn-based probabilistic game graph (21/2-player game graph)
G = ((S,E), (S1, S2, S©), δ) consists of a directed graph (S,E), a partition (S1,
S2, S©) of the finite set S of states, and a probabilistic transition function δ:
S© → D(S), where D(S) denotes the set of probability distributions over the
state space S. The states in S1 are the player-1 states, where player 1 decides the
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successor state; the states in S2 are the player-2 states, where player 2 decides
the successor state; and the states in S© are the probabilistic states, where the
successor state is chosen according to the probabilistic transition function δ. We
assume that for s ∈ S© and t ∈ S, we have (s, t) ∈ E if and only if δ(s)(t) > 0,
and we often write δ(s, t) for δ(s)(t). For technical convenience we assume that
every state in the graph (S,E) has at least one outgoing edge. For a state s ∈ S,
we write E(s) to denote the set {t ∈ S | (s, t) ∈ E} of possible successors.

A set U ⊆ S of states is δ-closed if for every probabilistic state u ∈ U ∩ S©,
we have E(u) ⊆ U . The set U is δ-live if for every nonprobabilistic state u ∈
U ∩ (S1∪S2), we have E(u)∩U �= ∅. A δ-closed and δ-live subset U of S induces
a subgame graph of G, indicated by G � U .

The turn-based deterministic game graphs (2-player game graphs) are the spe-
cial case of the 21/2-player game graphs with S© = ∅. The Markov decision
processes (11/2-player game graphs) are the special case of the 21/2-player game
graphs with S1 = ∅ or S2 = ∅. We refer to the MDPs with S2 = ∅ as player-1
MDPs, and to the MDPs with S1 = ∅ as player-2 MDPs.

Plays and strategies. An infinite path, or play, of the game graph G is an infinite
sequence ω = 〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all k ∈ N. We
write Ω for the set of all plays, and for a state s ∈ S, we write Ωs ⊆ Ω for the
set of plays that start from the state s.

A strategy for player 1 is a function σ: S∗·S1 → D(S) that assigns a probability
distribution to all finite sequences w ∈ S∗ ·S1 of states ending in a player-1 state
(the sequence represents a prefix of a play). Player 1 follows the strategy σ if in
each player-1 state, given that the current history of the game is w ∈ S∗ · S1,
she chooses the next state according to the probability distribution σ(w). A
strategy must prescribe only available moves, i.e., for all w ∈ S∗, s ∈ S1, and
t ∈ S, if σ(w · s)(t) > 0, then (s, t) ∈ E. The strategies for player 2 are defined
analogously. We denote by Σ and Π the sets of strategies for player 1 and
player 2, respectively.

Once a starting state s ∈ S and strategies σ ∈ Σ and π ∈ Π for the two
players are fixed, the outcome of the game is a random walk ωσ,πs for which
the probabilities of events are uniquely defined, where an event A ⊆ Ω is a
measurable set of plays. Given strategies σ for player 1 and π for player 2,
a play ω = 〈s0, s1, s2, . . .〉 is feasible if for every k ∈ N the following three
conditions hold: (1) if sk ∈ S©, then (sk, sk+1) ∈ E; (2) if sk ∈ S1, then
σ(s0, s1, . . . , sk)(sk+1) > 0; and (3) if sk ∈ S2, then π(s0, s1, . . . , sk)(sk+1) > 0.
Given two strategies σ ∈ Σ and π ∈ Π , and a state s ∈ S, we denote by
Outcome(s, σ, π) ⊆ Ωs the set of feasible plays that start from s given strategies
σ and π. For a state s ∈ S and an event A ⊆ Ω, we write Prσ,πs (A) for the
probability that a play belongs to A if the game starts from the state s and the
players follow the strategies σ and π, respectively.

We classify strategies according to their use of randomization and memory.
The strategies that do not use randomization are called pure. A player-1 strat-
egy σ is pure if for all w ∈ S∗ and s ∈ S1, there is a state t ∈ S such that
σ(w · s)(t) = 1. We denote by ΣP ⊆ Σ the set of pure strategies for player 1. A
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strategy that is not necessarily pure is called randomized. Let M be a set called
memory. A player-1 strategy can be described as a pair of functions: a memory-
update function σu: S × M → M and a next-move function σm: S1 × M → D(S).
The strategy (σu, σm) is finite-memory if the memory M is finite. We denote
by ΣF the set of finite-memory strategies for player 1, and by ΣPF the set of
pure finite-memory strategies; that is, ΣPF = ΣP ∩ΣF . The strategy (σu, σm)
is memoryless if |M| = 1. A memoryless player-1 strategy does not depend on
the history of the play, but only on the current state, and hence can be rep-
resented as a function σ: S1 → D(S). A pure memoryless strategy is a pure
strategy that is memoryless. A pure memoryless strategy for player 1 can be
represented as a function σ: S1 → S. We denote by ΣM the set of memoryless
strategies for player 1, and by ΣPM the set of pure memoryless strategies; that
is, ΣPM = ΣP ∩ ΣM . Analogously we define the families ΠP , ΠM , and ΠPM

of pure, memoryless, and pure memoryless strategies for player 2, respectively.
Given a memoryless strategy σ ∈ ΣM , let Gσ be the game graph obtained

from G under the constraint that player 1 follows the strategy σ. The corre-
sponding definition Gπ for a player-2 strategy π ∈ ΠM is analogous, and we
write Gσ,π for the game graph obtained from G if both players follow the mem-
oryless strategies σ and π, respectively. Observe that given a 21/2-player game
graph G and a memoryless player-1 strategy σ, the result Gσ is a player-2 MDP.
Similarly, for a player-1 MDP G and a memoryless player-1 strategy σ, the re-
sult Gσ is a Markov chain. Hence if G is a 21/2-player game graph and the two
players follow memoryless strategies σ and π, the result Gσ,π is a Markov chain.
These observations will be useful in the analysis of 21/2-player games.

Objectives. We specify objectives for the players by providing the set of winning
plays Φ ⊆ Ω for each player. In this paper we consider ω-regular objectives [17]
specified as Rabin and Streett objectives: a Rabin objective for player 1, and the
complementary Streett objective for player 2. For a play ω = 〈s0, s1, s2, . . .〉, let
Inf(ω) be the set {s ∈ S | s = sk for infinitely many k ≥ 0} of states that occur
infinitely often in ω. We use colors to define objectives independent of game
graphs. For a set C of colors, we write [[·]]: C → 2S for a function that maps
each color to a set of states. Inversely, given a set U ⊆ S of states, we write
[U ] = {c ∈ C | [[c]] ∩ U �= ∅} for the set of colors that occur in U . Note that a
state can have multiple colors.

A Rabin objective is specified as a set P = {(e1, f1), . . . , (ed, fd)} of pairs
of colors ei, fi ∈ C. Intuitively, the Rabin condition P requires that for some
1 ≤ i ≤ d, all states of color ei be visited finitely often and some state of
color fi be visited infinitely often. Let [[P ]] = {(E1, F1), . . . , (Ed, Fd)} be the
corresponding set of so-called Rabin pairs, where Ei = [[ei]] and Fi = [[fi]] for all
1 ≤ i ≤ d. Formally, the set of winning plays is Rabin(P ) = {ω ∈ Ω | ∃ 1 ≤ i ≤
d. (Inf(ω) ∩ Ei = ∅ ∧ Inf(ω) ∩ Fi �= ∅)}. Without loss of generality, we require
that

⋃
i∈{1,2,...,d}(Ei ∪ Fi) = S. The parity (or Rabin-chain) objectives are the

special case of Rabin objectives such that E1 ⊂ F1 ⊂ E2 ⊂ F2 ⊂ · · · ⊂ Ed ⊂ Fd.
A Streett objective is again specified as a set P = {(e1, f1), . . . , (ed, fd)} of

pairs of colors. The Streett condition P requires that for each 1 ≤ i ≤ d, if
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some state of color fi is visited infinitely often, then some state of color ei
be visited infinitely often. Formally, the set of winning plays is Streett(P ) =
{ω ∈ Ω | ∀ 1 ≤ i ≤ d. (Inf(ω) ∩ Ei �= ∅ ∨ Inf(ω) ∩ Fi = ∅)}, for the set
[[P ]] = {(E1, F1), . . . , (Ed, Fd)} of so-called Streett pairs. Note that the Rabin
and Streett objectives are dual; i.e., the complement of a Rabin objective is
a Streett objective, and vice versa. Moreover, every parity objective is both a
Rabin objective and a Streett objective.
Sure winning, almost-sure winning, and optimality. Given a player-1 objective Φ,
a strategy σ ∈ Σ is sure winning for player 1 from a state s ∈ S if for every
strategy π ∈ Π for player 2, we have Outcome(s, σ, π) ⊆ Φ. The strategy σ is
almost-sure winning for player 1 from the state s for the objective Φ if for every
player-2 strategy π, we have Prσ,πs (Φ) = 1. The sure and almost-sure winning
strategies for player 2 are defined analogously. Given an objective Φ, the sure win-
ning set 〈〈1〉〉sure(Φ) for player 1 is the set of states from which player 1 has a sure
winning strategy. The almost-sure winning set 〈〈1〉〉almost (Φ) for player 1 is the
set of states from which player 1 has an almost-sure winning strategy. The sure
winning set 〈〈2〉〉sure(Ω \Φ) and the almost-sure winning set 〈〈2〉〉almost (Ω \Φ) for
player 2 are defined analogously. It follows from the definitions that for all 21/2-
player game graphs and all objectives Φ, we have 〈〈1〉〉sure(Φ) ⊆ 〈〈1〉〉almost (Φ). A
game is sure (resp. almost-sure) winning for player i, if player i wins surely (resp.
almost-surely) from every state in the game. Computing sure and almost-sure
winning sets and strategies is the qualitative analysis of 21/2-player games [9].

Given objectives Φ ⊆ Ω for player 1 and Ω \ Φ for player 2, we define the
value functions 〈〈1〉〉val and 〈〈2〉〉val for the players 1 and 2, respectively, as the
following functions from the state space S to the interval [0, 1] of reals: for all
states s ∈ S, let 〈〈1〉〉val (Φ)(s) = supσ∈Σ infπ∈Π Prσ,πs (Φ) and 〈〈2〉〉val (Ω \Φ)(s) =
supπ∈Π infσ∈Σ Prσ,πs (Ω \ Φ). In other words, the value 〈〈1〉〉val (Φ)(s) gives the
maximal probability with which player 1 can achieve her objective Φ from state s,
and analogously for player 2. The strategies that achieve the value are called
optimal: a strategy σ for player 1 is optimal from the state s for the objective
Φ if 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,πs (Φ). The optimal strategies for player 2 are
defined analogously. Computing values and optimal strategies is the quantitative
analysis of 21/2-player games.

Let C ∈ {P,M,F,PM ,PF} and consider a family ΣC ⊆ Σ of special strategies
for player 1. The family ΣC of strategies suffices with respect to a player-1
objective Φ on a class G of game graphs for sure winning if for every game
graph G ∈ G and state s ∈ 〈〈1〉〉sure(Φ), there is a player-1 strategy σ ∈ ΣC

such that for every player-2 strategy π ∈ Π , we have Outcome(s, σ, π) ⊆ Φ.
Similarly, the family ΣC suffices with respect to the objective Φ on the class
G of game graphs for almost-sure winning if for every game graph G ∈ G and
state s ∈ 〈〈1〉〉almost (Φ), there is a player-1 strategy σ ∈ ΣC such that for every
player-2 strategy π ∈ Π , we have Prσ,πs (Φ) = 1; and for optimality, if for every
game graph G ∈ G and state s ∈ S, there is a player-1 strategy σ ∈ ΣC such
that 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,πs (Φ).
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For sure winning, the 11/2-player and 21/2-player games coincide with 2-player
(deterministic) games where the random player (who chooses the successor at the
probabilistic states) is interpreted as an adversary, i.e., as player 2. Theorem 1
and Theorem 2 state the classical determinacy results for 2-player and 21/2-player
game graphs with Rabin and Streett objectives.

Theorem 1 (Qualitative determinacy). [10] For all 2-player game graphs
with state space S, and all Rabin objectives Φ and Streett objectives Ω \ Φ, we
have 〈〈1〉〉sure(Φ) = S \ 〈〈2〉〉sure(Ω \ Φ). Moreover, on 2-player game graphs,
the family of pure memoryless strategies suffices for sure winning with respect
to Rabin objectives, and the family of pure finite-memory strategies suffices for
sure winning with respect to Streett objectives.

Theorem 2 (Quantitative determinacy). [3] For all 21/2-player game
graphs, all Rabin objectives Φ and Streett objectives Ω \ Φ, and all states s,
we have 〈〈1〉〉val (Φ)(s) + 〈〈2〉〉val (Ω \ Φ)(s) = 1. Moreover, on 21/2-player game
graphs, the family of pure memoryless strategies suffices for optimality with re-
spect to Rabin objectives, and the family of pure finite-memory strategies suffices
for optimality with respect to Streett objectives.

Since in 21/2-player games with Rabin objectives, the pure memoryless strategies
suffice for optimality, in the sequel we consider only pure memoryless strategies
for the player with the Rabin objective (i.e., player 1).

3 Strategy-Improvement Algorithm

We first recall a few key properties of 21/2-player games with Rabin objectives
that were proved in [3]. We will use these properties to develop a strategy-
improvement algorithm for 21/2-player games with Rabin objectives.

Key properties. We present a reduction of 21/2-player parity games to 2-player
parity games capturing the ability of player 1 to win almost-surely.

Reduction. Given a 21/2-player game graph G = ((S,E), (S1, S2, S©), δ), a set
C = {e1, f1, . . . , ed, fd} of colors, and a color map [·]: S → 2C \ ∅, we construct
a 2-player game graph G = ((S,E), (S1, S2), δ) together with a color map [·]:
S → 2C \ ∅ for the extended color set C = C ∪ {ed+1, fd+1}. The construction
is specified as follows. For every nonprobabilistic state s ∈ S1 ∪ S2, there is a
corresponding state s ∈ S such that (1) s ∈ S1 if and only if s ∈ S1, and (2) [s] =
[s], and (3) (s, t) ∈ E if and only if (s, t) ∈ E. Every probabilistic state s ∈ S©
is replaced by the following gadget. From state s with [s] = [s], the players play
the following 3-step game in G. First, in state s player 2 chooses a successor
(s̃, 2k), for k ∈ {0, 1, . . . , d}. For every state (s̃, 2k), we have [(s̃, 2k)] = [s]. For
k ≥ 1, in state (s̃, 2k) player 1 chooses from two successors: state (ŝ, 2k−1) with
[(ŝ, 2k − 1)] = ek, or state (ŝ, 2k) with [(ŝ, 2k)] = fk. The state (s̃, 0) has only
one successor, (ŝ, 0), with [(ŝ, 0)] = fd+1. Note that no state in S is labeled by
the new color ed+1, that is, [[ed+1]] = ∅. Finally, in each state (ŝ, j) the choice is
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between all states t such that (s, t) ∈ E, and it belongs to player 1 if k is odd,
and to player 2 if k is even.

We consider 21/2-player games played on the graph G with the Rabin ob-
jective Rabin(P ) for player 1, where P = {(e1, f1), . . . , (ed, fd)}. We denote
by G = Tr1as(G) the 2-player game with the Rabin objective Rabin(P ), where
P = {(e1, f1), . . . , (ed+1, fd+1)}, as defined by the reduction above. Also, given
a (pure memoryless) strategy σ in the 2-player game G, a strategy σ = Tr1as(σ)
in the 21/2-player game G is defined as follows: for all s ∈ S1, let σ(s) = t if and
only if σ(s) = t. Similar definitions hold for player 2.

Lemma 1. [3] Given a 21/2-player game graph G with the Rabin objective
Rabin(P ) for player 1, let U1 and U2 be the sure winning sets for players 1
and 2, respectively, in the 2-player game graph G = Tr1as(G) with the modified
Rabin objective Rabin(P ). Define the sets U1 and U2 in the original 21/2-player
game graph G by U1 = {s ∈ S | s ∈ U1} and U2 = {s ∈ S | s ∈ U2}. Then the
following assertions hold: (1) U1 = 〈〈1〉〉almost (Rabin(P )) = S \ U2; and (2) if
σ is a pure memoryless sure winning strategy for player 1 from U1 in G, then
σ = Tr1as(σ) is a pure memoryless almost-sure winning strategy for player 1 from
U1 in G.

A similar reduction preserves almost-sure winning for player 2 (i.e., the player
with the Streett objective), and we refer to the reduction for player 2 as Tr2as.
Also, there is a simple mapping of finite-memory sure winning strategies π in
Tr2as(G) to finite-memory almost-sure winning strategies π = Tr2as(π) in G.

Boundary probabilistic states. Given a set U of states, let Bnd(U) = {s ∈ U∩S© |
∃t ∈ E(s). t �∈ U} be the set of boundary probabilistic states, which have an edge
out of U . Given a set U of states and a Rabin objective Rabin(P ) for player 1,
we define two transformations Trwin1(U) and Trwin2(U) of U as follows: every
state s in Bnd(U) is converted to an absorbing state (i.e., a state with only a
self-loop), and (1) in Trwin1(U) it is assigned the color f1, and (2) in Trwin2(U)
it is assigned the color e1; i.e., every state in Bnd(U) is converted to a sure
winning state for player 1 in Trwin1(U) and every state in Bnd(U) is converted
to a sure winning state for player 2 in Trwin2(U). Observe that if U is δ-live,
then Trwin1(G � U) and Trwin2(G � U) are game graphs.

Value classes. Given a Rabin objective Φ, for every real r ∈ [0, 1] the value
class with value r, denoted VC(r) = {s ∈ S | 〈〈1〉〉val (Φ)(s) = r}, is the set
of states with value r for player 1. For every r > 0, the value class VC(r) is
δ-live. The following lemma establishes a connection between value classes, the
transformations Trwin1 and Trwin2 , and almost-sure winning states.

Lemma 2. [3] For all r > 0, the game Trwin1(G � VC(r)) is almost-sure winning
for player 1. For all r < 1, the game Trwin2(G � VC(r)) is almost-sure winning
for player 2.

Lemma 3 (Optimal strategies). [3] Consider a strategy σ for player 1 (resp.
π for player 2) such that the strategy is an almost-sure winning strategy in the
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game Trwin1(G � VC(r)), for all r > 0 (resp. in the game Trwin2(G � VC(r)), for
all r < 1). Then σ (resp. π) is an optimal strategy in G.

It follows from Lemma 1 and Lemma 2, that for every value class VC(r), with
r > 0, the game Tr1as(Trwin1(G � VC(r))) is sure winning for player 1.

Properties of almost-sure winning states. It follows from the results of [9] that
for parity objectives, if the set of almost-sure winning states for a player is
empty, then the other player wins almost-surely from all states in the game.
Since games with Rabin and Streett objectives can be reduced to games with
parity objectives [17], Lemma 4 follows. Lemma 5 is a result from [2].

Lemma 4. Given a 21/2-player game graph G with state space S, and a Rabin
objective Φ, if 〈〈1〉〉almost (Φ) = ∅, then 〈〈2〉〉almost (Ω \ Φ) = S.

Lemma 5. [2] The family of randomized memoryless strategies suffices for op-
timality with respect to Streett objectives on MDPs.

Strategy-improvement algorithm. We now present an algorithm to compute
the values for 21/2-player games with a Rabin objective Φ for player 1. By quanti-
tative determinacy (Theorem 2), the algorithm also computes the values for the
Streett objective Ω \Φ for player 2. Recall that optimal pure memoryless strate-
gies exist for Rabin objectives, and hence we consider only pure memoryless
strategies for player 1.

Definitions. Given a player-1 strategy σ and a Rabin objective Φ, we denote the
value of player 1 given the strategy σ as follows: 〈〈1〉〉σval (Φ)(s) = infπ∈Π Prσ,πs (Φ).
We define the value classes given strategy σ by VCσ(r)={s ∈ S | 〈〈1〉〉σval (Φ)(s) =
r}, for all r > 0. We define an ordering relation ≺ on strategies as follows: given
two strategies σ and σ′, we have σ ≺ σ′ if and only if (1) for all states s ∈ S,
we have 〈〈1〉〉σval (Φ)(s) ≤ 〈〈1〉〉σ′

val (Φ)(s), and (2) for some state s ∈ S, we have
〈〈1〉〉σval (Φ)(s) < 〈〈1〉〉σ′

val (Φ)(s).

Strategy-improvement step. Given a strategy σ for player 1, we describe a proce-
dure Improve to “improve” the strategy for player 1. The procedure is described
in Algorithm 1. An informal description of the procedure is as follows: given a
strategy σ, the algorithm computes the values 〈〈1〉〉σval (Φ)(s) for all states. Since
σ is a pure memoryless strategy, 〈〈1〉〉σval (Φ)(s) can be computed by solving the
MDP Gσ with the Streett objective Ω \ Φ. If there is a state s ∈ S1 such
that the strategy can be “value improved,” i.e., there is a state t ∈ E(s) with
〈〈1〉〉σval (Φ)(t) > 〈〈1〉〉σval (Φ)(s), then the strategy σ is modified by setting σ(s) to
t. This is achieved in Step 2.1 of Improve. Otherwise in every value class VCσ(r),
the strategy σ is “improved” for the game Tr1as(Trwin2(G � VCσ(r))) by solving
the 2-player game Tr1as(Trwin2(G � VCσ(r))) by an algorithm to solve 2-player
Rabin games.

The complexity of Improve will be discussed in Lemma 10. In the algorithm
the strategy σ for player 1 is always a pure memoryless strategy (this is sufficient,
because pure memoryless strategies suffice for optimality in 21/2-player games
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Algorithm 1. Improve

Input: A 21/2-player game graph G, a Rabin objective Φ for player 1,
and a pure memoryless strategy σ for player 1.

Output: A pure memoryless strategy σ′ for player 1 such that σ′ = σ or σ ≺ σ′.
[Step 1] Compute 〈〈1〉〉σval(Φ)(s) for all states s.
[Step 2] Consider the set I = {s ∈ S1 | ∃t ∈ E(s). 〈〈1〉〉σval (Φ)(t) > 〈〈1〉〉σval(Φ)(s)}.

2.1 (Value improvement) if I �= ∅ then choose σ′ as follows:
σ′(s) = σ(s) for s ∈ S1 \ I ; and
σ′(s) = t for s ∈ I, where t ∈ E(s) such that 〈〈1〉〉σval (Φ)(t) > 〈〈1〉〉σval (Φ)(s).

2.2 (Qualitative improvement) else
for each value class VCσ(r) with r < 1 do

Let Gr be the 2-player game Tr1as(Trwin2(G � VCσ(r))).
Let Ur be the sure winning states for player 1 in Gr;

let Ur the corresponding set in G; and
let σr be the sure winning strategy for player 1 in U r.

Choose σ′(s) = Tr1as(σr � Ur)(s) for all states in Ur; and
σ′(s) = σ(s) for all states in VCσ(r) \ Ur .

return σ′.

with Rabin objectives (Theorem 2)). Moreover, given a pure memoryless strat-
egy σ, the game Gσ is a player-2 MDP, and by Lemma 5, there is a randomized
memoryless counter-optimal strategy for player 2. Hence, fixing a pure memo-
ryless strategy for player 1, we only consider randomized memoryless strategies
for player 2. We now define the notion of Rabin winning set, and then present
Fact 1 and Fact 2, which are useful in the correctness proof of the algorithm.

Rabin winning set. Consider a Rabin objective Rabin(P ) and let [[P ]] = {(E1, F1),
(E2, F2), . . . , (Ed, Fd)} be the set of Rabin pairs. A set C ⊆ S is Rabin winning
if there exists 1 ≤ i ≤ d such that C ∩ Ei = ∅ and C ∩ Fi �= ∅, i.e., for all plays
ω if Inf(ω) = C, then ω ∈ Rabin(P ).

Fact 1. For all strategies σ for player 1, all r ∈ [0, 1], and all states s ∈ VCσ(r)∩
S2, if t ∈ E(s), then 〈〈1〉〉σval (Φ)(t) ≥ r, that is, E(s) ⊆

⋃
q≥r VCσ(q).

Fact 2. For all strategies σ for player 1 and all memoryless strategies π ∈ ΠM

for player 2, if there is a closed recurrent class C in the Markov chain Gσ,π with
C ⊆ VCσ(r) for some r > 0, then C is Rabin winning.

Lemma 6. Consider a strategy σ to be an input to Algorithm 1, and let σ′ be
the corresponding output, i.e., σ′ = Improve(G, σ). If the set I in Step 2 of
Algorithm 1 is nonempty, then (1) 〈〈1〉〉σ′

val (Φ)(s) ≥ 〈〈1〉〉σval (Φ)(s) for all states
s ∈ S; and (2) 〈〈1〉〉σ′

val (Φ)(s) > 〈〈1〉〉σval (Φ)(s) for all states s ∈ I.

Proof. Consider a switch of the strategy of player 1 from σ to σ′, as constructed
in Step 2.1 of Algorithm 1. Consider a strategy π ∈ ΠM for player 2 and a closed
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recurrent class C in Gσ′,π such that C ⊆
⋃

r>0 VCσ(r). Let z = max{r > 0 |
C ∩ VCσ(r) �= ∅}, that is, VCσ(z) is the greatest value class with a nonempty
intersection with C. A state s ∈ VCσ(z) ∩ C satisfies the following conditions:

1. If s ∈ S2, then for all t ∈ E(s) if π(s)(t) > 0, then t ∈ VCσ(z). This follows,
because by Fact 1 we have E(s) ⊆

⋃
q≥z VCσ(q) and C ∩ VCσ(q) = ∅ for

q > z.
2. If s ∈ S1, then σ′(s) ∈ VCσ(z). This follows, because by construction σ′(s) ∈⋃

q≥z VCσ(q) and C ∩ VCσ(q) = ∅ for q > z. Also, since s ∈ VCσ(z) and
σ′(s) ∈ VCσ(z), it follows that σ′(s) = σ(s).

3. If s ∈ S©, then E(s) ⊆ VCσ(z). This follows, because for s ∈ S©, if E(s) �
VCσ(z), then E(s)∩

⋃
q>z VCσ(q) �= ∅. Since C is closed, and C∩VCσ(q) = ∅

for q > z, the claim follows.

It follows that C ⊆ VCσ(z), and for all states s ∈ C ∩ S1, we have σ′(s) = σ(s).
Hence, by Fact 2, we conclude that C is Rabin winning.

It follows that if player 1 switches to the strategy σ′, as constructed when
Step 2.1 of Algorithm 1 is executed, then for all strategies π ∈ ΠM for player 2
the following assertion holds: if there is a closed recurrent class C ⊆ S \VCσ(0)
in the Markov chain Gσ′,π, then C is Rabin winning for player 1. Hence given
strategy σ′, a counter-optimal strategy for player 2 maximizes the probability to
reach VCσ(0). The desired result follows from arguments similar to 21/2-player
games with reachability objectives [7], with VCσ(0) as the target for player 2,
and the value improvement step (Step 2.1 of Algorithm 1).

Lemma 7. Consider a strategy σ to be an input to Algorithm 1, and let σ′ be
the corresponding output, that is, σ′ = Improve(G, σ), such that σ′ �= σ. If the
set I in Step 2 of Algorithm 1 is empty, then (1) 〈〈1〉〉σ′

val (Φ)(s) ≥ 〈〈1〉〉σval (Φ)(s)
for all states s ∈ S; and (2) 〈〈1〉〉σ′

val (Φ)(s) > 〈〈1〉〉σval (Φ)(s) for some state s ∈ S.

Proof. It follows from Fact 2 that for all strategies π ∈ ΠM for player 2, if
C is a closed recurrent class in Gσ,π and C ⊆ VCσ(r), for r > 0, then C
is Rabin winning. Let σ′ be the strategy constructed from σ in Step 2.2 of
Algorithm 1. Let the set of states where σ is modified to obtain σ′ be Ur.
Then by construction, the strategy σ′ � Ur is an almost-sure winning strategy
in Ur in the subgame Trwin2(G � VCσ(r)). This follows from Lemma 1, because
σ′ � Ur = Tr1as(σ � U r) and σ � U r is a sure winning strategy for player 1 in U r in
the subgame Tr1as(Trwin2(G � VCσ(r))). It follows that if C is a closed recurrent
class in Gσ′,π and C ⊆ VCσ(r), for r > 0, then C is Rabin winning. Arguments
similar to Lemma 6 show that the following assertion holds: for all strategies
π ∈ ΠM for player 2, if there is a closed recurrent class C ⊆ (S \ VCσ(0)) in
the Markov chain Gσ′,π, then C is Rabin winning. Since in strategy σ′ player 1
chooses every edge in the same value class as σ, it can be shown that for all
states s ∈ S, we have 〈〈1〉〉σ′

val (Φ)(s) ≥ 〈〈1〉〉σval (Φ)(s).
If σ �= σ′, then the set Ur where the strategy σ is modified is nonempty. Since

σ′ � Ur is an almost-sure winning strategy in Ur in Trwin2(G � VCσ(r)), it follows
that given σ′, any counter-optimal strategy π ∈ ΠM of player 2 either moves
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to a higher value class, or player 1 wins almost-surely in Ur. In either case, for
some state s ∈ Ur, we have 〈〈1〉〉σ′

val (Φ)(s) > 〈〈1〉〉σval (Φ)(s).

Lemma 8. If σ �= Improve(G, σ), then σ ≺ Improve(G, σ).

Lemma 9. If σ = Improve(G, σ), then σ is an optimal strategy for player 1.

Lemma 8 follows from Lemma 6 and Lemma 7. The key argument to establish
Lemma 9 is as follows: let σ be a strategy such that σ = Improve(G, σ). It
follows that the strategy σ cannot be “value-improved.” Moreover, for all r < 1,
the set of almost-sure winning states in Trwin2(G � VCσ(r)) for player 1 is empty.
By Lemma 4 it follows that for all r < 1, all states in Trwin2(G � VCσ(r)) are
almost-sure winning for player 2. Consider a strategy π for player 2 such that
the strategy π is almost-sure winning in Trwin2(G � VCσ(r)) for all r < 1. Let
U<1 = S\VCσ(1). For all strategies σ′ of player 1 and all states s ∈ U<1, we have
Prσ

′,π
s (Φ | Safe(U<1)) = 0, where Safe(U<1) = {ω = 〈s0, s1, . . .〉 | ∀k ≥ 0. sk ∈

U<1} denotes the set of plays that only visit states in U<1. Hence, given the
strategy π, any counter-optimal strategy for player 1 maximizes the probability
to reach VCσ(1). Since the strategy σ cannot be “value improved,” it follows from
arguments similar to [7] for 21/2-player reachability games that for all player-1
strategies σ′, all r < 1, and all states s ∈ VCσ(r), we have Prσ

′,π
s (Φ) ≤ r. Hence

for all r ∈ [0, 1] and all states s ∈ VCσ(r), we have 〈〈1〉〉val (Φ)(s) ≤ r. For all
r ∈ [0, 1] and all states s ∈ VCσ(r), we have r = 〈〈1〉〉σval (Φ)(s) ≤ 〈〈1〉〉val (Φ)(s).
This establishes the optimality of σ.

Lemma 10. The procedure Improve can be computed in time O(poly(n)) ·
O(TwoPlRabinGame(n · d,m · d, d+ 1)), where poly is a polynomial function.

In Lemma 10 we denote by O(TwoPlRabinGame(n · d,m · d, d + 1)) the time
complexity of an algorithm for solving 2-player Rabin games with n · d states,
m · d edges, and d + 1 Rabin pairs. Recall the reduction Tr1as blows up states
in and outgoing edges from S© by a factor of d, and adds a new Rabin pair. A
call to Improve requires solving an MDP with Streett objectives quantitatively
(Step 1 of Improve; this can be achieved in polynomial time), and computing
Step 2.2 requires to solve at most n two-player Rabin games (since there can be
at most n value classes). Lemma 10 follows. Also recall that by the results of [14]
we have O(TwoPlRabinGame(n · d,m · d, d+1)) = O

(
(m · d) · (n · d)d+2 · (d+ 1)!

)
.

A strategy-improvement algorithm using the Improve procedure is described
in Algorithm 2. Observe that it follows from Lemma 8 that, if Algorithm 2
outputs a strategy σ∗, then σ∗ = Improve(G, σ∗). The correctness of the algo-
rithm follows from Lemma 9 and yields Theorem 2. Given an optimal strategy
σ for player 1, the values for both the players can be computed in polynomial
time by computing the values of the MDP Gσ [3,8]. Since there are at most(
m
n )n ≤ 2n·logn possible pure memoryless strategies, it follows that Algorithm 2

requires at most 2n·logn iterations. This along with Lemma 10 gives us the fol-
lowing theorem.
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Algorithm 2. StrategyImprovementAlgorithm

Input: A 21/2-player game graph G and a Rabin objective Φ for player 1.
Output: An optimal strategy σ∗ for player 1.
1. Choose an arbitrary pure memoryless strategy σ for player 1.
2. while σ �= Improve(G, σ) do σ = Improve(G, σ).
3. return σ∗ = σ.

Theorem 3 (Correctness of Algorithm 2). For every 21/2-player game
graph G and Rabin objective Φ, the output σ∗ of Algorithm 2 is an optimal
strategy for player 1. The running time of Algorithm 2 is bounded by 2O(n·logn) ·
O((m · d) · (n · d)d+2 · (d+ 1)!) if G has n states and m edges, and Φ has d pairs.

4 Randomized Algorithm

We now present a randomized algorithm for 21/2-player Rabin games, by com-
bining an algorithm of Björklund et al. [1] and the procedure Improve.

Games and improving subgames. Given l,m ∈ N, let G(l,m) be the class of 21/2-
player game graphs with the set S1 of player 1 states partitioned into two sets as
follows: (1) O1 = {s ∈ S1 | |E(s)| = 1}, i.e., the set of states with outdegree 1;
and (2) O2 = S1\O1, with O2 ≤ l and

∑
s∈O2

|E(s)| ≤ m. There is no restriction
for player 2. Given a game G ∈ G(l,m), a state s ∈ O2, and an edge e = (s, t), we
define the subgame G̃e of G by deleting all outgoing edges from s other than the
edge e. Observe that G̃e ∈ G(l−1,m−|E(s)|), and hence also G̃e ∈ G(l,m). If σ
is a strategy for player 1 in G ∈ G(l,m), then a subgame G̃ of G is σ-improving
if some player-1 strategy σ′ in G̃ satisfies σ ≺ σ′.

Informal description of the randomized algorithm. We refer to the randomized
algorithm as Algorithm 3. The algorithm takes a 21/2-player Rabin game and
an initial strategy σ0, and proceeds in two steps. Given the game graph G,
consider the least l and m such that G ∈ G(l,m). In Step 1, the algorithm con-
structs r subgames G̃ that are σ0-improving, together with the corresponding
improved player-1 strategies σ, that is, σ0 ≺ σ. This is achieved by the procedure
ImprovingSubgames. The parameter r will be chosen to obtain a suitable com-
plexity analysis. In Step 2, the algorithm selects uniformly at random one of the
improving subgames G̃ with corresponding strategy σ, and recursively computes
an optimal strategy σ∗ in G̃ from σ as the initial strategy. If the strategy σ∗ is
optimal in the original game G, then the algorithm terminates and returns σ∗.
Otherwise it improves σ∗ by a call to Improve, and continues at Step 1 with the
improved strategy Improve(G, σ∗) as the initial strategy.

The procedure ImprovingSubgames constructs a sequence of game graphs
G0, G1, . . . , Gr−l with Gi ∈ G(l, l + i) such that all (l + i)-subgames G̃i

e of
Gi are σ0-improving. The subgame Gi+1 is constructed from Gi as follows:
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we compute an optimal strategy σi in Gi, and if σi is optimal in G, then we
have discovered an optimal strategy; otherwise we construct Gi+1 by adding an
edge e of Improve(G, σi) to Gi, that is, e is any edge required in the strategy
Improve(G, σi) that is not in the strategy σi. The formal description of the al-
gorithm coincides with Algorithm 3 of [4], with the strategy-improvement step
replaced by a call to the procedure Improve.

The correctness of the algorithm can be seen as follows. Observe that every
time Step 1 is executed, the initial strategy is improved with respect to the order-
ing ≺ on strategies. Since the number of strategies is bounded, the termination
of the algorithm is guaranteed. The termination conditions guarantee that the
output of the algorithm is an optimal strategy. Lemma 11 bounds the expected
number of iterations of Algorithm 3. The analysis is similar to the results of [1].

Lemma 11. Algorithm 3 computes an optimal strategy. The expected number
of iterations T (·, ·) of Algorithm 3 for a game G ∈ G(l,m) is bounded by the
recurrence: T (l,m) ≤

∑r
i=l T (l, i) + T (l− 1,m− 2) + 1

r ·
∑r

i=1 T (l,m− i) + 1.

For a game graph G with n states, we obtain a bound of n2 for m. Using this
fact and an analysis of Kalai for linear programming, Björklund et al. [1] showed

that mO
(√

n/ logn
)

= 2O
(√

n·logn
)

is a solution to the recurrence of Lemma 11,
by choosing r = max{n, m2 }. This analysis and Lemma 10 yield Theorem 4.

Theorem 4. Given a 21/2-player game graph G with n states and m edges, and
a Rabin objective Φ with d pairs, the value 〈〈1〉〉val (Φ)(s) can be computed for all
states s of G in expected time 2O(

√
n·logn) ·O((m · d) · (n · d)d+2 · (d+ 1)!).

5 Optimal-Strategy Construction for Streett Objectives

The algorithms, Algorithm 2 and the randomized algorithm, compute values for
both player 1 and player 2 (i.e., both for Rabin and Streett objectives), but
only construct an optimal strategy for player 1 (i.e., the player with the Rabin
objective). Since pure memoryless optimal strategies exist for the Rabin player,
it is much simpler to analyze and obtain the values and an optimal strategy
for player 1. We now show that how, once these values have been computed,
we can obtain an optimal strategy for the Streett player as well. We do this by
computing sure winning strategies in 2-player games with Streett objectives.

Given a 21/2-player game G with Rabin objective Φ for player 1, and the
complementary objective Ω \ Φ for player 2, first we compute 〈〈1〉〉val (Φ)(s) for
all states s ∈ S. An optimal strategy π∗ for player 2 is constructed as follows:
for a value class VC(r), for r < 1, obtain a sure winning strategy πr for player 2
in Tr2as(Trwin2(G � VC(r))), and in VC(r) the strategy π∗ follows the strategy
Tr2as(πr). By Lemma 3, it follows that π∗ is an optimal strategy, and given all
values, the construction of π∗ requires n calls to a procedure for solving 2-player
games with Streett objectives.

Theorem 5. Let G be a 21/2-player game graph with n states and m edges, and
let Φ and Ω \Φ be a Rabin and Streett objective, respectively, with d pairs. Given
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the values 〈〈1〉〉val (Φ)(s) = 1 − 〈〈2〉〉val (Φ)(s) for all states s of G, an optimal
strategy π∗ for player 2 can be constructed in time n ·O(TwoPlStreettGame(n ·
d,m · d, d+ 1)), where TwoPlStreettGame(n · d,m · d, d+ 1) is any algorithm for
solving 2-player Streett games with n ·d states, m ·d edges, and d+1 Streett pairs.
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Weak Bisimulation Up to Elaboration�

Damien Pous

ENS Lyon

Abstract. We study the use of the elaboration preorder (due to Arun-
Kumar and Natarajan) in the framework of up-to techniques for weak
bisimulation. We show that elaboration yields a correct technique that
encompasses the commonly used up to expansion technique. We also
define a theory of up-to techniques for elaboration that in particular
validates an elaboration up to elaboration technique, while it is known
that weak bisimulation up to weak bisimilarity is unsound. In this sense,
the resulting setting improves over previous works in terms of modularity.

Our results are obtained using nontrivial proofs that exploit termi-
nation arguments. In particular, we need the termination of internal
computations for the up-to techniques to be correct. We show how this
condition can be relaxed to some extent in order to handle processes
exhibiting infinite internal behaviour.

Introduction

Weak bisimilarity (≈) is a commonly used behavioural equivalence for the analy-
sis of concurrent systems. Weak here means distinguishing between visible
actions of a system, that express interactions with its environment, and τ tran-
sitions, that are treated as internal moves, and hence unobservable. To prove a
weak bisimilarity result, one usually exhibits a relation R between states of the
systems being compared, and shows that R is a weak bisimulation relation (we
shall often simply use ‘bisimilarity’ and ‘bisimulation’ in the sequel, and refer
explicitly to the strong version of these relations when necessary).

The crux of a bisimulation proof is often the study of silent transitions, as this
part of the proof expresses the fact that internal calculations do not introduce
unexpected behaviours. Typically, this is where it is shown that an optimisation
is valid, that an encoding is fully abstract, or that some invariant about a data
structure is preserved. Because one has to take into account all possible silent
transitions, this makes bisimulation relations grow a lot, although, intuitively,
many of the τ transitions being examined are irrelevant from the point of view
of the overall behaviour of the system.

Several up-to techniques have been proposed to alleviate the task of bisim-
ulation proofs. The idea of up-to techniques is to manipulate functions from
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relations to relations, that compute a form of closure. These functions are used
in the bisimulation game as shown on the diagram on the left below:

P
α ��

R Q
α��

P ′ F(R) Q′

U : R �→ R∪ ≈
W : R �→ ≈ R ≈

X : R �→  R ≈
E : R �→ � R ≈

When the symmetric candidate relation R contains a pair 〈P,Q〉, and P does
a transition to P ′ along an action α, Q has to perform the same action, modulo
some internal computation (τ transitions), to yield a process Q′. The point is
that the resulting pair 〈P ′, Q′〉 has to belong to F(R) instead of R (bisimulation
is obtained by taking the identity function for F).

For example, if we take for F the function U above, we can use known facts
about ≈ when examining the transitions of processes related by R. More inter-
estingly, functionW allows one to apply known bisimilarity laws to transform P ′

and Q′ in order to obtain a pair belonging to R. Unfortunately, the technique
given by W is unsound, as shown by the following standard counterexample
(written in CCS): consider a process P which is not bisimilar to 0, and de-
fine R � {〈τ.P, 0〉}. Since τ.P ≈ P , we can use W to repeatedly undo the
silent transition τ.P τ→ P , so that in the game of weak bisimulation up to weak
bisimilarity, we never explore the actual behaviour of P .

τ.P
τ ��

R 0

P ≈ τ.P
τ ��

R 0

P ≈ τ.P
τ

��

R 0

...

To address this difficulty, [10] introduces expansion (), a behavioural pre-
order included in weak bisimilarity, that leads to the up-to technique given by
function X defined above. UnlikeW , X yields a correct proof technique, because
expansion expresses a kind of efficiency constraint: intuitively, if P  Q, then
Q is ‘faster’ than P , in the sense that P and Q exhibit the same behaviour, but
Q has to require less silent transitions to do so (we define  formally below).
Since P  τ.P does not hold, X rules out the above counterexample.

However, as experience shows [5,7], there are cases where reasoning up to ex-
pansion does not suffice, because the silent moves one would like to factor out in
a bisimulation proof are not contained in expansion. Typically, this occurs when
the ‘faster process’ has to spend some time at certain points to do some internal
bookkeeping, for instance to update a data structure. To go beyond expansion,
we have proposed in [7] a general and, at least to some extent, modular theory
of up-to techniques for weak bisimulation. [7] introduces a notion of controlled
relation, which guarantees that a given relation can be used in place of expan-
sion. Several sufficient conditions for a relation to be controlled are given, among
which, most notably, a criterion based on a termination property that prevents
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the existence of what we call ‘infinite ladders’ like depicted on the diagram above
(which shows an infinite τ→≈ ladder).

Nevertheless, the resulting setting lacks flexibility, essentially because the
property of being a controlled relation is not stable by union. This prevents the
incremental construction of bisimulation proofs, and thus represents a drawback
in terms of modularity: in this setting, extending a proof requires an involved
knowledge of the up-to techniques at work, in order to check that relations re-
main controlled along the extension (we discuss this at the end of Sect. 3).

In this paper, we focus on the elaboration preorder, which has been introduced
in [2]. Elaboration, written �, is somehow the dual of expansion: informally,
P � Q means that P performs at least as many silent transitions as Q, while
exhibiting the same behaviour. Elaboration strictly contains expansion, and is
in some sense very close to ≈. The focus in [2] is on congruence properties of �
in the setting of CCS, and on the axiomatisation of this relation.

The first result we establish is that � yields a correct up-to technique for
bisimulation when the system is terminating, that is, when it does not exhibit
infinite sequences of silent transitions. Rather remarkably, this result cannot be
derived by a simple diagram chasing (as is the case for the up to expansion
technique). The proof relies instead on the approach of [7], the termination
hypothesis being used to derive the absence of infinite ‘ladders’.

Our second contribution is to show that � supports the development of a
modular theory of up-to techniques, along the lines of the treatment of up-to
techniques for strong bisimulation presented in [9]. This represents a significant
step forward w.r.t. [7] in terms of modularity, notably because the up to transitiv-
ity proof technique, given by T : R �→ R∗, is shown to be correct for elaboration
(under the previous termination hypothesis). We devote particular attention to
this important result: when applicable to reason about a coinductively defined
relation 
, T provides the powerful techniques given by R �→ (R∪ 
)�, or the
more restrictive (but more commonly used) R �→
 R 
. As we show in the pa-
per, an application of the resulting framework is the study of an up to polyadic
contexts proof technique (a polyadic context is a context with possibly many
holes in it). Establishing directly the correctness of this technique can be really
tedious, while correctness of T allows one to derive a modular proof that boils
down to correctness in the – simpler – monadic case.

Although it can be argued that the termination of silent transitions is realistic
in many systems (typically, when silent moves are used to update the internal
representation of a data structure), some programming techniques may be the
source of deliberate infinite internal behaviours, such as busy waiting loops. In
order to be able to handle some of these situations, we move to a setting where
silent transitions are decomposed into two kinds of internal moves, respectively
called the progressive and non-progressive silent transitions (as in [4]). Only
progressive silent transitions are supposed to be terminating. We show that
under this relaxed hypothesis, the previous results can be adapted, by validating
an ‘up to progressive elaboration’ technique for bisimulation, and showing the
correctness of progressive elaboration up to transitivity. While being similar to
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the proofs of the results above, establishing the properties for non-terminating
systems involves rather intricate usages of well-founded induction. Beyond this
technical aspect, we believe that the general proof pattern adopted in this paper
exposes an interesting application of rewriting techniques to concurrency.

Outline of the paper. In Sect. 1, we introduce our notations and briefly recall the
results of [7] that will be used in the sequel. In Sect. 2 we define the elaboration
preorder, and establish correctness of the up to elaboration proof technique
when silent transitions of the system are terminating. We develop in Sect. 3 a
theory of up-to techniques for elaboration, and draw a comparison with existing
techniques. We extend these results to non-terminating systems in Sect. 4, and
give final remarks in Sect. 5.

1 Preliminaries

1.1 Labelled Transition Systems, Definitions

We consider labelled transition systems (LTS) 〈P ,L,→〉, with domain P , labels
or actions in L and transition relation →⊆ P × L × P . The elements of P
are called processes and are denoted by P,Q. Except in Sect. 4, L will always
implicitly contain a distinguished silent action, noted τ . We let α, β (resp. a, b)
range over actions, in L (resp. visible actions, in L\{τ}). Some examples will be
given using the syntax of CCS, which we suppose known to the reader.

We let R,S,B range over binary relations (simply called relations in the se-
quel) between processes. We denote respectively by R+,R=,R� the transitive,
reflexive, transitive and reflexive closures of a relationR. PRQmeans 〈P,Q〉∈R.
The composition of two relations R and S, written RS, is defined by RS �
{〈P,Q〉/PRT and TSQ for some process T }. We also define the inverse of a
relation: R−1 � {〈P,Q〉/QRP}. I is the identity relation, defined by I �
{〈P, P 〉/P ∈ P}. We say that R contains S (alternatively, that S is contained
in R), written S ⊆ R, if PSQ implies PRQ. Given an action α, the set of tran-
sitions along α induces a relation denoted by α→: α→� {〈P,Q〉/〈P, α,Q〉 ∈→}.
Its inverse is written using a reversed arrow: a← = ( a→)−1, and similarly for
other forms of arrows, defined below. Finally, we call function a mapping from
relations to relations.

Definition 1.1 (Termination). A relation R terminates if there is no infinite
sequence (Pi)i∈N such that ∀i, PiRPi+1.

Such terminating relations are also called Nœtherian in the literature. They
lead to the powerful technique of proof by well-founded induction on which we
heavily rely in the sequel. We will also make use of lexicographic inductions, that
is, inductions based on lexicographic orders. In our case, such orders will always
consist of the product of a terminating relation R with the standard ordering of
natural numbers: 〈P, n〉 : 〈Q,m〉 iff PRQ or (P = Q and n > m).

The definitions of behavioural equivalences and preorders will make use of the
following weak transition relations.
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Definition 1.2 (Weak transitions).

α→ �
{

τ→
=

if α = τ
a→ if α = a ∈ L\{τ}

α⇒ � τ→
� α→ τ→

�

α⇒ � τ→
� α→ τ→

�

We can remark the following properties: τ⇒= τ→�
, τ⇒= τ→+

, a⇒= a⇒ (note in

particular the difference between τ⇒ and τ⇒).

Definition 1.3 (Evolution of relations). Let α be an action and R,S two
relations. We say that R α-evolves to S if whenever PRQ, P α→ P ′ implies
Q

α⇒ Q′ and P ′SQ′ for some Q′. Given two relations R and S, we say that:

– R evolves to S if R α-evolves to S for all α ∈ L,
– R evolves silently to S if R τ-evolves to S,
– R evolves visibly to S if R a-evolves to S for all a ∈ L\{τ}.

Definition 1.4 (Bisimulation, Bisimilarity). Let R be a relation. R is a
bisimulation if it is symmetric and evolves to itself. Bisimilarity, denoted by ≈,
is defined as the union of all bisimulations.

1.2 Existing Up-to Techniques for Bisimulation

The following lemma will be useful in the sequel. It states correctness of reasoning
up to transitivity on visible actions.

Lemma 1.5. Let R be a relation. If R evolves silently to itself, and visibly
to R�, then R� evolves to itself.

Proof. By two successive inductions, we show that for any n, Rn evolves silently
to itself, and Rn evolves visibly to R� (Rn is the composition of R with itself,
n times). ��

Some important up-to techniques for bisimulation are given by the two following
results which are simple reformulations of [7, Theorems 2.6 and 3.6].

Theorem 1.6. Let R be a symmetric relation. If R evolves silently to � R ≈
and visibly to R�, then R is contained in bisimilarity.

Theorem 1.7. Let B be a relation contained in bisimilarity, evolving to B�, and
such that B+ τ⇒ terminates. If R is a symmetric relation that evolves silently to
B�R ≈ and visibly to R�, then R is contained in bisimilarity.

In both cases, visible and silent transitions are treated differently, and up to tran-
sitivity is allowed on visible actions only. The difference between these two results
is in the up-to technique that is allowed after a silent action: in the first case, one
uses the compression preorder, written � (� will be defined in Sect. 2.1). This
result is essentially already present in [10,11], without the transitivity on visible
actions. In the second case, the up-to technique is given by a relation B, which
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has to satisfy a termination property. In [7], the actual requirement for B is to
be a controlled relation [7, Definition 3.1], and it is shown that the conditions in
the above theorem are sufficient for B to be controlled.

The compression, used in Theorem 1.6, is not as involved as the sufficient
condition expressed by Theorem 1.7. On the other hand, as will be discussed
in Sect. 3, the technique given by the former theorem is more amenable to the
incremental development of proofs than the setting of the latter.

2 Elaboration

2.1 Definition and Basic Properties

We now define elaboration, that has been introduced in the setting of CCS in [2].

Definition 2.1 (Elaboration relation, Elaboration). A relation R is an
elaboration relation (in short, an elaboration) if whenever PRQ:

(i) if P α→ P ′, then Q α⇒ Q′ with P ′RQ′,
(ii) if Q α→ Q′, then P α⇒ P ′ with P ′RQ′.

Elaboration, denoted by �, is the union of all elaboration relations.

Note that [2] uses a reversed version of the symbol for elaboration – we adopted
this choice to follow the convention in other papers about up-to techniques and
behavioural preorders, notably [10].

The intuition behind elaboration is that if P � Q, then P is able to always
be at least as slow as Q, as expressed by clause (ii). In relation to this, we may
remark that divergences blur the difference between elaboration and bisimilarity:
if P ≈ Q, then P |!τ � Q. This observation suggests that elaboration is a coarse
relation, rather close to ≈ (see also Prop. 2.3 below). Moreover, if we consider
the bisimilarity defined by using clause (ii) on both sides, we obtain progressing
bisimulation [6]. On CCS agents, the latter equivalence (which is contained in
�) coincides with the greatest weak bisimulation that is a congruence.

To draw a comparison between � and other behavioural preorders, we recall
the definition of expansion [10,11] (called efficiency preorder in [1]). A slightly
coarser definition of expansion appears in [3,7], here we call it compression in
order to avoid confusions. The difference has consequences as far as up-to tech-
niques are concerned, as will be explained in Sect. 3.

Definition 2.2 (Expansion, Compression).

Expansion, denoted by , is the largest relation such that whenever P  Q,
– if P α→ P ′, then Q α→ Q′ with P ′  Q′,
– if Q α→ Q′, then P α⇒ P ′ with P ′  Q′.

Compression, denoted by �, is the largest relation such that whenever P � Q,
– if P α→ P ′, then Q α→ Q′ with P ′ � Q′,
– if Q α→ Q′, then P α⇒ P ′ with P ′ � Q′.
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In contrast with �, P  Q intuitively captures the fact that Q is able to be
always faster than P (and similarly for P � Q).

Proposition 2.3. In any LTS, we have ∼ ⊂  ⊂ � ⊂ ≈ and  ⊂ � ⊂ ≈.

Moreover, in CCS, a|τ ��� τ.a and a �
�� a|τ .

As shown by the examples above, elaboration and compression are not compa-
rable in general. These examples can be used to make the same observation with
almost weak bisimulation [10] or relaxed expansion [7] instead of compression.

2.2 Bisimulation Up to Elaboration

In order for elaboration to yield a correct up-to technique, we need a termination
hypothesis, for which we introduce the following terminology.

Definition 2.4 (α-terminating LTS). Let S = 〈P ,L,→〉 be an LTS, and
α ∈ L a label of S. We say that S is α-terminating if α⇒ terminates.

Lemma 2.5. Let α be an action and R a relation such that R α⇒⊆ α⇒R. If α⇒
terminates, then so does R α⇒.

Proof. First we prove ϕ : ∀n,Rn α⇒⊆ α⇒Rn. Then, suppose that R α⇒ does not
terminate: there exists an infinite sequence (Qi)i≥0 such that Qi R α⇒ Qi+1.
Using ϕ, we can define by induction an infinite sequence (Pi)i≥0 such that Pi

α⇒
Pi+1 and PiRiQi. This sequence is contradictory with the termination of α⇒. ��

Theorem 2.6 (Bisimilarity up to Elaboration). In a τ-terminating LTS,
any symmetric relation R that evolves silently to � R ≈ and visibly to R� is
contained in bisimilarity.

Proof. We show easily � τ⇒⊆ τ⇒�, so that � τ⇒ terminates by Lemma 2.5. Then
we check that � and R satisfy the hypotheses of Theorem 1.7. ��

We make some comments about this result and its proof.
We have τ⇒= τ→

+
, so that the τ -termination is actually the termination of τ→

(a property called convergence in [4]). Without this hypothesis, up to elaboration
fails to be correct: in CCS, we have !τ |a � !τ |τ.a, and hence the (symmetric)
relation R = {〈!τ |τ.a, 0〉; 〈0, !τ |τ.a〉} evolves to � R, but R �⊆≈. We show in
Sect. 4 how to relax the τ -termination requirement in some cases.

Theorem 2.6 is an application of the results proved in [7] – summed up in
Theorem 1.7 – that exploit the termination of ladders (that is, sequences of
processes related by B+ τ⇒). Remarkably, we are able to require here a termi-
nation property that does no longer involve the relation of interest (�). This is
achieved by using the right-to-left part of the elaboration game: as shown in the
proof of Lemma 2.5, and depicted on the left diagram below, we use this part
of the elaboration game in order to transform any infinite ladder into an infinite
sequence of τ -transitions, that would contradict the τ -termination hypothesis.
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By contrast, when considering ≈ instead of �, the same argument does not hold,
as shown on the right diagram, which recasts the counterexample seen in the
introduction: in a bisimulation game, the left hand side process is allowed not
to move and hence an infinite ladder may yield a finite sequence of τ -moves.

τ
��

�
τ

��

τ
��

� �
τ

��

τ
��

� �
τ

��
. . .

a ≈ τ.a
τ

��
a = a ≈ τ.a

τ
��

a = a ≈ τ.a
τ

��
a . . . a

We can moreover remark that Lemma 2.5 actually entails that � can be
used in the general setting proposed in [7] (it is a controlled relation – cf. [7]).
In particular, in systems where � is a precongruence, up to elaboration can
be combined with the ‘up to context’ technique, yielding a powerful tool for
bisimulation proofs.

3 Up-to Techniques for Elaboration

We now present some techniques that can be used to establish elaboration re-
sults, which in turn can be used for bisimulation proofs, by Theorem 2.6. We
develop a theory of up-to techniques for elaboration along the lines of the study
of up-to techniques for strong bisimulation in [9].

Definition 3.1 (Progression). Let R,S be two relations. We say that R pro-
gresses to S, denoted by R� S, if whenever PRQ,

– if P α→ P ′, then Q α⇒ Q′ with P ′SQ′,
– if Q α→ Q′, then P α⇒ P ′ with P ′SQ′.

This notion of progression is the counterpart of evolution (Definition 1.3) where
an ‘elaboration game’ replaces the ‘simulation game’. In particular, R is an
elaboration iff R progresses to itself.

First we show that like strong bisimilarity, elaboration validates the powerful
up to transitivity technique. As a corollary, elaboration up to elaboration is a
correct technique: this means in particular that the elaboration preorder does
not suffer from the irregularities of weak bisimilarity.

Theorem 3.2 (Elaboration up to transitivity). In a τ-terminating LTS, if
R is a relation that progresses to R�, then R is contained in elaboration.

Proof. We show that R� is an elaboration relation. For α ∈ L, let ϕα(P, n)
denote the predicate: “for any Q′ such that PRn α⇒ Q′, P α⇒ R�Q′”. We
prove R� τ⇒⊆ τ⇒R� (1) by a lexicographic induction based on the termination
of τ⇒, with the predicate ϕτ . The argument for the non-trivial case is sketched
on the left diagram below:
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P
τ ��

Rn

(ϕτ (P,n))

Q1
τ��

R
(H)

Q
τ

��
P1
τ ��

R� Q′
1

(ϕτ (P1, ))

R�

τ��
P ′ R� Q′

P
τ ��

Rn+1

(1)

Q
τ

��
P1
a

��

R�

(ϕa(P1, )) a
��

τ ��
R�

(1) τ��
P ′ R� Q′

P
a

��

Rn

(ϕa(P,n)) a
��

R
(H)

Q
a

��

τ ��
R�

(1)

R�

τ��
P ′ R� Q′

Then we prove R� a⇒⊆ a⇒R� (2) by a second lexicographic induction with the
predicate ϕa. The two diagrams on the right above give the interesting cases.
Finally, by applying Lemma 2.5 to R� and (1), we obtain the termination of

R� τ⇒, that leads to α←R� ⊆ R� α⇐ using [7, Theorem 3.12]. ��

We now introduce a class of functions corresponding to correct up-to techniques,
that enjoys nice compositional properties.

Definition 3.3 (Safe function). A function F is safe if for any relations R
and S, if

{
R ⊆ S
R� S� then

{
F(R) ⊆ F(S)
F(R) � F(S)�

This definition corresponds to [9, Definition 2.5]. The main difference is that we
consider progressions to the reflexive transitive closures of relations. As shown
in the following theorem, using Theorem 3.2, this makes it possible to use safe
functions ‘up to transitivity’.

Theorem 3.4 (Correctness of safe functions). Let F be a safe function. In
a τ-terminating LTS, if a relation R progresses to F(R)�, then it is contained
in elaboration.

Proof. Let R0 = R, Rn+1 = Rn ∪F(Rn), Rω =
⋃

nRn. We show by induction
∀n, Rn � R�

n+1. Hence Rω � R�
ω, and finally Rω ⊆ � using Theorem 3.2. ��

The main point of safe functions is that they can be combined in a modular
way: given two safe functions F and G, their union F ∪ G : R �→ F(R) ∪ G(R)
and their functional composition F ◦ G : R �→ F(G(R)) are safe. Hence, we
can define correct up-to techniques incrementally (see for example the proof of
Corollary 3.7). By contrast with [9], composing functions using the chaining
operator F�G : R �→ F(R)G(R) does not preserve safety, essentially for the
same reasons as in the weak bisimilarity case [11] (in particular, τ -termination
does not help). However, chaining can be ‘emulated’ since we are allowed to use
safe functions up to transitivity: instead of F�G, we can work with (F ∪ G)�,
which we believe provides enough flexibility for actual elaboration proofs.

Elaboration up to context. We further enrich the set of up-to techniques for
elaboration with an up to context technique. We call context a mapping from
processes to processes (like in [7], we adopt an approach that allows us to abstract
over the details of the underlying syntax). We denote by C[P ] the application
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of a context C to a process P . In the following technical definition, both ε→ and
ε⇒ are synonyms for the identity relation I (we suppose ε /∈ L).

Definition 3.5 (Faithfulness). Let C be a family of contexts. We say that C is
faithful if for all C ∈ C, whenever C[P ] α→ R, there are C′ ∈ C, P ′ ∈ P and
δ ∈ L ∪ {ε} such that R = C′[P ′] and P δ→ P ′, and for any Q,Q′ such that
Q

δ⇒ Q′, C[Q] α⇒ C′[Q′].

This is the direct adaptation to the weak case of the notion of faithfulness found
in [9]. In CCS non-degenerate contexts [11] are faithful; in the π-calculus, non-
input guarded contexts are faithful. The following proposition shows that these
families of contexts yield correct up-to techniques for elaboration. The proof is
very similar to the proof of the corresponding result in [11].

Proposition 3.6 (Safety of faithful families of contexts). Let C be a faith-
ful family of contexts; the following closure up to C function is safe:

C̃ : R �→ {〈C[P ], C[Q]〉 / C ∈ C and PRQ} .

The following corollary sums up all previous results, yielding a powerful up-to
technique for elaboration. It appears that the theory of up-to techniques for
elaboration is as smooth as that for strong bisimilarity. Also notice that while
we considered only monadic contexts in Prop. 3.6, Theorem 3.4 allows us to use
C̃ transitively, thus validating the up to polyadic contexts technique.

Corollary 3.7 (Elaboration up to context and transitivity). Let C be a
faithful family of contexts and R a relation. If τ→ terminates and R progresses
to (C̃(R)∪ �)�, then R is contained in elaboration.

Proof. The functions R �→� and C̃ are safe, hence so is R �→ C(R)∪ �. ��

Up to deterministic transitions. Let us finally mention a corollary of Theo-
rem 3.2, that extends a technique which has been introduced in [3, Chap. 4]
in the setting of barbed bisimilarity. Together with Theorem 2.6, this result
gives the possibility, when τ→ is terminating and deterministic, to normalise
processes w.r.t. τ→ along a bisimulation proof. Notice that [3] does not suppose
τ -termination, but requires the stronger commutation hypothesis α← τ→⊆ τ→ α←.

Corollary 3.8. If τ→ terminates and for all α ∈ L, α← τ→⊆ τ⇒ α⇐, then τ→⊆�.

Proof. We remark that τ→ α→⊆ α⇒⊆ α⇒ τ⇒, so that relation τ→ satisfies the require-
ments of Theorem 3.2, and hence is an elaboration up to transitivity. ��

On Modularity Properties of Up-to Techniques. Introducing the up to
elaboration proof technique enriches the existing landscape of up-to techniques
for bisimulation. We have seen that this behavioural preorder enjoys nice prop-
erties, allowing one to develop elaboration proofs in an incremental and modular
fashion. We now study other up-to techniques from this point of view.
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On the use of compression. As shown in [3,7], compression also yields a correct
up-to technique. By Proposition 2.3 above, elaboration and compression are
not comparable. The following example in CCS shows that they are neither
compatible, in the sense that they cannot be used in the same bisimulation proof.
Let P = τ.τ.a and Q = τ.(τ.τ |a); we have P τ→ τ.a � Q

τ→ τ.τ |a � P so that the
symmetric relation R = {〈P, 0〉; 〈Q, 0〉; 〈0, P 〉; 〈0, Q〉} evolves to (� ∪ �)R, but
obviously R �⊆≈.

Another observation we can make about compression is that unlike elabora-
tion, compression result cannot be proved up to transitivity, even when the LTS
is τ -terminating. Indeed, the relation {〈0, τ.a〉; 〈τ.a, a〉; 〈0, 0〉; 〈a, a〉} over finite
CCS processes is a ‘compression up to transitivity’, but it is clearly not contained
in bisimilarity, and thus neither in compression.

Incrementality in the setting of [7]. Stability by union for up-to techniques pro-
vides a form of modularity, since it allows one to extend an existing proof by
simply adding new behavioural laws. This property is immediate for coinduc-
tively defined relations such as �,  or �. On the contrary, the setting of [7]
lacks this facility: in order to extend a bisimulation proof up to B∗

1 using a rela-
tion B2 (B1 and B2 are supposed to satisfy the hypotheses of Theorem 1.7), one
needs to prove the termination of (B1 ∪B2)+

τ⇒, which involves some knowledge
about B1. To illustrate the difficulties, consider the following example in CCS:

B1 = {(a+ a, τ.τ.a), (τ.τ.a, τ.a)}
B2 = {(a, a+ a)}

a
B2 �� a+ a

B1 �� τ.τ.a

B1

��τ �� τ.a

τ



These relations satisfy the required property: for i ∈ {1, 2}, Bi evolves to B�i and
B+
i

τ⇒ terminates. But (B1 ∪ B2)+ contains the pair 〈a, τ.a〉, and hence B1 ∪ B2
does not qualify to apply Theorem 1.7. We return to this question in Sect. 5.

4 The Case of Non-terminating Systems

We now show how the results from the two previous sections can be adapted to
cases where the τ -termination assumption is not satisfied. Before moving to the
formal definitions, we make a few remarks on the τ -termination requirement. It
should be noticed that for the up to elaboration technique to be applicable, the
whole LTS does not necessarily need to be τ -terminating. What we need is rather
a transition closed subset of (pairs of) processes for which this condition holds.
For instance, we might want to represent a system in CCS, a calculus where
divergences are of course expressible, but the processes used for the modelling
do not exhibit τ -divergences.

If, on the contrary, the system we would like to reason about does contain
divergences, a first approach could be to ‘tag’ non-terminating silent moves and
treat these as visible. However, such visible transitions must be mapped to some
visible actions on the other side of the elaboration game, in order to play these
in one-to-one correspondence. This of course might be too demanding in some
cases, typically when divergences arise because implementing a given behaviour
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introduces some loops (that are not present in the original specification). In
order to address such situations, we adopt an approach from [4], which consists
in isolating a subset of the τ transitions that are terminating, while still treating
all τ moves as silent.

In the following we consider a LTS where silent moves are split into two
special actions: {τ>, τ=} ⊆ L. Transitions

τ>→ and τ=→ will respectively be called
progressive and non-progressive silent transitions. Silent transitions, written τ→,
are defined by τ→� τ>→ ∪ τ=→. Coherently, a, b will range over L\ {τ>, τ=}. We
recall our notations for weak transitions (Definition 1.2) below.

τ⇒= τ→
� a⇒= a⇒= τ→

� a→ τ→
� τ>⇒= τ→

� τ>→ τ→
�

In this setting the notions of bisimulation and bisimilarity ignore the distinction
between the two kinds of silent transitions (in particular, these relations do
not coincide with what we would obtain by treating τ= as visible actions). The
definition of elaboration is adapted so as to control progressive transitions only:

Definition 4.1 (τ>-Elaboration). τ>-Elaboration, denoted by �>, is the
largest relation such that whenever P �> Q,

(i) if P α→ P ′ then Q α⇒ Q′ with P ′ �> Q′, for any α ∈ L,

(ii) if Q α→ Q′ then P α⇒ P ′ with P ′ �> Q′, for any α �= τ>,
(iii) if Q

τ>→ Q′ then P
τ>⇒ P ′ with P ′ �> Q′.

τ>-expansion is the ‘progressive elaboration’ we alluded to in the introduction.
Clause (i) corresponds to bisimulation, while when playing from right to left,
we ensure that progressive silent transitions are ‘preserved’ (iii). We can easily
check that �> is a preorder, and that we have ∼ ⊂ �> ⊂ ≈.

This adaptation leads to the following theorem, where the termination hy-
pothesis concerns progressive silent transitions. As expected, up to transitivity
is allowed on visible transitions (i), and up to τ>-elaboration is supported only
on progressive silent transitions (ii). Clause (iii) for non-progressive transitions
does not allow up-to reasoning on the left of R. We show in [8] how to relax this
condition by using an adapted version of expansion. We omit this development
here for the sake of simplicity.

Theorem 4.2 (Bisimulation up to τ>-Elaboration). Let R be a symmetric
relation. If the following conditions hold whenever PRQ:

(i) if P a→ P ′ then Q a⇒ Q′ with P ′R�Q′,
(ii) if P

τ>→ P ′ then Q τ⇒ Q′ with P ′ �> R ≈ Q′, and

(iii) if P τ=→ P ′ then Q τ⇒ Q′ with P ′R ≈ Q′,

and the LTS is τ>-terminating then R is contained in bisimilarity.

Proof. We first prove the termination of �>
τ>⇒ using Lemma 2.5. Then we show

that the symmetric relation (R∪≈)� is a bisimulation. Let S = �> R ≈; we
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remark that (R∪≈)� = ≈ S�, so that it is sufficient to show that S� evolves to
itself. This is established by proving successively the following inclusions:

(1) τ=←
�
R ⊆ R ≈ τ⇐ (2) τ⇐ S ⊆ S τ⇐ (3) a← S ⊆ S� a⇐

We obtain (1) from (iii) and a simple induction over the sequence τ=→
�
. We

prove (2) by well-founded induction using the termination of �>
τ>⇒ and the

predicate ϕ(P ): “for any P ′, Q such that P τ⇒ P ′ and PSQ, we have P ′S τ⇐ Q”.
This leads to the diagrams below, where we reason by cases according to whether
there is a progressive silent transition between P0 and P ′

0 or not. In the former
case, P �>

τ⇒ P1 so that ϕ(P1) holds. Otherwise, we just use (1).

P

τ

��

�> P0
τ=

���

R
(1) τ

��

≈ Q

τ

��
τ> ��

R ≈
(ii) τ

��
P1
τ �� (ϕ(P1))

S ≈

τ��
P ′ �> P ′

0 S Q′

P

τ

��

�> P0

τ=

���

R

(1) τ

��

≈ Q

τ

��
P ′ �> P ′

0 R ≈ ≈ Q′

Then we prove (3) by well-founded induction using the termination of �>
τ>⇒

and the predicate ψ(P ): “for any P ′, Q such that P a→ P ′ and PSQ, we have
P ′S� a⇐ Q”. As depicted in the following diagrams, if there is a progressive
silent transition transition between P0 and P1, we use the induction hypothesis,
otherwise, (1) is sufficient to close the diagram.

P

a

��

�> P0
τ> ��

R
(2) τ

��

≈ Q

a

��

P1
a

��

S
(ψ(P1)) a

��

τ
��

S�
(2) τ

��
P ′ �> S� ≈ Q′

P

a

��

�> P0
τ=

���

R
(1) τ

��

≈ Q

a

��

a
��

R ≈
(i) a

��

τ
��

R� ≈
(2) τ

��
P ′ �> S� ≈ Q′

Finally, we apply Lemma 1.5 with (2) and (3) so that S� evolves to itself. ��

We now show that τ>-elaboration validates the powerful up to transitivity proof
technique on visible and progressive silent actions.

Theorem 4.3 (τ>-Elaboration up to Transitivity). Let R be a relation. If
the following conditions hold whenever PRQ:

(i) if P α→ P ′ then Q α⇒ Q′ with P ′R�Q′, for any α �= τ=,
(ii) if P τ=→ P ′ then Q τ⇒ Q′ with P ′RQ′,
(iii) if Q α→ Q′ then P α⇒ P ′ with P ′R�Q′, for any α �= τ=, and
(iv) if Q τ=→ Q′ then P τ⇒ P ′ with P ′RQ′,

and the LTS is τ>-terminating then R is contained in τ>-elaboration.
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Proof. We show that R� is a τ>-elaboration relation by successively establishing
the following properties.

R τ=→
�
⊆ τ⇒R (1)

R� τ=→
�
⊆ τ⇒R� (2)

R� τ>⇒ ⊆ τ>⇒R� (3)

R� a⇒ ⊆ a⇒R� (4)

R� τ>⇒ terminates (5)
τ=←

�
R ⊆ R τ⇐ (6)

τ⇐R� ⊆ R� τ⇐ (7)
a⇐R� ⊆ R� a⇐ (8)

A simple induction and (iv) yields (1), we prove (2) and (3) simultaneously by a
lexicographic induction, using the termination of τ⇒ and ϕ(P, n): “for any Q,Q′

such that PRnQ, if Q τ=→
�
Q′ then P τ⇒ R�Q′, and if Q

τ>⇒ Q′ then P
τ>⇒R�Q′”.

The non-trivial cases are respectively depicted on the two diagrams below.

P

τ

��

Rn

(ϕ(P,n))

S

τ

��

R

(1)

Q

τ=

���
P ′ R� S′ R Q′

P

τ>

��

Rn

(ϕ(P,n))

τ
��

R
(1)

Q
τ=
���

τ>

��

R
(iii) τ>

��
P1
τ ��

R�

(ϕ(P1, ))

R�

τ��
P ′ R� Q′

We prove (4) with another lexicographic induction, with the predicate ψ(P, n):
“for any Q′ if PRn a⇒ Q′ then P a⇒ R�Q′”. Depending on the existence of a
progressive silent transition before the visible action of the transition Q a⇒ Q′,
we close the diagrams as depicted below.

P
τ> ��

Rn+1

(3)

Q
τ>

��
P1

a

��

R�

(ψ(P1, ))

a
��

τ��
P ′ R� Q′

P

a

��

Rn

(ψ(P,n))

τ
��

R
(1)

Q
τ=
���

a
��

R
(iii) a

��

τ ��
R�

(2,3)

R�

τ ��
P ′ R� Q′

We obtain (5) by applying Lemma 2.5 to R� and (3). A simple induction and (ii)
give (6). We show (7) with a lexicographic induction using the termination of

R� τ>⇒ and the predicate Φ(P, n): “if PRnQ and P α⇒ P ′ then P ′R� α⇐ Q”.

P

τ

��

Rn

(Φ(P,n))

τ=
� ��

R
(6) τ

��

τ>��

R
(i) τ

��
P1
τ

��

R�

(Φ(P1, )) τ��
P ′ R� R� Q′

P
τ ��

Rn

(Φ(P,n)) τ=
� ��

R
(6) τ��

P ′ R� R Q′

The proof of (8) follows the lines of (7). ��
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5 Concluding Remarks

We have proposed the new up to elaboration proof technique for bisimulation as
an alternative to existing approaches. The proofs in this paper demonstrate how
nontrivial termination arguments can be used to validate sophisticated proof
techniques for bisimulation.

We have argued that up to elaboration offers advantages with respect to ex-
isting up-to techniques, in terms of expressiveness, flexibility or modularity. Our
hope is that this technique can help addressing more complex weak bisimulation
proofs. That it could be the case is suggested by the mathematical elegance of
the framework we obtain, which opens the way for modular and incremental con-
struction of proofs. This should nevertheless be confirmed by actual experiments
in the study of systems involving manipulation of large bisimulation relations.

Several results in this paper suggest directions for future investigations. To
enhance further our framework, it would be interesting to study how to integrate
different kinds of methods in order to guarantee τ -termination, which is necessary
for the results in Sect. 2. A possible approach would be to provide a measure
together with the LTS, or to adopt syntactical criteria when the LTS is given by
a calculus (a process algebra). Another interesting idea in this direction is given
by type systems for termination. In Sect. 4, we proposed a way to handle the
case of non terminating systems. We can however think of other approaches; in
particular, we would like to study LTS where non-termination of τ→ comes from
cycles only, or where any state has a finite number of derivatives.

Finally, we would like to have a better understanding of the main problem of
the setting of [7] (to which this paper proposes an alternative solution), namely
the fact that controlled relations are not stable by union. An interesting direction
would be to look for connections with the question of termination of the union
of terminating rewrite systems, that has been widely studied in rewriting theory.
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comments and suggestions, and his great help during the redaction process. We
would also like to thank an anonymous referee for pointing out an incorrect
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Abstract. The technique of forward/backward simulations has been
applied successfully in many distributed and concurrent applications.
In this paper, however, we claim that the technique can actually have
more genericity and mathematical clarity. We do so by identifying for-
ward/backward simulations as lax/oplax morphisms of coalgebras. Start-
ing from this observation, we present a systematic study of this generic
notion of simulations. It is meant to be a generic version of the study by
Lynch and Vaandrager, covering both non-deterministic and probabilis-
tic systems. In particular we prove soundness and completeness results
with respect to trace inclusion: the proof is by coinduction using the
generic theory of traces developed by Jacobs, Sokolova and the author.
By suitably instantiating our generic framework, one obtains the appro-
priate definition of forward/backward simulations for various kinds of
systems, for which soundness and completeness come for free.

1 Introduction

The theory of forward/backward simulations for non-deterministic automata has
been extensively studied, notably by Lynch and Vaandrager [12]. It has been
applied successfully in many distributed and concurrent applications, described
as transition systems. For example, in [9] trace-based anonymity properties for
network protocols are proved by building backward simulations. The notions of
forward/backward simulations are also extended to different kinds of state-based
systems such as probabilistic ones [15].

In this paper we claim that this theory of forward/backward simulations can
actually have more genericity and mathematical clarity. We do so by revealing
a simple mathematical structure hidden behind various notions of simulations
defined for different kinds of systems. The slogan is:

Forward/backward simulations are lax/oplax morphisms
of coalgebras in Kleisli categories.

� An extended version of this paper appears as [6].
�� Part of this work was done during the author’s stay at Research Center for Verifi-

cation and Semantics, National Institute of Advanced Industrial Science and Tech-
nology (AIST), Japan. The author is grateful for the hospitality.

C. Baier and H. Hermanns (Eds.): CONCUR 2006, LNCS 4137, pp. 406–420, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Generic Forward and Backward Simulations 407

Based on this observation, we aim at presenting a generic version of the sys-
tematic study [12]. The outcome is satisfactory. We employ the generic theory
of traces in [5] and show:

– Soundness. Existence of a forward or backward simulation implies trace in-
clusion.

– Completeness. Trace inclusion implies existence of a certain kind of hybrid
simulation, namely a backward-forward simulation.

The important point is that all these definitions and proofs are stated in ab-
stract coalgebraic terms, hence come with ample genericity. In fact they are
parametrized by:

– The type of branching. It can be either non-determinism (with a set of possi-
ble transitions) or probabilism (with a distribution over possible transitions).

– The type of transitions. For example, a context-free grammar can be consid-
ered as a state-based system—non-terminals as states—with non-determinis-
tic branching. It has a different transition type from, say, LTS’s: a CFG
transits to a word over symbols and states, while an LTS transits to a pair
of a symbol and a (next) state. Our result covers a wide variety of transition
types.

Hence for each application from such a wide variety, one can obtain a definition
of forward/backward simulations by instantiating our general framework with
suitable parameters. Moreover one is assured that this definition is the right one:
good properties such as soundness and completeness come for free. Therefore we
expect abundant practical implication of this work.

Now let us take a completely different standpoint, namely that of a coalgebra-
theorist. This work cultivates a new field of coalgebraic methods in computer
science: coalgebras in a Kleisli category. The standard theory of coalgebras (e.g.
[14]) is based in Sets, establishing the (successful) second row of the table. This
paper, following the previous work [5], extends this table downwards.

base category morphisms of coalgebras coinduction gives
Sets functional bisimulation bisimilarity

Kleisli
lax · · · forward simulation
oplax · · · backward simulation [this paper]

trace semantics
[5]

The paper is organized as follows. In Section 2 our basic (coalgebraic) set-
ting is presented. State-based systems are formulated as coalgebras with ex-
plicit start states in Section 3. The key notion of generic forward/backward
simulations is presented in Section 4. In Section 5 we recall the generic theory
of coalgebraic traces from [5]. The materials of the previous two sections are
combined in Section 6 to prove soundness and completeness. We conclude in
Section 7.
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2 Preliminaries

This section presents preliminaries from category theory and theory of coalge-
bras. They are put in an elementary and descriptive manner. For more details
the reader is referred to [5].

In this paper we identify forward/backward simulations as lax/oplax mor-
phisms of coalgebras in a Kleisli category K�(T ) for a monad T on Sets. This
observation is inspired by a series of work (stemming from [13]) on trace seman-
tics for/via coalgebras: a Kleisli category is a suitable base category there. Our
basic story is as follows.

We model a state-based system as a coalgebra X → TFX in Sets, with T a
monad, F a functor and a distributive law FT ⇒ TF implicit. The intuition is:

– a monad T describes the type of branching (non-determinism, probabilism,
etc.) of the system;

– a functor F describes the transition type of the system, which determines
the type of linear-time behavior (e.g. words over action symbols);

– a distributive law FT ⇒ TF describes the way how T ’s effect of branching
is distributed over the transition type represented by F .

It turns out that having X → TFX in Sets is equivalent to having a coalgebra
X → FX in the Kleisli category K�(T ), where F : K�(T )→ K�(T ) is a canonical
lifting of F : Sets → Sets with FX = FX . This lifting F is induced by the
distributive law. To summarize:
– In modeling a system as a coalgebra X → TFX , we separate the type of

branching T from the transition type F .
– By moving from Sets to K�(T ), this coalgebra becomes a coalgebraX → FX

for a functor F—instead of a combination TF . Then we can start the usual
coalgebraic business such as morphisms, final coalgebras and coinduction.

2.1 Monads for Types of Branching

A monad T on Sets is an endofunctor on Sets equipped with two kinds of
functions: for each setX , the unit X

ηX→ TX and the multiplication TTX
μX→ TX .

These functions must satisfy certain coherence conditions.
In coalgebraic settings, it is shown in [5] that monads with a certain order

structure are suitable for modeling state-based systems with branching, espe-
cially for analyzing their trace semantics. We are interested in such monads in
this paper. We have two examples:
– The powerset monad P , modeling the non-deterministic branching.
– The subdistribution monad D, modeling the probabilistic branching. For a

set X , DX is given by: DX = { ξ : X → [0, 1] |
∑

x∈X ξ(x) ≤ 1 } . Here ξ
is called a probability subdistribution over X . It is “sub” because the sum of
all probabilities is not necessarily equal to 1.

We take the subdistribution monadD, instead of the distribution monadD=1X=
{ξ |

∑
x ξ(x) = 1}, since the latter lacks a suitable order structure. This point is

elaborated in Section 2.3.
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2.2 Kleisli Categories for Monads

For each monad T on Sets, we construct the Kleisli category for T , denoted by
K�(T ), in the following way. The crucial part is that an arrow X → Y in K�(T )
is actually a function X → TY in Sets.

– Objects in K�(T ) are the same as in Sets: they are just sets.
– An arrow X → Y in K�(T ) is a function X → TY in Sets.
– Composition of arrows is defined using multiplication μX : TTX → TX .
– The identity arrow X id→ X in K�(T ) is the unit X

ηX→ TX in Sets.

This K�(T ) will be our base category. Notice that when we write X → Y in
K�(T ), a branching nature of this arrow is implicit because it is a function
X → TY .

For the monads P and D of our interest, we shall describe more details of
their Kleisli categories.

The category K�(P) is in fact isomorphic to the category Rel of sets and
relations. That is, an arrow X → Y in K�(P) is a relation between X and Y
via the standard “relation-into-function” trick: given a function f : X → PY in
Sets we obtain a relation Rf = {(x, y) | y ∈ f(x)}. In particular, composition
of arrows in K�(P) is given by the relational composition S ◦ R = {(x, z) |
∃y. xRy ∧ ySz} of the corresponding relations. The identity arrow idX is the
diagonal relation {(x, x) | x ∈ X}.

In K�(D) an arrow X → Y assigns to each x ∈ X a probability subdistrib-
ution over Y . The identity arrow X

id→ X maps x ∈ X to the so-called Dirac
distribution for x. The composition of arrows X

f→ Y
g→ Z in K�(D) is such

that: for x ∈ X and z ∈ Z, (g ◦ f)(x)(z) =
∑

y∈Y f(x)(y) · g(y)(z) .

2.3 Order-Enriched Structure of Kleisli Categories

The notion of branching—such as non-determinism and probabilism—come with
natural notions of order. For non-determinism we have the inclusion order be-
tween sets of possible transitions. For probabilism a subdistribution ξ is bigger
than ψ if, to each possible transition, ξ assigns bigger probability than ψ does.

These natural orders accompanying the notion of branching appear in our
setting as a DCpo⊥-enriched structure of Kleisli categories. This order structure
is fully exploited in the definition of forward/backward simulations: a system
simulates another one if it has more behavior.

For T = P or D, the Kleisli category K�(T ) is DCpo⊥-enriched. This means:

– For any pair of sets X and Y , the set HomK�(T )(X,Y ) of the arrows from
X to Y has a dcpo structure + with bottom. In particular we can take the
supremum

⊔
n<ω fn of an increasing chain f0 + f1 + · · · of arrows, and there

is the minimum arrow ⊥X,Y : X → Y .
– Composition of arrows is continuous: g ◦ (

⊔
n fn)=

⊔
n(g ◦ fn) and (

⊔
n fn) ◦

h =
⊔

n(fn ◦ h). In particular composition is monotone.
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Indeed, for T = P or D, a set TY has a DCpo⊥ structure +TY . This extends
to the order between arrows in K�(T ) in a pointwise manner: for f, g : X ⇒ Y ,
f + g if for each x ∈ X , f(x) +TY g(x).

We need the minimum arrow ⊥X,Y : X → Y in K�(T ) for the trace semantics
results in Section 5. It is not available for the distribution monad D=1: that is
why we use the subdistribution monad D instead.

2.4 Shapely Functors for Transition Types

We restrict a functor F—which models the transition type of a system—to be
shapely. The reason to do so is: we know the results on coalgebraic trace seman-
tics in Section 5 hold for shapely functors,1 and also in most of the interesting
examples we can take as F a shapely functor. The family of shapely functors is
almost as broad as that of polynomial functors: it is defined inductively by the
following BNF notation.

F,G, Fi ::= id | Σ | F ×G |
∐

i∈IFi ,

where Σ denotes the constant functor into an arbitrary set Σ, and I is an
arbitrary index set. Here are some virtue of shapely functors which we will
exploit.

– An initial F -algebra exists, obtained via the initial sequence of length ω.
– For T = P or D, there is a canonical distributive law FT ⇒ TF . Equiva-

lently, F has a canonical lifting F on K�(T ). On objects FX = FX , and on
arrows F ’s action is what one might think of at first sight.

3 Coalgebraic Modeling of Systems

In this section we model a wide variety of branching state-based systems as
what we call (T, F )-systems. A (T, F )-system is a F -coalgebra in the Kleisli
category K�(T ) plus explicit start states. This definition of (T, F )-systems will
be motivated by several illustrating examples.

Two parameters in the notion of (T, F )-systems are: T is a monad, being either
P or D, representing the branching type; F is a shapely functor describing the
transition type. In the sequel we assume that T and F are such.

Definition 3.1 ((T, F )-systems). A (T, F )-system is a pair of arrows

1 s
X

c
FX in the Kleisli category K�(T ).

That is, a pair of functions (s : 1 → TX, c : X → TFX) in Sets, recalling that
FX = FX . The arrow s is called the start states map, and the F -coalgebra c
is called the dynamics. The set X is called the state space. The only element of
the singleton 1 appearing here2 is denoted by ∗.
1 This does not say that those results hold exclusively for shapely functors.
2 In this paper we will have singletons with different computational meanings. Ac-

cordingly, their only elements will be denoted by different symbols.
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In most literature on coalgebras the start state (or the set of start states) is left
implicit. However in our setting we need to have them explicit. See [6, Appen-
dix 1] for further discussion.

Example 3.2 (Non-deterministic automata). Let us take the powerset
monad P for T , hence non-deterministic branching. For an endofunctor F we
take 1 + Σ × , where 1 = {�} is a singleton and Σ is a non-empty set of
symbols. A (T, F )-system then is a pair of functions in Sets,(

1 s PX, X
c P(1 + Σ ×X)

)
,

which should be interpreted as follows. The subset s(∗) of X is the set of possible
start states. For a state x ∈ X , the set c(x) contains � if x is an accepting state;
it contains a tuple (a, x′) if there is a (possible) transition x a→ x′. In this way a
(T, F )-system for these T and F is thought of as a non-deterministic automaton.

Example 3.3 (Probabilistic automata). Let us take T = D instead of P in
the previous example. A (T, F )-system is a pair of functions in Sets:(

1 s DX, X
c D(1 + Σ ×X)

)
.

This is understood as follows. The subdistribution s(∗) over X represents the
probability with which each state x ∈ X is chosen as a starting state. An ex-
ecution successfully terminates at x with the probability c(x)(�); a transition
x

a→ x′ is made with the probability c(x)(a, x′). Such a system is called a gener-
ative probabilistic transition system [17,16]: in this paper we shall call it simply
a probabilistic automaton. Here is an example of a probabilistic automaton.

x
(a, 1

3 )

(a, 1
3 )

1
3

y

1
2

(a, 1
2 )

z(a, 1) �

with start states:

[
x �→ 1/3
y �→ 2/3

]
.

This is modeled as the following (D, 1 +Σ × )-system.

– The start state map 1 s→ DX is such that s(∗) =
[
x �→ 1/3
y �→ 2/3

]
, and

– the dynamics coalgebra X c→ D(1 +Σ ×X) is such that
c(x) = [ (a, y) �→ 1/3, (a, z) �→ 1/3, � �→ 1/3 ], etc.

Remark 3.4 (Systemswith bothnon-determ./probabilisticbranching).
Probabilistic I/O automata [18] are another kind of well-studied models for state-
based systems. One of their features is that they are equipped with both
non-deterministic and probabilistic branching. Unfortunately, we are yet to find a
suitable monad to model this combined branching: that is why probabilistic I/O
automata are currently out of the scope of our generic framework.

Context-free grammars (without finiteness assumptions) can be also modeled as
(T, F )-systems with T = P and a suitable F (see [4]).
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The notion of morphisms of coalgebras extends to (T, F )-systems in an obvious
manner [6].

4 Forward/Backward Simulations, Coalgebraically

This section presents the key notions of this paper: generic forward, backward
and backward-forward simulations. The intuition about order accompanying the
notion of “branching”—now substantiated as the DCpo⊥-enriched structure of
a Kleisli category—is fully exploited here.

In this section again T = P or D, and F is a shapely functor.

Definition 4.1 (Forward simulation). Let 1 s→ X
c→ FX and 1 t→ Y

d→ FY
be (T, F )-systems, presented in K�(T ). A forward simulation from (t, d) to (s, c)
is an arrow f : X → Y in K�(T ) such that:

t + f ◦ s and d ◦ f + Ff ◦ c ,

where + refers to the order available due to the DCpo⊥-enriched structure of
the Kleisli category. Diagrammatically presented,

FX
Ff

FY

X

c
f
#

Y
d

1
s t

#
.

(1)

In other words, a forward simulation is a lax morphism from (s, c) to (t, d).
We write (t, d) +F (s, c) if there is a forward simulation from (t, d) to (s, c).

The use of lax morphisms in categorical accounts of simulation/refinement is
found in [10]. In a coalgebraic setting, [2] uses lax morphisms to investigate
order-enriched version of bisimulation. However, to the best of our knowledge,
we are the first to notice the significance of lax morphisms in Kleisli categories.

The dual notion, with the order of arrows opposed, has also a significant
computational meaning.

Definition 4.2 (Backward simulation). Let 1 s→ X
c→ FX and 1 t→ Y

d→
FY be (T, F )-systems, presented in K�(T ). A backward simulation from (s, c) to
(t, d) is an arrow f : X → Y in K�(T ) such that: f ◦ s + t and Ff ◦ c + d ◦ f .

FX
Ff

FY

X

c
f
$

Y
d

1
s t

$
(2)

Hence a backward simulation is an oplax morphism of systems.
We write (s, c) +B (t, d) if there is a backward simulation from (s, c) to (t, d).
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Remark 4.3. Note the direction of forward/backward simulations and
lax/oplax morphisms. In general, the system which appears on the smaller sides
of inequalities is simulated by the other one. For example, a lax morphism from
(s, c) to (t, d) in Diagram (1) is a forward simulation from (t, d) to (s, c), through
which (s, c) forward-simulates (t, d); hence (t, d) +F (s, c).

Let us be convinced of these abstract definitions by looking at examples.

Example 4.4 (Non-deterministic automata). In the setting of Example3.2,
an arrow X → Y in K�(T ) is a relation R from X to Y since K�(P) ∼= Rel. The
previous definitions boil down as follows: R is a forward simulation from (t, d)
to (s, c) if and only if it satisfies the following conditions.

y ∈ start(t,d) =⇒ ∃x ∈ start(s,c). xRy ,
xRy ∧ y →d � =⇒ x→c � ,

xRy ∧ y
a→d y

′ =⇒ ∃x′ ∈ X.
(
x

a→c x
′ ∧ x′Ry′

)
,

where start(s,c) denotes the set s(∗). These conditions are much like those in the
standard literature [12]. Notice in particular that the third condition is of the
following familiar form, working “forwards”.

x

R
y a

y′
=⇒

x
a

R

∃x′

R
y a

y′

Similarly, a relation R from X to Y is a backward simulation from (s, c) to
(t, d) if and only if:

x ∈ start(s,c) ∧ xRy =⇒ y ∈ start(t,d) ,
x→c � =⇒ ∃y ∈ Y.

(
xRy ∧ y →d �

)
,

x
a→c x

′ ∧ x′Ry′ =⇒ ∃y ∈ Y.
(
xRy ∧ y

a→d y
′ ) .

The third condition here works “backwards” in the following way.

x
a

x′

R

y′
=⇒

x
a

R

x′

R

∃y a
y′

Example 4.5 (Probabilistic automata). In the setting of Example 3.3, the
abstract Definition 4.1 is instantiated as follows: a function f : X → DY in Sets
is a forward simulation from (t, d) to (s, c) if and only if:

t(∗)(y) ≤
∑

x∈X s(∗)(x) · f(x)(y) ,∑
y∈Y f(x)(y) · d(y)(�) ≤ c(x)(�) ,∑

y∈Y f(x)(y) · d(y)(a, y′) ≤
∑

x′∈X c(x)(a, x
′) · f(x′)(y′) .

(3)

It is also straightforward to instantiate Definition 4.2 of backward simulations.
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One may wonder why we can call such f a forward simulation, although one
can notice that a “forward” argument similar to the previous example is going
on. The point is that, however, by the abstract theorems in the following sections
we know that this definition (3) of forward simulations—derived from the coal-
gebraic definition—satisfies desirable properties such as soundness/completeness
with respect to trace inclusion.

We define a simulation from one probabilistic system to another to be a func-
tion X → DY . This is different from the approach in [7]: there a simulation is
always a relation between state spaces X and Y .

By suitably instantiating the generic definitions, we also obtain appropriate no-
tions of simulations for context-free grammars.

Forward and backward simulations will be shown to be sound with respect to
trace inclusion. But they in general fail to be complete. Instead, a completeness
result is proved for a certain combination of forward and backward simulations
(hybrid simulations), as is done in [12].

Definition 4.6 (Backward-forward simulations). Let (s, c) and (t, d) be
(T, F )-systems. A backward-forward simulation from (s, c) to (t, d) is a pair of

– a backward simulation f from (s, c) to an intermediate system (r, b), and
– a forward simulation g from the intermediate system (r, b) to (t, d).

Diagrammatically presented in K�(T ) (note the direction of arrows),

FX
Ff

FU FY
Fg

X

c
f
$

U
b $

Y
d

g

1s
$

t
$r

.

(4)

We write (s, c) +BF (t, d) if there is a backward-forward simulation from (s, c)
to (t, d). Obviously,

(s, c) +BF (t, d) ⇐⇒ ∃(r, b).
(

(s, c) +B (r, b) ∧ (r, b) +F (t, d)
)
.

Remark 4.7 (Forward-backward simulations). It is straightforward to
define the notion of forward-backward simulations and the relation +FB, as
a suitable dual of Definition 4.6. This is done in [12] for a restricted class
of non-deterministic systems. In the same paper +BF and +FB are shown to
coincide.

However we have not yet found the coincidence of +BF and +FB in general:
in the light of Theorem 6.2, it seems that +BF is the more fundamental notion.
The coincidence for non-deterministic systems in [12] may be because K�(P) is
self-dual, i.e. K�(P) ∼= K�(P)op. Details are yet to be elaborated.
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5 Finite Trace Semantics Via Coinduction

In this paper we take (finite) traces as our semantics for systems. It is with
respect to trace semantics that soundness and completeness of forward/backward
simulations are shown. This section establishes the basics of trace semantics for
systems by revisiting our previous work [5]. The main points are:

– a final coalgebra in the Kleisli category K�(T ) is (interestingly) induced by
an initial algebra in Sets;

– the principle of coinduction, when employed in K�(T ), yields finite trace
semantics for branching systems.

We also cite a fact from [2] about an order-theoretic property of a final coalgebra.
Again in this section a monad T is P or D and F is a shapely functor.

The following result identifies a final coalgebra in the Kleisli categories.

Theorem 5.1 (Main theorem of [5]). Let α : FA ∼=→A be an initial F -algebra
in Sets.

1. An initial F -algebra in K�(T ) is induced by α as ηA ◦ α : FA ∼=→ A in K�(T ).
2. In K�(T ), an initial F -algebra and a final F -coalgebra coincide. The latter

is given as follows. We shall denote this coalgebraic structure map by ζ.

ζ = (ηA ◦ α)−1 = ηFA ◦ α−1 : A
∼=

FA in K�(T ) . ��

As a corollary we obtain the final coalgebra semantics for an F -coalgebra. Recall
that such a coalgebra is a dynamics of a (T, F )-system.

Corollary 5.2 (Trace semantics for coalgebras, [5]). Given an F -coalgebra
X

c→ FX in K�(T ), there exists a unique morphism trc which makes the following
diagram commute. Here α : FA ∼=→ A is an initial F -algebra in Sets.

FX
F (trc)

FA

X

c

trc
A

∼= ζ (final) (5)

��

The induced map trc : X → A in K�(T ), i.e. trc : X → TA in Sets, in fact
becomes what is usually called the finite trace map: it assigns to each state its
“trace” in a suitable sense. The following examples show that the commutation
of Diagram (5) actually amounts to standard and natural recursive definition of
finite trace maps.

Example 5.3 (Non-deterministic automata). In the setting of Example3.2,
an initial F -algebra in Sets is carried by finite lists, or words, over Σ.

1 + Σ ×Σ∗ [nil, cons]
∼= Σ∗
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Now Diagram (5) commutes if and only if the function trc : X → P(Σ∗) satisfies
the following conditions. For each a ∈ Σ and σ ∈ Σ∗.

〈〉 ∈ trc(x) ⇐⇒ x → � ,

a · σ ∈ trc(x) ⇐⇒ ∃x′ ∈ X. x
a→ x′ ∧ σ ∈ trc(x′) .

This is the standard recursive (or corecursive, if you like) definition of the ac-
cepted languages of non-deterministic automata. The language trc(x) ⊆ Σ∗ is
the set of all the linear-time behavior of x which eventually terminates within a
finite number of steps (hence the name finite trace).

Example 5.4 (Probabilistic automata). Let us look at the example of a
probabilistic automaton in Example 3.3. What is the “trace” of the state x of this
system? A natural answer, as suggested in [8], is the probability subdistribution
over lists on Σ:

〈〉 �→ 1
3
, a �→ 1

3
· 1
2
, aa �→ 1

3
· 1
2
· 1
2
, · · · , an �→ 1

3
· 1

2

n−1

· 1
2
, · · · (6)

This is explained as follows. For the state x to output the list aa, it has to take
the path of transitions: x a→ y

a→ y → �. This path occurs with the probability
1
3 ·

1
2 ·

1
2 .

This notion of “probabilistic trace” is again obtained via coinduction in the
Kleisli category. Let us instantiate Diagram (5) with T and F in Example 3.3.
The commutativity of the diagram amounts to the following (co)recursive defi-
nition of a function trc : X → D(Σ∗):

trc(x) =
[ 〈〉 �→ c(x)(�)

a · σ �→ y∈X c(x)(a, y) · trc(y)(σ)

]
.

Here the probability c(x)(a, y) ·trc(y)(σ) is for the event that x makes an a-move
to y and then y yields the list σ as its trace. Taking the sum over all the possible
successors y of x, we get a natural recursive definition of the probability with
which x yields a · σ as its trace.

As an additional remark we point out that the subdistribution (6) sums up
only to 2/3. The remaining 1/3 is for the path x a→ z

a→ z
a→ · · · : the probability

for aω, or livelock. This entry aω �→ 1/3 is absent in trc(x) because trc : X →
D(Σ∗) is the finite trace. This also demonstrates why we use the subdistribution
monad D instead of the distribution monad D=1: although the system can be
described using D=1, we do not get trc of the type X → D=1(Σ∗).

Example 5.5 (Context-free grammar, [4]). Take T = P and a suitable F
for context-free grammars. Then the trace map trc assigns to each non-terminal
x the set of finite-depth parse trees generated by the context-free grammar c
starting from x.

From a different point of view, the previous examples are seen as proofs that
standard recursive definitions uniquely determine trace maps, due to the finality
result in Corollary 5.2.
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The trace map trc, being a morphism of coalgebras, automatically becomes a
lax morphism of coalgebras. It is in fact characterized as the biggest one.

Proposition 5.6 (Trace map as the biggest lax morphism) In the situa-
tion of Diagram (5), the trace map trc is the biggest one among the lax coalgebra
morphisms from c to the final ζ.

Dually, the trace map trc is the smallest one among the oplax coalgebra mor-
phisms from c to the final ζ.

Proof. Although the proposition follows from a general result [2, Proposition
6.7], in this specific setting of a Kleisli category we can give another proof. It
does not depend on the local continuity of F but only on its local monotonicity.
This alternative proof is found in [6, Appendix 2]. ��

So far the trace map induced by coinduction gives the semantics for a single
state of a coalgebra. This is extended to the semantics of a (T, F )-system—a
coalgebra with explicit start states—in the obvious way.

Definition 5.7 (Finite trace semantics of (T, F )-systems). Given a (T, F )-

system 1 s
X

c
FX in K�(T ), its finite trace (or just trace) tr(s,c) is the

following composite in K�(T ).

FX
F (trc)

FA

X

c trc
A

∼= ζ

1
s

tr(s,c)

One can readily show that a morphism of systems preserves trace semantics.

6 Soundness and Completeness Theorems

In the last two sections we have built up the notions of (and some results on) for-
ward/backward simulations and trace semantics, with a high level of genericity
and abstraction. In this section we relate those materials—with the same gener-
icity and abstraction—by proving soundness of +F,+B,+BF and completeness
of +BF with respect to trace inclusion. This is the main technical result of this
paper.

In the rest of this section we assume 1 s→ X
c→ FX and 1 t→ Y

d→ FY to be
(T, F )-systems, where T = P or D and F is shapely.

Theorem 6.1 (Soundness of +F,+B,+BF).

1. (s, c) +F (t, d) =⇒ tr(s,c) + tr(t,d) ,
2. (s, c) +B (t, d) =⇒ tr(s,c) + tr(t,d) ,
3. (s, c) +BF (t, d) =⇒ tr(s,c) + tr(t,d) .

Proof. 1. By definition of +F we have a forward simulation f : Y → X . In
particular we have in K�(T ),
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FY
Ff

FX
F (trc)

FA

Y

#
f

d

X

=

trc

c

A

∼= ζ (final)

where the coinduction diagram appears on the right. This shows that the arrow
trc ◦ f is a lax coalgebra morphism from d to the final coalgebra. Since the
trace map is the biggest lax coalgebra morphism (Proposition 5.6), we have
trc ◦ f + trd. This inequality is combined with f ’s condition on start states.

tr(s,c) = trc ◦ s + trc ◦ f ◦ t + trd ◦ t = tr(t,d)

This proves 1. Similar arguments prove 2.
3. The relation +BF is a relational composition +F◦+B. We use 1. and 2. of

the theorem and transitivity of the order + between arrows 1 ⇒ A. ��
Completeness—the converse of the soundness result above—does not hold for
+F,+B but does hold for the weaker notion of +BF. For a restricted class of
non-deterministic systems the completeness result is shown in [11,12].

Theorem 6.2 (Completeness of +BF).

tr(s,c) + tr(t,d) =⇒ (s, c) +BF (t, d) .

Proof. From a (T, F )-system (s, c), we construct its “canonical system” as

1
tr(s,c)

A
ζ
∼= FA in K�(T ) .

That is, the dynamics is the final F -coalgebra and the start states map is the
trace of the system. It is obvious by definition that the map trc is a morphism of
systems from (s, c) to this canonical system (the left side of Diagram (7) below).
We apply the same construction to (t, d) yielding the right side of the diagram.
Then the assumption tr(s,c) + tr(t,d) fits in the lower middle of the diagram.

FX
F (trc)

FA FY
F (trd)

X

c
trc

A

∼= ζ

Y

dtrd

1s

tr(s,c)

t

tr(t,d)+

(7)

From this we have two diagrams of backward-forward simulations—like Diagram
(4) in Definition 4.6—depending on our choice of the intermediate system.

FX FA FY

X

c

A

∼=
Y

d

1
tr(s,c) $

or

FX FA FY

X

c

A

∼=
Y

d

1
$ tr(t,d)

Either diagram shows (s, c) +BF (t, d). ��
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Using the completeness result we can prove that the simulation relation +BF—
now equivalent to trace inclusion—is actually transitive.

Proposition 6.3 The simulation relations +F,+B and +BF are preorders. That
is, they are reflexive and transitive.

Proof. Except for transitivity of+BF, the proof is straightforward. See [6, Propo-
sitions 6.3, 6.4]. ��

7 Conclusions and Future Work

We have developed a generic theory of branching state-based systems in terms
of coalgebras in Kleisli categories. Notions such as forward/backward simula-
tions and traces are defined and related via soundness and completeness results.
Several illustrating examples suggest practical implications of this theory.

There are a number of issues on branching systems that remain to be elab-
orated in our generic framework. To name a few: composition of systems, com-
positionality of semantics, modal logic, preservation of logical formulas, infinite
traces and internal actions.

As mentioned in Remark 3.4, systems with both non-deterministic and proba-
bilistic branching do not fit in our general framework. There are many semantical
questions (see e.g. [1]) about this combination of different branching: hopefully
categorical approaches will contribute to clarify the picture.

More examples of types of systems to which our framework applies are to
be found. For example, the author is interested in a probabilistic version of
anonymous simulations [9] .

IOA Toolset [3] is a formal verification tool in which systems are described as
I/O automata and analyzed using simulations. Now that its base theory is made
generic, one might as well work on a generic version of the toolset itself.
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Abstract. This paper studies the (in)equational theory of simulation
preorder and equivalence over the process algebra BCCSP. We prove
that in the presence of a finite alphabet with at least two actions, the
(in)equational theory of BCCSP modulo simulation preorder or equiv-
alence does not have a finite basis. In contrast, in the presence of an
alphabet that is infinite or a singleton, the equational theory for simula-
tion equivalence does have a finite basis.

1 Introduction

Labeled transition systems constitute a fundamental model of concurrent com-
putation which is widely used in light of its flexibility and applicability. They
model processes by explicitly describing their states and their transitions from
state to state, together with the actions that produce them. Several notions
of behavioral equivalence have been proposed, with the aim to identify those
states of labeled transition systems that afford the same observations. The lack
of consensus on what constitutes an appropriate notion of observable behav-
ior for reactive systems has led to a large number of proposals for behavioral
equivalences for concurrent processes.

Van Glabbeek [9] presented the linear time - branching time spectrum of
behavioral preorders and equivalences for finitely branching, concrete, sequential
processes. In this paper we focus on the simulation semantics in this spectrum. A
relation R between processes is a simulation if s0 R s1 and s0

a→ s′0 implies s1
a→

s′1 with s′0 R s
′
1. It was introduced by Milner in his seminal work on CCS [21], and

the first branching-time semantics to be used studied in the setting of process
algebra (before the formulation of bisimulation by Park [27] appeared). The
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notion of simulation is well studied in the literatures, both from the theoretical
and from the practical point of view, see e.g. [14,17].

Other semantics in the linear time - branching time spectrum are based on
simulation notions or on decorated traces. Figure 1 depicts the linear time -
branching time spectrum, where a directed edge from one equivalence to another
means that the source of the edge is finer than the target.

ready simulation

2-nested simulation

bisimulation

readies

completed simulation

simulation

possible futures

possible worlds

failure traces

partial traces

completed traces

failures

ready traces

Fig. 1. The linear time - branching time spectrum

Van Glabbeek [9] studied the semantics in his spectrum in the setting of
the process algebra BCCSP, which contains only the basic process algebraic
operators from CCS and CSP, but is sufficiently powerful to express all finite
synchronization trees. Van Glabbeek gave axiomatizations for the semantics in
the spectrum, such that two closed BCCSP terms can be equated by the axioms
if and only if they are equivalent.

Having defined a model of an axiomatization for a process algebra in terms
of labeled transition systems, it is natural to study the connection between the
equations that are valid in the chosen model, and those that are derivable from
the axioms using the rules of equational logic. A key question here is whether
there is a finite axiomatization that is ω-complete. That is, if all closed instances
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of an equation can be derived, does this imply that the equation itself can be
derived from the axiomatization using the rules of equational logic? (We also
refer to an ω-complete axiom system as a basis for the equational theory.) An
ω-complete axiomatization of a behavioral congruence yields a purely syntactic
characterization, independent of labeled transition systems and of the actual de-
tails of the definition of the behavioral congruence. This bridge between syntax
and semantics plays an important role in both the practice and the theory of
process algebras. From the point of view of practice, these proof systems can
be used to perform system verifications in a purely syntactic way using general
purpose theorem provers or proof checkers, and form the basis of purpose-built
axiomatic verification tools like, e.g., PAM [15]. In particular, for theorem prov-
ing applications, it is convenient if an axiomatization is ω-complete, because it
means that proofs by (structural) induction can be avoided in favor of purely
equational reasoning; see [16]. In [12] it was argued that ω-completeness is de-
sirable for the partial evaluation of programs.

The existence of a finite basis for an equational theory is a classic topic of
study in universal algebra (see, e.g., [20]), dating back to Lyndon [18]. Murskĭi
[26] proved that “almost all” finite algebras (namely all quasi-primal ones) are
finitely based, while in [25] he presented an example of a three-element algebra
that has no finite basis. Henkin [13] showed that the algebra of naturals with
addition and multiplication is finitely based, while Gurevic̆ [11] showed that
after adding exponentiation the algebra is no longer finitely based. McKenzie
[19] settled Tarski’s Finite Basis Problem in the negative, by showing that the
general question whether a finite algebra is finitely based is undecidable.

Notable examples of ω-incomplete axiomatizations in the literature are the
λKβη-calculus (see [28]) and the equational theory of CCS [24]. Therefore laws
such as commutativity of parallelism, which are valid in the initial model but
which cannot be derived, are often added to the latter equational theory. For
such extended equational theories, ω-completeness results were presented in the
setting of CCS [23,3] and ACP [6].

A number of positive and negative results regarding finite ω-complete axiom-
atizations for BCCSP occur in the literature. For a comprehensive survey and
discussion of open problems, the interested reader is referred to [2].

– Infinite alphabets:1 Moller [23] proved that the ground-complete axiomati-
zation for BCCSP modulo bisimulation equivalence is ω-complete. Groote
[10] presented ω-completeness proofs for completed trace equivalence, for
trace equivalence (in the presence of an alphabet A with |A| > 1), and
for readiness and failures equivalence (if |A| = ∞). Van Glabbeek [9] noted
(without proof) that Groote’s technique of inverted substitutions can also be
used to prove that the ground-complete axiomatizations for BCCSP modulo
simulation, ready simulation and failure trace equivalence are ω-complete if
|A| = ∞.

1 In case of an infinite alphabet, occurrences of action names in axioms should be
interpreted as variables, as otherwise most of the axiomatizations mentioned in this
paragraph would be infinite.
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Blom, Fokkink and Nain [4] proved that BCCSP modulo ready trace
equivalence does not have a finite sound and ground-complete axiomatization
if |A| = ∞. Aceto, Fokkink, van Glabbeek and Ingolfsdottir [1] proved such
a negative result for 2-nested simulation and possible futures equivalence,
independent of the cardinality of A.

– Finite alphabets: Fokkink and Nain [8] obtained an ω-complete axiomatiza-
tion for BCCSP modulo failures equivalence if |A| <∞, by adding one extra
axiom that uses the cardinality of A. In [7] they proved that if 1 < |A| <∞,
BCCSP modulo any semantics in between readiness and possible worlds
equivalence does not have a finite basis. In [5], Chen, Fokkink and Nain
proved that BCCSP modulo completed simulation equivalence does not have
a finite basis if |A| > 1, and that BCCSP modulo ready simulation equiva-
lence does not have a finite basis if 1 < |A| <∞.

If |A| = 1, then the semantics in the linear time - branching time spec-
trum from completed trace up to ready simulation equivalence all coincide
with completed trace equivalence, while simulation equivalence coincides
with trace equivalence. And there exists a finite basis for the equational
theories of BCCSP modulo completed trace and trace equivalence if |A| = 1.

In this paper we consider BCCSP modulo simulation semantics. We prove that
if 1 < |A| < ∞, then no finite sound and ground-complete axiomatization for
BCCSP modulo simulation preorder and equivalence is ω-complete. This solves
an open question mentioned by van Glabbeek [9, p78] and Aceto et al. [2, p355].
To give some intuition for the infinite family of inequations on which our negative
result for simulation preorder is based, we present one of these inequations, for
A = {a, b}:

a(x+ aa0 + ab0 + ba0 + bb0) � a(x+ aa0 + ab0 + ba0)
+ a(x+ aa0 + ab0 + bb0)
+ a(x+ aa0 + ba0 + bb0)
+ a(x+ ab0 + ba0 + bb0)
+ a(a(a0 + b0) + b(a0 + b0))

It is sound modulo simulation preorder. Namely, given a closed substitution ρ,
ρ(x)+aa0+ab0+ba0+bb0 is simulated either by a(a0+b0)+b(a0+b0), if ρ(x)
cannot perform a trace of length two, or by for instance ρ(x) + aa0 + ab0+ bb0,
if ρ(x) can perform the trace ba. The equation above can be generalized to a
family of equations of any depth (see Section 3.1) that blocks the existence of a
finite basis. Our proof of this fact is based on what in [2, Section 2.3] is called
a proof-theoretic technique. Given a finite sound axiomatization E, we give a
property of equations that:

– holds true for each instantiation of the axioms in E;
– is preserved by the rules of equational logic; and
– fails for one of the equations in the aforementioned infinite family.

So then this latter sound equation cannot be derived from E.
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In contrast, using the technique of inverted substitutions from [10], we present
a proof of the claim in [9] that if |A| = ∞, then the ground-complete axioma-
tization of BCCSP modulo simulation equivalence is ω-complete. As remarked
above, if |A| = 1, then simulation equivalence coincides with trace equivalence,
and in that case a finite basis also exists.

We note that only one open question regarding ω-complete axiomatizations
for BCCSP modulo the semantics in the linear time - branching time spectrum
remains. Namely, it is unknown whether BCCSP modulo failure trace equiva-
lence has a finite basis if 1 < |A| <∞.

This paper is set up as follows. Section 2 presents basic definitions regard-
ing simulation semantics, the process algebra BCCSP, and (in)equational logic.
Section 3 contains the proofs of the negative results for simulation preorder and
equivalence in case 1 < |A| <∞. Section 4 contains a short proof of the positive
result for simulation equivalence in case |A| = ∞.

2 Preliminaries

Simulation semantics: A labeled transition system contains a set of states, with
typical element s, and a set of transitions s a→ s′, where a ranges over some set
A of labels.

Definition 1 (Simulation). Assume a labeled transition system. A simulation
is a binary relation R on states such that s0 R s1 and s0

a→ s′0 imply s1
a→ s′1

with s′0 R s′1.
We write s0 � s1 if s0 R s1 with R a simulation. Simulation equivalence, i.e.,

� ∩ �−1, is denoted by 
. If s0 
 s1, we say that s0 is similar to s1.

Syntax of BCCSP: BCCSP(A) is a basic process algebra for expressing finite
process behavior. Its syntax consists of closed (process) terms p, q that are con-
structed from a constant 0, a binary operator + called alternative composition,
and unary prefix operators a , where a ranges over some nonempty set A of ac-
tions (with typical elements a, b). Open terms t, u, v, w can moreover contain
variables from a countably infinite set V (with typical elements x, y, z). The sets
of closed and open terms are denoted by T(BCCSP) and T(BCCSP), respec-
tively. We let var (t) denote the set of variables occurring in term t.

A (closed) substitution maps variables in V to (closed) terms. For every term
t and substitution σ, the term σ(t) is obtained by replacing every occurrence of
a variable x in t by σ(x).

Transition rules: Intuitively, closed BCCSP(A)-terms represent finite process
behaviors, where 0 does not exhibit any behavior, p+ q is the nondeterministic
choice between the behaviors of p and q, and ap executes action a to transform
into p. This intuition is captured, in the style of Plotkin, by the transition rules
below, which give rise to A-labeled transitions between closed terms.

ax
a→ x

x
a→ x′

x+ y a→ x′
y

a→ y′

x+ y a→ y′
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Simulation preorder � constitutes a precongruence for closed BCCSP(A)-terms.
That is, p1 � q1 and p2 � q2 implies ap1 � aq1 for a ∈ A and p1 + p2 � q1 + q2.
Likewise, simulation equivalence constitutes a congruence for closed BCCSP(A)-
terms.

Equations and inequations: An axiomatization E is a collection of either in-
equations t � u or equations t ≈ u. We write E , t � u or E , t ≈ u if this
(in)equation can be derived from the (in)equations in E using the standard rules
of (in)equational logic, where the rule for symmetry can be applied for equational
derivations but not for inequational ones. An axiomatization E is sound modulo
� (or 
) if for any open terms t, u, from E , t � u (or E , t ≈ u) it follows that
ρ(t) � ρ(u) (or ρ(t) 
 ρ(u)) for all closed substitutions ρ. E is ground-complete
modulo � (or 
) if p � q (or p 
 q) implies E , p � q (or E , p ≈ q), for all
closed terms p and q. Finally, E is ω-complete if for any open terms t, u with
E , ρ(t) � ρ(u) (or E , ρ(t) ≈ ρ(u)) for all closed substitutions ρ, we have
E , t � u (or E , t ≈ u).

The core axioms A1-4 [22] for BCCSP(A) below are ω-complete, and sound
and ground-complete modulo bisimulation equivalence, which is the finest se-
mantics in the linear time - branching time spectrum (see Figure 1).

A1 x+ y ≈ y + x
A2 (x+ y) + z ≈ x+ (y + z)
A3 x+ x ≈ x
A4 x+ 0 ≈ x

In the remainder of this paper, process terms are considered modulo A1-4. A
term x or at is a summand of each term x + u or at + u, respectively. We use
summation

∑
i∈{i1,...,ik} ti (with k ≥ 0) to denote ti1 + · · ·+ tik , where the empty

sum denotes 0. As binding convention, alternative composition and summation
bind weaker than prefixing.

Open terms: For open terms t and u, we define t � u (or t 
 u) if ρ(t) � ρ(u)
(resp. ρ(t) 
 ρ(u)) for all closed substitutions ρ.

Since we will be interested in ω-completeness, it is useful to extend the oper-
ational semantics to open terms, by assuming that variables do not exhibit any
behavior.

Definition 2 (Traces). A sequence a1 · · ·am ∈ A∗, with m ≥ 0, is a trace of
a term t0 if there exists a sequence of transitions t0

a1→ t1
a2→ · · · am→ tm. We write

t0
a1···am→ tm.
The depth of a term t, denoted depth(t), is the length of a longest trace of t.

We prove some basic facts for relations t � u.

Lemma 1

1. Let |A| > 1. If t � u, and x is a summand of t, then x is also a summand
of u.

2. If t � u, then depth(t) ≤ depth(u).
3. If t � u, then var (t) ⊆ var (u).
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Proof. 1. Let m > depth(u), a �= b, and ρ the closed substitution with ρ(x) =
amb0 and ρ(y) = 0 for any variable y �= x. By assumption, x is a summand

of t, so ρ(t) amb→ 0. Since t � u, ρ(t) � ρ(u). It follows that ρ(u) amb→ p with

0 � p. Since m > depth(u), clearly u a�

→ y + u′ and ρ(y) am−�b→ p, for some
� ≤ depth(u), variable y and term u′. Since � ≤ depth(u) < m, we have

ρ(y) �= 0, and hence y = x. Since ρ(y) am−�b→ p and a �= b, it follows that
� = 0. Concluding, x is also a summand of u.

2. Let ρ be the closed substitution with ρ(x) = 0 for all variables x. Since
t � u, ρ(t) � ρ(u). From the definition of �, it follows that depth(ρ(t)) ≤
depth(ρ(u)). Hence depth(t) = depth(ρ(t)) ≤ depth(ρ(u)) = depth(u).

3. Suppose, towards a contradiction, that there exists some x ∈ var (t)\var (u).
Let m > depth(u) and ρ the closed substitution with ρ(x) = am0 and ρ(y) =
0 for any variable y �= x. Since t � u, ρ(t) � ρ(u). Clearly, depth(ρ(t)) ≥
m > depth(ρ(u)), which contradicts (2). ��

We note that Lemma 1(1) would not hold if |A| = 1. For instance, in that case,
we have ax+ x 
 ax.

3 1 < |A| < ∞
In this section we present a proof that the (in)equational theory of BCCSP(A)
modulo simulation semantics does not have a finite basis, provided that
1 < |A| <∞.

3.1 Simulation Preorder

We start with proving that the inequational theory of BCCSP(A) modulo � does
not have a finite basis. The corner stone for this negative result is the infinite
family of inequations

a(x+ Ψn) �
∑
θ∈An

a(x+ Ψθ
n) + aΦn

for n ≥ 0. Here, the Φn are defined inductively as follows:{
Φ0 = 0
Φn+1 =

∑
b∈A b Φn

Moreover, the Ψn and Ψθ
n are defined by:

Ψn =
∑

b1···bn∈An

b1 · · · bn0

Ψθ
n =

∑
b1···bn∈An\{θ}

b1 · · · bn0 for θ ∈ An

For any p with depth(p) ≤ n, clearly p � Φn. So in particular, Ψn � Φn.
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It is not hard to see that the inequations above are sound modulo �. The
idea is that, given a closed substitution ρ, either depth(ρ(x)) < n, in which case
a(ρ(x) + Ψn) is simulated by aΦn. Or ρ(x) b1···bn→ , in which case a(ρ(x) + Ψn) is
simulated by a(ρ(x) + Ψ b1···bn

n ).

Proposition 1. Let E be a finite axiomatization over BCCSP(A) that is sound
modulo �. Let n > 1 be greater than or equal to the depth of any term in E.
Then from E we cannot derive the inequation

a(x+ Ψn) �
∑
θ∈An

a(x+ Ψθ
n) + aΦn

The main part of this section is devoted to proving Proposition 1. We start
with two key lemmas.

Lemma 2. If a(x+ Ψn) � at �
∑

θ∈An a(x+ Ψθ
n) + aΦn, then at 
 a(x+ Ψn).

Proof. Since x + Ψn � t, by Lemma 1(1), x is a summand of t. Then (modulo
A3) t = x+ t′ where x is not a summand of t′. We prove that t′ � Ψn.

Since at �
∑

θ∈An a(x + Ψθ
n) + aΦn, by Lemma 1(3), var (t′) ⊆ var (t) ⊆

{x}. Assume, towards a contradiction, that x occurs in t′. Consider a substi-
tution σ with σ(x) = an0. Clearly depth(σ(t′)) > depth(σ(x)). By assumption,
aσ(t) �

∑
θ∈An a(σ(x) + Ψθ

n) + aΦn. However, depth(aσ(t)) = depth(σ(t)) + 1 ≥
depth(σ(t′)) + 1 > depth(σ(x)) + 1 = n+ 1, while depth(a(σ(x) + Ψθ

n) + aΦn) =
n + 1. This is a contradiction according to Lemma 1(2). In summary, t′ is a
closed term.

Consider a substitution ρ with ρ(x) = an+10. By assumption, a(ρ(x) + t′) �∑
θ∈An a(ρ(x) + Ψθ

n) + aΦn. Clearly, ρ(x) + t′ �� Φn, so ρ(x) + t′ � ρ(x) + Ψθ
n for

some θ ∈ An. Hence t′ � an+10 + Ψθ
n. Since at �

∑
θ∈An a(x + Ψθ

n) + aΦn, by
Lemma 1(2), depth(t′) ≤ depth(t) ≤ n. So it follows that t′ � an0 + Ψθ

n � Ψn.
Then at = a(x + t′) � a(x + Ψn). By assumption, a(x + Ψn) � at. Hence

at 
 a(x+ Ψn). ��

Lemma 3. Assume that:

– t � u;
– n ≥ depth(u) and n > 1;
– σ(t) has a summand similar to a(x+ Ψn); and
– σ(u) �

∑
θ∈An a(x+ Ψθ

n) + aΦn.

Then σ(u) has a summand similar to a(x+ Ψn).

Proof. We can write t =
∑

i∈I ti and u =
∑

j∈J uj for some finite index sets I
and J , where each term ti and uj is either a variable or of the form av. According
to the third proviso of this lemma, for some i0 ∈ I, σ(ti0 ) has a summand similar
to a(x+ Ψn). We proceed by a case analysis on the form of ti0 .

1. Let ti0 ∈ V . Since t � u and ti0 ∈ V , by Lemma 1(1), u also has ti0 as a
summand. Since σ(ti0 ) has a summand similar to a(x+Ψn), the same holds
for σ(u).
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2. Let ti0 = at′ for some term t′. Then aσ(t′) 
 a(x+Ψn). Let {yk | k ∈ K} be
the collection of variable summands of t′, for some finite index set K. Since
σ(t′) 
 x+Ψn, by Lemma 1(1), x is a summand of σ(t′). So x is a summand
of σ(yk0) for some k0 ∈ K. In particular, K �= ∅.

Since V is countable, there exists an injective function �·� : V → N. Let
the closed substitution ρ be defined by

ρ(z) = a�z�·nb0 for all z ∈ V.

t � u implies ρ(t) � ρ(u). Since ρ(t) a→ ρ(t′), there is a j0 ∈ J such that
ρ(uj0)

a→ p with ρ(t′) � p.
The term uj0 cannot be a variable. Namely, in that case we would have

p = a�uj0�·n−1b0. On the other hand, K �= ∅ implies that ρ(t′) a�yk�·nb→ 0 for
some k ∈ K. Since a �= b and n > 1, this would clearly contradict ρ(t′) � p.
So it follows that uj0 = au′ for some term u′ with p = ρ(u′).

Consider a trace t′ b1···bm→ z + t′′ for some 0 ≤ m < n, variable z and
term t′′. We will now prove that there exists a trace u′ b1···bm→ z + u′′. Since
ρ(t′) � ρ(u′), there is a trace ρ(u′) b1···bm→ p′ with ρ(z + t′′) � p′. Assume,

towards a contradiction, that u′ b1···b�→ y + u1 and ρ(y)
b�+1···bm→ p′ for some

0 ≤ � < m, variable y and term u1. Since ρ(y) = a�y�·nb0, 0 < m − � < n,
and a �= b, it follows that p′ cannot simulate the trace ρ(z+t′′) a�z�·nb→ 0. This
contradicts ρ(z + t′′) � p′. Hence, since ρ(u′) b1···bm→ p′, we have u′ b1···bm→ u2
for some term u2 with ρ(u2) = p′. By the second proviso of this lemma,

depth(u2) < n. Since moreover ρ(u2) can simulate ρ(z+t′′) a�z�·nb→ 0, it follows
from the definition of ρ that u2 = z + u′′ for some term u′′. Concluding,
t′

b1···bm→ z + t′′ implies u′ b1···bm→ z + u′′.
Now consider any b1 · · · bn ∈ An. Since Ψn � σ(t′) and (by the second

proviso of this lemma together with Lemma 1(2)) depth(t′) < n, we have

t′
b1···bm→ z + t′′ and σ(z)

bm+1···bn→ for some 0 ≤ m < n, variable z and
term t′′. We proved above that t′ b1···bm→ z + t′′ implies u′ b1···bm→ z + u′′ for

some term u′′. Since σ(z)
bm+1···bn→ , this yields σ(u′) b1···bn→ . This holds for all

b1 · · · bn ∈ An, so Ψn � σ(u′).
Furthermore, recall that yk0 is a summand of t′, and that x is a summand

of σ(yk0). Since t′ λ→ t′ (where λ denotes the empty trace), we proved above
that u′ λ→ yk0 + u′′ for some term u′′. So yk0 is a summand of u′. Hence x is
a summand of σ(u′).

Concluding, x+Ψn � σ(u′), so a(x+Ψn) � aσ(u′). By the fourth proviso
of this lemma, aσ(u′) � σ(u) �

∑
θ∈An a(x + Ψθ

n) + aΦn. So by Lemma 2,
aσ(u′) 
 a(x+ Ψn). ��

The following lemma paves the way for the proof of Proposition 1.

Lemma 4. Let E be a finite axiomatization that is sound modulo �. Assume
that:
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– E , v � w;
– n > 1 is greater than or equal to the depth of any term in E;
– v has a summand similar to a(x+ Ψn); and
– w �

∑
θ∈An a(x+ Ψθ

n) + aΦn;

Then w has a summand similar to a(x+ Ψn).

Proof. By induction on the depth of the proof of the inequation v � w from
E. We proceed by a case analysis on the last rule used in the derivation of
v � w from E. The case of reflexivity is trivial. Below we consider the other
possibilities.

– Case E , v � w because σ(t) = v and σ(u) = w for some t � u ∈ E and
substitution σ. The claim follows by Lemma 3.

– Case E , v � w because E , v � t and E , t � w for some term t. By the
soundness of E, t � w �

∑
θ∈An a(x + Ψθ

n) + aΦn, so by induction, t has a
summand similar to a(x+Ψn). Hence, again by induction, w has a summand
similar to a(x+ Ψn).

– Case E , v � w because v = v′ + v′′ and w = w′ +w′′ with E , v′ � w′ and
E , v′′ � w′′. Since v has a summand similar to a(x+ Ψn), so does either v′

or v′′. Assume, without loss of generality, that v′ has a summand similar to
a(x + Ψn). Since w′ � w �

∑
θ∈An a(x+ Ψθ

n) + aΦn, by induction, w′ has a
summand similar to a(x+ Ψn).

– Case E , v � w because v = av′ and w = aw′ with E , v′ � w′. Then
av′ 
 a(x + Ψn). Since aw′ �

∑
θ∈An a(x + Ψθ

n) + aΦn, by Lemma 2, aw′ 

a(x+ Ψn). ��

Now we are in a position to prove Proposition 1.

Proof. Let E be a finite axiomatization over BCCSP(A) that is sound modulo
�. Let n > 1 be greater than or equal to the depth of any term in E.∑

θ∈An a(x + Ψθ
n) + aΦn does not contain a summand similar to a(x + Ψn).

So according to Lemma 4, the inequation a(x+ Ψn) �
∑

θ∈An a(x+ Ψθ
n) + aΦn,

which is sound modulo �, cannot be derived from E. ��

Theorem 1. The inequational theory of BCCSP(A) modulo � is not finitely
based.

Proof. By Proposition 1, no finite axiomatization over BCCSP(A) that is sound
modulo � proves all inequations that are sound modulo �. ��

3.2 Simulation Equivalence

Following the same line as in Section 3.1, we can prove that the equational theory
of BCCSP(A) modulo 
 does not have a finite basis. The following lemma is the
counterpart of Lemma 4 for simulation equivalence.

Lemma 5. Let E be a finite axiomatization that is sound modulo 
. Assume
that:
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– E , v ≈ w;
– n > 1 is greater than or equal to the depth of any term in E;
– v has a summand similar to a(x+ Ψn); and
– w 


∑
θ∈An a(x+ Ψθ

n) + aΦn;

Then w has a summand similar to a(x+ Ψn).

Proof. Note that Lemma 3 remains true if all occurrences of � are replaced with

, owing to the fact that the relation 
 is included in �.

By postulating that for each axiom t ≈ u in E also its symmetric counterpart
t ≈ u is present, one may assume, without loss of generality, that applications
of symmetry happen first in equational derivations.

Now the proof proceeds by a case analysis on the last rule used in the deriva-
tion of v ≈ w from E, similar to the proof of Lemma 4. This case analysis is
omitted here. ��

Proposition 2. Let E be a finite axiomatization over BCCSP(A) that is sound
modulo 
. Let n > 1 be greater than or equal to the depth of any term in E.
Then from E we cannot derive the equation

a(x+ Ψn) +
∑
θ∈An

a(x+ Ψθ
n) + aΦn ≈

∑
θ∈An

a(x+ Ψθ
n) + aΦn

Proof.
∑

θ∈An a(x+Ψθ
n)+aΦn does not contain a summand similar to a(x+Ψn).

So according to Lemma 5, the equation a(x+ Ψn) +
∑

θ∈An a(x + Ψθ
n) + aΦn ≈∑

θ∈An a(x+Ψθ
n)+aΦn, which is sound modulo 
, cannot be derived from E. ��

Theorem 2. The equational theory of BCCSP(A) modulo 
 is not finitely based.

Proof. By Proposition 2, no finite axiomatization over BCCSP(A) that is sound
modulo 
 proves all equations that are sound modulo 
. ��

4 Simulation Equivalence with |A| = ∞
In [9], van Glabbeek gave a finite axiomatization that is sound and ground-
complete for BCCSP(A) modulo 
. It consists of axioms A1-4 (see Section 2)
together with

S a(x+ y) ≈ a(x+ y) + ax

Likewise, a finite sound and ground-complete axiomatization for BCCSP(A)
modulo � is obtained by adding x � x+ y to A1-4.

It was stated in [9, p78] and in [2, p355] that if A is infinite, then the axiom-
atization A1-4 + S is ω-complete. In both articles it was claimed that this could
be proved using the technique of inverted substitutions from Groote [10], but
the proof itself was never given.

For the sake of completeness, here we present a proof that A1-4 + S is ω-
complete, using inverted substitutions. This technique works as follows. Consider
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an axiomatization E. For each equation t ≈ u of which all closed instances can
be derived from E, one must define a closed substitution ρ and a mapping
R : T(BCCSP) → T(BCCSP) such that:

(1) E , R(ρ(t)) ≈ t and E , R(ρ(u)) ≈ u;
(2) for each function symbol f (with arity n), E ∪ {pi ≈ qi, R(pi) ≈ R(qi) |

i = 1, . . . , n} , R(f(p1, . . . , pn)) ≈ R(f(q1, . . . , qn)) for all closed terms
p1, . . . , pn, q1, . . . , qn; and

(3) E , R(σ(v)) ≈ R(σ(w)) for each v ≈ w ∈ E and closed substitution σ.

Then, as proved in [10], E is ω-complete.

Theorem 3. If |A| =∞, then A1-4+S is ω-complete.

Proof. Consider terms t and u. Define ρ : V → T(BCCSP) by ρ(x) = ax0, where
ax is a unique action for x ∈ V that occurs in neither t nor u. Such actions exist
because A is infinite. We define R : T(BCCSP) → T(BCCSP) as follows:⎧⎪⎪⎨⎪⎪⎩

R(0) = 0
R(ap) = aR(p) if a �= ax for all x ∈ V
R(axp) = x
R(p1 + p2) = R(p1) +R(p2)

We now check the three properties from [10]:

(1) Since t and u do not contain actions of the form ax, clearly R(ρ(t)) = t and
R(ρ(u)) = u.

(2) Consider the operator + . From R(p1) ≈ R(q1) and R(p2) ≈ R(q2) we
derive R(p1 + p2) = R(p1) +R(p2) ≈ R(q1) +R(q2) = R(q1 + q2).
Consider the prefix operator a . We distinguish two cases.
• a �= ay for all y ∈ V . Then from R(p1) ≈ R(q1) we derive R(ap1) =
aR(p1) ≈ aR(q1) = R(aq1).

• a = ay for some y ∈ V . Then R(ayp1) = y = R(ayq1).

(3) For A1-4, the proof is trivial. We check the remaining case S. Let σ be a
closed substitution. We consider two cases.
• a = az for some z ∈ V . Then

R(a(σ(x) + σ(y))) = z
≈ z + z
= R(az(σ(x) + σ(y))) +R(azσ(x))

• a �= az for all z ∈ V . Then

R(a(σ(x) + σ(y))) = a(R(σ(x)) +R(σ(y)))
≈ a(R(σ(x)) +R(σ(y))) + aR(σ(x))
= R(a(σ(x) + σ(y)) + aσ(x))

This completes the proof. ��
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Abstract. We present an algorithm for inferring a timed-automaton
model of a system from information obtained by observing its external
behavior. Since timed automata can not in general be determinized, we
restrict our attention to systems that can be described by deterministic
event-recording automata. In previous work we have presented algorithms
for event-recording automata that satisfy the restriction that there is at
most one transition per alphabet symbol from each state. This restriction
was lifted in subsequent work by an algorithm based on the region graph.

In this paper, we extend previous work by considering the full class
of event-recording automata, while still avoiding to base it on the (usu-
ally prohibitively large) region graph. Our construction deviates from
previous work on inference of automata in that it first constructs a so
called timed decision tree from observations of system behavior, which
is thereafter folded into an automaton.

1 Introduction

Research during the last decades has developed powerful techniques for using
models of reactive systems in specification, automated verification (e.g., [7]),
test case generation (e.g., [9,23]), implementation (e.g., [15]), and validation of
reactive systems in telecommunication, embedded control, and related applica-
tion areas. Typically, such models are assumed to be developed a priori during
the specification and design phases of system development. In practice, however,
often no formal specification is available, or becomes outdated as the system
evolves over time. One must then construct a model that describes the behavior
of an existing system or implementation. In software verification, techniques are
being developed for generating abstract models of software modules by static
analysis of source code (e.g., [8,18]). However, peripheral hardware components,
library modules, or third-party software systems do not allow static analysis. In
practice, such systems must be analyzed by observing their external behavior.
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Techniques for constructing finite-state models by analysis of externally observ-
able behavior (black-box techniques) have been used, e.g., in regression testing
[14,19]), and in model checking [13] of finite-state systems for which no model
or source code is available.

The construction of models from observations of system behavior can be seen
as a learning problem. For finite-state reactive systems, this can be formulated
as the problem of regular inference: to infer a (deterministic) finite automaton by
posing a finite set of membership queries, each of which asks whether a certain
word is accepted by the automaton or not. There are several slightly different
algorithms for regular inference (e.g., [3,10,20,22,4]), which guarantee that a cor-
rect automaton will be constructed if “sufficiently many” membership queries
have been posed. In some settings, the inference algorithm may also pose equiv-
alence queries that ask whether a hypothesized automaton is equivalent to the
one that is being investigated: such a query is answered either by yes or by a
counterexample on which the hypothesis and the correct automata disagree.

In this paper, we extend the inference algorithm of Angluin and others to
the setting of timed systems, more precisely systems that can be described by a
timed automaton [1], i.e., a finite automaton equipped with clocks that constrain
the times of occurrences of actions. One motivation is to develop techniques for
creating abstract timed models of hardware components, device drivers, etc. for
analysis of timed reactive systems. Since timed automata can not in general
be determinized [1], we restrict consideration to the class of event-recording au-
tomata [2]. These are timed automata that, for every action a, use a clock that
records the time of the last occurrence of a. Event-recording automata can be
determinized, and are sufficiently expressive to model many interesting timed
systems; for instance, they are as powerful as timed transition systems [16,2],
another popular model for timed systems. We assume that an inference algo-
rithm observes a system by checking whether certain actions can be performed
at certain moments in time, and that it is able to control and record precisely
the timing of the occurrence of each action.

In previous work, authors of this paper [11] have presented algorithms for
the restricted class of event-recording automata that have most one outgoing
transition per action; under this restriction, the time of an action occurrence
depends only on the (untimed) past sequence of actions, and not on their timing.
In this paper, we consider the full class of event-recording automata. This is
much more challenging, since it must be inferred how the timing of an action
occurrence may depend on timing of previous actions. One way to address this
problem is to infer an explicit representation of the region graph, as in [12]; this
can be done using techniques for untimed regular inference, but at the cost of a
high blow-up. In this paper, we avoid the region graph, but must then develop
techniques for inferring guards on transitions of a timed automaton.

A novel feature of our algorithm (in comparison with other regular inference
algorithms) is that it contains two constructions: the first construction generates
a so-called timed decision tree from the answers to the membership queries that
have been performed so far. The conditions (or guards) that distinguish between



Inference of Event-Recording Automata Using Timed Decision Trees 437

branches in this tree should correspond to guard in the inferred automaton. A
guard is therefore introduced only if there is a pair of observations with different
outcomes, where this guard is the only means to distinguish between them.
The algorithm includes a systematic search for such pairs of observations. The
second construction consist in folding the timed decision tree into an event-
recording automaton by appropriate merging of nodes, in an analogous manner
as in algorithms for (untimed) regular inference.

Previous work on inference of timed systems include work of authors of this
paper [11,12]. Several papers are concerned with finding a definition of timed
languages which is suitable as a basis for inference algorithms. There are several
works that define determinizable classes of timed automata (e.g., [2,24]) and
right-congruences of timed languages (e.g., [21,17,25]), motivated by testing and
verification.

The paper is structured as follows. After preliminaries and a definition of
event-recording automata in the next section, the construction of timed decision
trees is described in Section 3 and 4, followed by a technique for folding them
into automata in Section 5. An illustrating example is given in Section 6, and
finally Section 7 concludes the paper. The proofs are omitted due to lack of space
but will appear in the full version of this paper.

2 Preliminaries

We write R≥0 for the set of nonnegative real numbers, and N for the set of
natural numbers. Let Σ be a finite alphabet of size |Σ|. A timed word over
Σ is a finite sequence (a1, t1)(a2, t2) . . . (an, tn) of symbols ai ∈ Σ paired with
nonnegative real numbers ti ∈ R≥0 such that the sequence t1t2 . . . tn of time-
stamps is nondecreasing. We use λ to denote the empty word.

An event-recording automaton contains for every symbol a ∈ Σ a clock xa,
called the event-recording clock of a. Intuitively, xa records the time elapsed since
the last occurrence of the symbol a. We write CΣ for the set {xa | a ∈ Σ} of
event-recording clocks. A clock valuation γ is a mapping from CΣ to R≥0.

Throughout the paper, we will use an alternative, equivalent, representation
of timed words, namely clocked words. A clocked word over Σ is a sequence
wc = (a1, γ1)(a2, γ2) . . . (an, γn) of symbols ai ∈ Σ that are paired with clock
valuations which satisfies

– γ1(xa) = γ1(xb) for all a, b ∈ Σ, and
– γi(xa) = γi(xai−1 ) + γi−1(xa) whenever 1 < i ≤ n and a �= ai−1.

Each timed word (a1, t1)(a2, t2) . . . (an, tn) can be naturally transformed into the
clocked word (a1, γ1)(a2, γ2) . . . (an, γn) where for each i with 1 ≤ i ≤ n,

– γi(xa) = ti if aj �= a for 1 ≤ j < i,
– γi(xa) = ti − tj if there is a j with 1 ≤ j < i and aj = a, such that ak �= a

for j < k < i.

A timed language over Σ is a set of clocked words over Σ.
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A clock constraint is a conjunction of atomic constraints of the form x ∼ n
or x − y ∼ n for x, y ∈ CΣ , ∼∈ {<,≤, >,≥}, and n ∈ N. We use γ |= ϕ
to denote that the clock valuation γ satisfies the clock constraint ϕ. A clock
constraint is K-bounded if it contains no constant larger than K. A clock guard
is a clock constraint whose conjuncts are only of the form x ∼ n (for x ∈ CΣ ,
∼∈ {<,≤, >,≥}), i.e., comparison between clocks is not permitted. The set of
clock guards is denoted by GΣ .

A constrained word is a sequence wϕ = (a1, ϕ1)(a2, ϕ2) . . . (an, ϕn) of symbols
ai ∈ Σ that are paired with clock constraints. A guarded word is a sequence
wg = (a1, g1)(a2, g2) . . . (an, gn) of symbols ai ∈ Σ that are paired with clock
guards. For a clocked word wc = (a1, γ1)(a2, γ2) . . . (an, γn) we use wc |= wg to
denote that γi |= gi for 1 ≤ i ≤ n.

For a guarded word wg, we introduce the strongest postcondition of wg, de-
noted by sp(wg), as the constraint on clock values that are induced by wg on any
following occurrence of a symbol. Postcondition computation is central in tools
for symbolic verification of timed automata [6,5], and can be done inductively
as follows:

– sp(λ) =
∧

a,b∈Σ xa = xb,
– sp(wg(a, g)) = ((sp(wg) ∧ g)[xa �→ 0]) ↑,

where for clock constraint ϕ and clock x,

– ϕ[x �→ 0] is the condition x = 0 ∧ ∃x.ϕ,
– ϕ ↑ is the condition ∃d.ϕ′, where d ranges over R≥0 and where ϕ′ is obtained

from ϕ by replacing each clock y by y − d.
Both operations can be expressed as corresponding operations on clock con-
straints.

Definition 1. An event-recording automaton (ERA) over Σ is a tuple A =
〈L,L0, L

f , E〉 consisting of a finite set L of locations, a set L0 ⊆ L of start
locations, a set Lf of accepting locations, and a finite set E of edges. Each edge
is a quadruple (l, l′, a, g) with a source location l ∈ L, a target location l′ ∈ L,
an input symbol a ∈ Σ, and a clock guard g ∈ GΣ.

A run of the event-recording automaton A over the clocked word
wc = (a1, γ1) . . . (an, γn) is a finite sequence

l0
e1→ l1

e2→ l2 · · ·
en−1→ ln−1

en→ ln

of locations li ∈ L and edges ei = (li−1, li, ai, gi) ∈ E such that l0 ∈ L0 and
γi |= gi for all 1 ≤ i ≤ n. The run is accepting if ln ∈ Lf . The clocked word wc is
accepted by A if there is an accepting run of A over wc, otherwise wc is rejected.
The timed language L(A) defined by A consists of all clocked words accepted
by A.

We call an ERA time-deterministic (TDERA) iff it has a single start location
and for each location l and input symbol a, the guards g1, . . . , gn of edges from l
labeled a are total and mutually exclusive, i.e., g1∨ . . .∨gn ≡ true and gi∧gj ≡
false whenever 1 ≤ i < j ≤ n.
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3 Overview of Our Inference Algorithm

In this section, we define timed decision trees and give an overview of our in-
ference algorithm. Our algorithm is designed to infer a TDERA which defines
the same timed language as a given TDERA A. In this algorithm a so called
Learner , who initially knows nothing about A, is trying to learn L(A) by asking
queries to a Teacher , who knows A. There are two kinds of queries:

– A membership query consists in asking whether a clocked word wc over Σ is
in L(A).

– An equivalence query consists in asking whether a hypothesized TDERA H
is correct, i.e., whether L(H) = L(A). The Teacher will answer yes if H
is correct, or else supply a counterexample, i.e, a clocked word wc which is
either in L(A) \ L(H) or in L(H) \ L(A).

The typical behavior of a Learner is to start by asking a sequence of member-
ship queries, and gradually build a hypothesized TDERA H using the obtained
answers. When the Learner feels that she has built a hypothesis H, she makes
an equivalence query to find out whether H is correct. If the answer is yes,
the Learner has succeeded, otherwise she uses the returned counterexample to
revise H and perform subsequent membership queries until arriving at a new
hypothesized TDERA, etc.

We assume that the upper bound K on the constants occurring in the guards
of event-recording automaton is known a priori.

Let us represent the information gained by the Learner at any point during
the learning process as a partial mapping Obs from clocked words to {+,−},
where + stands for accepted and − for rejected. The domain Dom(Obs) of Obs
is the set of clocked words for which membership queries have been performed,
or which have been given as counterexamples in equivalence queries. An infer-
ence algorithm should prescribe how to pose additional membership queries and
thereafter transform Obs into a TDERA H = 〈L,L0, L

f , E〉, which is confor-
mant with Obs, in the sense that any string wc ∈ Dom(Obs) is accepted by H
if Obs(wc) = +, and rejected by H if Obs(wc) = −.

Timed Decision Trees. Our algorithm first organizes Obs into a timed decision
tree.

Definition 2. A timed decision tree (TDT) is a prefix-closed set N of guarded
words, such that for any node wg ∈ N and symbol a, the set of nodes
wg(a, g1), . . . , wg(a, gn) in N that extend wg by the symbol a is either empty,
or have the properties that g1 ∨ · · · ∨ gn = true and gi ∧ gj = false whenever
i �= j.

To transfer the information in Obs to a timed decision tree, we extend the
definition of Obs to guarded words, as follows.
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+

+ −

+ − �

(b, true) (a, true)

(a, true)
(b, xa > 0)

(b, xa = 0)

Obs(λ) = +
Obs((b, 0)) = +
Obs((a, 0)) = −

Obs((a, 0)(a, 0)) = +
Obs((a, 0)(b, 0)) = +
Obs((a, 0)(b, 0.5)) = −
Obs((a, 1.5)(b, 1.5)) = −

Fig. 1. A timed decision tree N

Obs(wg) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

; if there are wc, w
′
c ∈ Dom(Obs) with wc � wg and

w′
c � wg such that Obs(wc) �= Obs(w′

c)
Obs(wc) if there is wc ∈ Dom(Obs) with wc � wg such that

Obs(w′
c) = Obs(wc) for all w′

c ∈ Dom(Obs) with
w′
c � wg

⊥ if there is no wc ∈ Dom(Obs) with wc � wg

By this definition, the function Obs is overloaded so that it can also be regarded
as a labeling of nodes in a timed decision tree. A node is labeled by + (or −)
if every observation that “leads to” the node is accepted (or rejected). A node
is labeled by ;, and called inconsistent, if there are both accepted and rejected
observations that lead to the node. If there are no observations that lead to the
node, the node is labeled by ⊥. A timed decision tree N is consistent w.r.t. Obs
if it has no inconsistent nodes.

Definition 3. A timed decision tree N reflects the partial mapping Obs if

– for any wc ∈ Dom(Obs) there is a wg ∈ N such that wc � wg,
– N has no leaf wg with Obs(wg) = ⊥.

Example 1. Figure 1 shows an example of a set of observations1 and a timed
decision tree that reflects it2. ��

Overview of Algorithm. From Obs, our algorithm constructs a timed decision
tree which reflects Obs. Since each run of a TDERA corresponds to a guarded
word, our ambition is that the tree will be a prefix of the unfolding of the learned
TDERA. A main problem when constructing the tree is to find suitable guards
that occur in edges of the TDERA. The Learner does not know a priori which
guards to use in the final TDERA. Therefore, guards will be introduced “by
need”, when the information in Obs shows that they are necessary. Initially,
the guarded words in the tree will use only true in guards. Whenever there is
an inconsistent node wg in the tree, it will be split into (at least) two guarded

1 To simplify the presentation we use timed words as a short representation of clocked
words.

2 In the figures we label the edges of a timed decision tree with pairs of the form (a, g)
where a ∈ Σ and g ∈ G. The guarded word of a node is the sequence of all labels on
the path reaching the node.
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words, by splitting some guarded action in wg according to whether a particular
atomic clock guard is true or false. The appropriate clock guard is generated by
posing additional membership queries in order to find a pair of observations with
different outcomes (i.e., one accepted and one rejected), such that this guard is
the only means to distinguish between them.

In order to fold the tree into an automaton, the inference algorithm also
maintains a prefixed closed set U of nodes in the tree, which will be used to
represent states in the TDERA. We let succ(U) be the set of children of nodes
in U which are not themselves in U . These nodes are used to construct transitions
between nodes in U . The construction of U is based on a relation ≤un between
nodes of the tree which states which tree nodes may be merged when constructing
an automaton. Intuitively vg ≤un ug if the information about future behavior
from the node vg is contained in the information about future behavior from the
node ug, so that the node vg can be merged with the node ug when constructing
an automaton.

When the tree satisfies certain properties the Learner constructs a hypoth-
esized TDERA by merging each node in V with the corresponding node in U ,
and asks the Teacher an equivalence query. If a counterexample is returned,
the Learner adds the counterexample to the timed decision tree, and the algo-
rithm iterates. The algorithm terminates when a TDERA is found, for which
the Teacher returns no counterexample.

In the next section we describe how to split inconsistent nodes in a timed
decision tree, and in Section 5 we describe how to fold a timed decision tree into
a TDERA by merging nodes.

4 Splitting Inconsistent Nodes

In this section, we describe our procedure for splitting inconsistent nodes in a
timed decision tree. If Obs(wg) = ;, then there are two clocked words wc, w

′
c ∈

Dom(Obs) with wc � wg and w′
c � wg, such that Obs(wc) �= Obs(w′

c). That is, wc

and w′
c both correspond to the same node, but one is accepted and one is rejected.

In this section, we present our procedure for splitting some parent of wg into
two nodes using a suitable atomic clock guard that separates wc and w′

c. More
precisely, if wg = (a1, g1) . . . (an, gn), then we must find an atomic guard g and a
position i in wg , and then split node (a1, g1) . . . (ai, gi) into (a1, g1) . . . (ai, (gi∧g))
and (a1, g1) . . . (ai, (gi ∧ ¬g)).

4.1 Finding Critical Pairs

For two nonnegative real numbers p, p′, define p ≈ p′ if either

– p > K and p′ > K, or
– both p and p′ are integers with p = p′, or
– both p and p′ are non-integer with 1p2 = 1p′2 (i.e., they have the same

integer parts).
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For two clock valuations γ and γ′, define γ ≈ γ′ if γ(xa) ≈ γ′(xa) for all event-
recording clocks xa. For two clocked words wc = (a1, γ1) . . . (an, γn) and w′

c =
(a′1, γ′1) . . . (a′n, γ′n), define wc ≈ w′

c if ai = a′i and γi ≈ γ′i for all 1 ≤ i ≤ n.

Definition 4. The clocked word w′
c = (a1, γ

′
1) . . . (an, γ

′
n) is adjacent to the

clocked word wc = (a1, γ1) . . . (an, γn) if wc �≈ w′
c and for all i with 1 ≤ i ≤ n

and symbols a ∈ Σ,

– whenever γ′i(xa) is an integer, then γi(xa) = γ′i(xa),
– whenever γi(xa) is an integer, and γ′i(xa) is not, then |γi(xa)− γ′i(xa)| < 1,
– whenever γi(xa) is not an integer, then γi(xa) ≈ γ′i(xa),

Definition 5. Let wg be a guarded word. A critical pair in wg is a pair of clocked
words wc, w′

c such that

– Obs(wc) �= Obs(w′
c),

– wc |= wg and w′
c |= wg,

– w′
c is adjacent to wc,

– there is no w′′
c |= wg such that w′

c is adjacent to w′′
c , and w′′

c is adjacent to
wc.

Intuitively, one clocked word in a critical pair is accepted and one is rejected,
both correspond to the same inconsistent node, and they are “as adjacent as
possible”. The point of critical pairs is that they allow a natural construction of
guards that split some parents of inconsistent nodes.

Theorem 1. If there is a node wg in the timed decision tree N such that
Obs(wg) = ;, then a critical pair in wg can be found by O(m|Σ| logK) mem-
bership queries, where m is the length of wg.

Proof. We use binary search to find two adjacent clocked words and then solve
a constraint satisfaction problem to find a critical pair. ��

4.2 Splitting the Tree

In order to resolve inconsistency in a timed decision tree, we use a separating
guard that can be inferred from a critical pair. A node is split according to
the separating guard and subtree of the node is reconstructed. In general we
maintain the property that every guard in a timed decision tree is inferred from
a critical pair.

Definition 6. Let wc, w′
c be a critical pair in wg, where wc = (a1, γ1) . . . (an, γn)

and w′
c = (a1, γ

′
1) . . . (an, γ

′
n). The separating guard xa ≤ k at position i is

inferred from wc, w
′
c if

– k ≤ K,
– γi(xa) = k and γ′i(xa) > k,
– γj ≈ γ′j for all j < i.
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+

+ −−

(b, true) (a, xa ≤ 1)
(a, xa > 1)

(a) N1

+

+ −

+ − +

−

−

(b, true) (a, xa ≤ 1)

(a, true)(b, xa > 0)
(b, xa = 0)

(a, xa > 1)

(b, true)

(b) N2

Fig. 2. Introducing a split into the tree N

Similarly, from the dual case the separating guard xa ≥ k can be inferred.

Example 2. Suppose that we have observations uc = (a, γ1(xa)=0.8, γ1(xb)=
0.8)(b, γ2(xa)=0.2, γ2(xb)=1.0) and wc = (a, γ′1(xa)=0.8, γ′1(xb)=0.8)(b, γ′2(xa)=
0.3, γ′2(xb)=1.1) such that Obs(uc) �= Obs(wc). The clocked word wc is adjacent
to uc. We see that uc, wc is a critical pair and that the only guard that can be
inferred is xb ≤ 1, which separates γ2 and γ′2. ��

We show an example how a split is introduced to the tree. Recall the tree N
shown in Figure 1. The node (a, true)(b, xa = 0) is inconsistent. In order to
resolve inconsistency we need to find a critical pair. Suppose that the critical
pair is (a, γ(xa) = 1, γ(xb) = 1)(b, γ(xa) = 0, γ(xb) = 1), (a, γ(xa) = 1.5, γ(xb) =
1.5)(b, γ(xa) = 0, γ(xb) = 1.5). We infer guard xa ≤ 1 from it. Then we construct
tree N1 shown in Figure 2(a) by splitting node (a, true) into nodes (a, xa ≤ 1)
and (a, xa > 1), we also remove successors of node (a, true) from the tree N .
Then we copy subtree of node (a, true) of N to the subtree of node (a, xa ≤ 1)
of N1 and construct tree N2 shown in Figure 2(b). The node (a, xa > 1)(a, true)
is missing since there is no corresponding observation.

5 Constructing Automata from Timed Decision Trees

In this section, we consider how to fold a timed decision tree into an event
recording automaton by merging nodes.

Let N be a timed decision tree. In order to fold it into a TDERA, we maintain
a prefix-closed subset U of N , which will be used as states of the automaton.
Given a set U , the set succ(U) is defined as the children of nodes in U which are
not themselves in U . An automaton is formed by merging each node in succ(U)
with some node in U . This is done on the basis of a relation between nodes in
N which say how nodes may be merged.

Definition 7. Let N be a timed decision tree. A node vg ∈ N is unifiable with a
node ug ∈ N , denoted vg ≤un ug, if for every descendant of vg of form vgwg with
Obs(vgwg) ∈ {+,−} and clocked word wc with wc � wg, there is a descendant of
ug of form ugw

′
g with wc � w′

g and Obs(ugw′
g) = Obs(vgwg).
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That is, the node vg is unifiable with node ug if vg can use the subtree of ug to
handle suffixes of clocked words. This means that the subtree at ug must agree
with the subtree at vg on all descendants of vg that are accepted or rejected.

The relation vg ≤un ug on nodes in N can be checked symbolically in the fol-
lowing way. Say that two guarded words wg and w′

g overlap if there is a clocked
word wc such that both wc � wg and wc � w′

g. This can be checked by propagat-
ing the constraints imposed by prefixes of wg and w′

g on later clock constraints.
For a clock constraint ϕ and a guarded word wg we define (recursively) the
constrained word ϕ ;wg to be

ϕ ;λ = λ
ϕ ; (a, g) wg = (a, ϕ ∧ g)

(
((ϕ ∧ g)[xa �→ 0]) ↑ ; wg

)
If ϕ is a postcondition of vg, then ϕ ;wg exactly characterizes the set of clocked
words wc that may appear as suffixes of clocked words ucwc with vcwc � vgwg.
It follows that wg and w′

g overlap if for true;wg = (a1, g1) . . . (an, gn) and
true;w′

g = (a1, g
′
1) . . . (an, g

′
n), we have gi ∧ g′i �= false for all i = 1, . . . , n. Now

vg ≤un ug if for any descendant vgwg of vg with Obs(vgwg) = {+,−},

– there is at least one descendant ugw′
g of ug such that wg and w′

g overlap,
and

– for any descendant ugw′
g of ug such that wg and w′

g overlap, we have
Obs(vgwg) = Obs(ugw′

g).

In the case that vg �≤un ug, there is one situation in which it is certain that vg
and ug cannot be unified:

Definition 8. The nodes ug and vg are incompatible, if they are distinguished
by equivalent suffixes, i.e., if Dom(Obs) contains clocked words ucwc and vcw′

c

such that

– uc � ug and vc � vg,
– wc ≈ w′

c, and
– Obs(ucwc) �= Obs(vcw′

c).

The remaining case is when vg �≤un ug, and ug and vg are not incompatible.
In this case there are descendants vgwg of vg and ugw′

g of ug such that wg

and w′
g overlap, but Obs(vgwg) �= Obs(ugw′

g). Then we perform the following
unification procedure. If sp(vg);wg and sp(ug);w′

g overlap, we pose one or two
more membership queries to check if vg and ug are incompatible. If sp(vg);wg

and sp(ug);w′
g do not overlap and sp(vg) = sp(ug) we can make vg unifiable with

ug by the following procedure. We remove all descendants nodes of vg. If there is
a clocked word vc(a1, γ1) . . . (an, γn) ∈ Dom(Obs), where vc � vg and there is a
node wg(a1, g1) . . . (an, gn) in the tree, then we add a node vg(a1, g1) . . . (an, gn)
to the tree and ask a query if the node is labeled by ⊥.

In order to fold a TDT N into a TDERA, two natural requirements should
be fulfilled.
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Definition 9. Let N be a TDT, and let U be a prefix-closed subset of N . Then
N is

– U -complete if for all ug ∈ U and a ∈ Σ there is some ug(a, g) ∈ N ,
– U -closed if for all vg ∈ succ(U) there is ug ∈ U with vg ≤un ug.

We can now describe our algorithm. Initially U contains the root {λ}. The
Learner then asks membership queries, updates the tree, and maintains the set
U , with the goal to make the tree consistent, U -complete, and U -closed. This is
done by Algorithm 1.

Algorithm 1. Pseudo code for the construction consistent, U -closed and
U -complete tree

1 Function construction(N ,U)
2 repeat
3 while tree N is not consistent do
4 Find inconsistent node wg ∈ N .
5 Perform splitting procedure which splits some prefix vg of wg into nodes v′

g and v′′
g

6 with new subtrees.
7 if vg ∈ U ∪ succ(U) then Add v′

g and v′′
g to succ(U).

8

9 while tree N is not U−complete do
10 Find ug ∈ U such that for some a ∈ Σ there is no g ∈ GΣ with ug(a, g) ∈ N.
11 Add node ug(a, true) to N and to succ(U).
12

13 while tree N is not U−closed do
14 Find vg ∈ succ(U) such that vg �≤un ug for all ug ∈ U .
15 for each ug ∈ U
16 Perform unification procedure for vg and ug .
17 if vg ≤un ug then continue while.
18 Add vg to U and all its successors to succ(U).
19

20 until tree N is consistent, U−closed and U−complete

From a consistent, U -complete, and U -closed timed decision tree we construct
an event-recording automaton, called merged automaton, that agrees with the
current set of observations Obs.

Definition 10. Let the TDT N with set U ⊆ N be a consistent, U -complete,
and U -closed timed decision tree. The merged automaton of N, denoted N≤un is
the TDERA 〈U, {λ}, Lf , E〉, where

– Lf = { ug ∈ U : Obs(ug) = + },
– (ug, ug(a, g), a, g) ∈ E if ug(a, g) ∈ U , otherwise (ug, u′g, a, g) ∈ E with
ug(a, g) ∈ succ(U), where u′g for each ug(a, g) is chosen as a unique node
with ug(a, g) ≤un u

′
g.

The locations of the merged automaton are nodes from U . For each ug(a, g) with
ug ∈ U , there is an edge from location ug to location u′g labeled with a ∈ Σ and
g ∈ GΣ if u′g = ug(a, g) and ug(a, g) ∈ U , or u′g is a selected node in succ(U)
which is unifiable with ug(a, g).
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Fig. 3. Automata A and A′

Theorem 2. Let A be some TDERA which is equivalent to the one we are learn-
ing. Then the inference algorithm for learning a TDERA equivalent to A termi-
nates after O(|S|l) equivalence queries, and O(K4|Σ|(l+|A||S||A|)+|S|l+|A||S||A|

(l+
|A||S||A|)|Σ| logK) membership queries, where |S| is the maximal number of
splits used in the transitions from a node in A, |A| is the number of locations in
A and l is the length of the longest counterexample.

Let A′ be a minimum size TDERA of Theorem 2. The output of our inference
algorithm is an event-recording automaton A representing the timed language to
be learned. The number of locations in A is less than m2n, where n is the size of
A′ andm is the number of K-bounded clock constraints, which is O(4|Σ|2K |Σ|2).
For comparison, in [12] authors of this paper present an algorithm that infers
the region graph of some automaton representing the language to be learned.
The number of equivalence queries is at most R and the number of membership
queries is O(|Σ|2R2lK), where R is the size of the region graph which is bounded
by 2n|Σ|!2|Σ|K |Σ| states, and l is the length of longest counterexample.

6 Example

Suppose the system to learn is the event-recording automaton A in Figure 3(a).
We start by asking the queries λ, (a, 0), and (b, 0), and then construct the
timed decision tree N1, shown in Figure 4(a), with U = {λ}. The tree N1 is
U -complete, consistent and U -closed. The Learner construct hypothesized au-
tomaton A1 which has one location and submits A1 as equivalence query.

Assume that the counterexample (b, 2)(a, 2.4) is returned. It is accepted by
A but rejected by A1. Then the counterexample is added to the tree N1 and
the tree N2, shown in Figure 4(b), is constructed. The tree is not U -closed as
(b, true) �≤un λ. Since sp(λ); (a, true) and sp((b, true)); (a, true) overlap, we ask
query (b, 0)(a, 0) that is not accepted by A. The node (b, true)(a, true) is now
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− −

(a, true) (b, true)

(a) N1

−

− −

+

(a, true) (b, true)
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−

− − −

− +

(a, true)
(b, xa < 2)

(b, xa ≥ 2)

(a, true) (a, true)

(c) N3

Fig. 4. Trees N1, N2 and N3

labeled ;, and thus N2 is inconsistent. By binary search we find the critical
pair (b, γ1(xa) = 2, γ1(xb) = 2)(a, γ2(xa) = 2.4, γ2(xb) = 0.4), (b, γ′1(xa) =
1.75, γ′1(xb) = 1.75)(a, γ′2(xa) = 2.1, γ′2(xb) = 0.35) from which we infer the
inequalities xa ≥ 2 and xb ≥ 2.

At this point we (arbitrarily) choose inequality xa ≥ 2 and construct timed
decision tree N3, shown in Figure 4(c), by splitting node (b, true). The tree
N3 is not U -closed as (b, xa ≥ 2) �≤un λ. Since sp(λ); (a, true) and sp((b, xa ≥
2)); (a, true) overlap, we ask the queries (a, 2.4) and (b, 2)(a, 4.4) that are rejected
and accepted by A respectively. Then λ and (b, xa ≥ 2) are incompatible. We add
(b, xa ≥ 2) and (b, xa ≥ 2)(a, true) to U . In order to make the tree U -complete
we ask queries (b, 2)(b, 2), (b, 2)(a, 2)(a, 2), and (b, 2)(a, 2)(b, 2). The resulting
timed decision tree N4 is shown in Figure 5(a).

−

− − −

− + −

+ +

(a, true)
(b, xa < 2)

(b, xa ≥ 2)

(a, true) (a, true)
(b, true)

(a, true) (b, true)

(a) N4

0 1 2

b[xa < 2]

a

a

b

b[xa ≥ 2] a

b

(b) A2

Fig. 5. Tree N4 and automaton A2

The tree N4 is U -complete, consistent, and U -closed. The Learner construct
the hypothesized automaton A2, shown in Figure 5(b).

The procedure continues and the Learner will construct three more automata
before automaton A′, shown in Figure 3(b), is finally created (due to space
limitations these steps are omitted). Note that the automaton A′ contains only
one state more than the automaton A.
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7 Conclusion

We have presented a technique for inference of timed systems that can be rep-
resented as event-recording automata. We introduced timed decision tree as a
data structure for organizing the results of the membership and equivalence
queries. The timed decision tree is folded into an event-recording automaton by
a merging procedure that is based on a notion of unifiable nodes. This is the first
inference algorithm for the full class of event-recording automata which avoids
explicit use of the region graph. We believe that the algorithm can be extended
to deterministic timed automata.

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

2. R. Alur, L. Fix, and T. Henzinger. Event-clock automata: A determinizable class
of timed automata. Theoretical Computer Science, 211:253–273, 1999.

3. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75:87–106, 1987.
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Abstract. We consider the control problem for timed automata against speci-
fications given as MTL formulas. The logic MTL is a linear-time timed tempo-
ral logic which extends LTL with timing constraints on modalities, and recently,
its model-checking has been proved decidable in several cases. We investigate
these decidable fragments of MTL (full MTL when interpreted over finite timed
words, and Safety-MTL when interpreted over infinite timed words), and prove
two kinds of results. (1) We first prove that, contrary to model-checking, the con-
trol problem is undecidable. Roughly, the computation of a lossy channel system
could be encoded as a model-checking problem, and we prove here that a perfect
channel system can be encoded as a control problem. (2) We then prove that if we
fix the resources of the controller (by resources we mean clocks and constants that
the controller can use), the control problem becomes decidable. This decidability
result relies on properties of well (and better) quasi-orderings.

1 Introduction

Control of Timed Systems. Timed automata are a well-established and widely used
model for representing real-time systems. Since their definition in the 90’s [5], many
works have investigated this model, and several tools have been developed for model-
checking timed automata and have been used for verifying real industrial case studies.

To deal with open systems, i.e. systems interacting with an environment (which is the
case of most embedded systems), model-checking may be not sufficient, and we need
to control (or guide) the system so that it satisfies the specification, whatever the envi-
ronment does. More formally, the control problem asks, given a system S and a speci-
fication ϕ, whether there exists a controller C such that S guided by C satisfies ϕ. Since
the mid-90’s, the control of real-time systems has developed a lot [8,17,13,16,15,11,4],
and several kinds of properties have been investigated, for instance properties based on
states of the system [8,17,4], or expressed in LTL [15], or in the branching-time timed
temporal logic TCTL [16], or even expressed by timed automata [13]. However, to our
knowledge no work has investigated the control problem against properties expressed
in a linear-time timed temporal logic.

The Logic MTL. The logic MTL [18] is a linear-time timed temporal logic which ex-
tends LTL with timing constraints on Until modalities. For instance, we can write a
formula ψ = � (p→ ♦=1q), which expresses that a request p is always followed one
time unit later by a response q. The interest in this logic has encountered a great soar
in the last year, since Ouaknine and Worrell proved that the model-checking and the
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satisfiability problems for this logic are decidable [22], as soon as they are interpreted
using a pointwise semantics over finite timed words. It is worth noticing that MTL, like
most real-time logics, can be interpreted either using a pointwise semantics (the system
is observed through events), or using a continuous semantics (the system is observed
at any point in time). These two points of view lead to pretty different decidability
properties: for instance, while the first semantics makes model-checking decidable, the
second semantics leads to undecidability [6]. Since this new insight into decidability
of linear-time timed temporal logics, works on MTL are flourishing [10,14,23,24]. Let
us for instance point out the result of [24], stating that the fragment of MTL called
Safety-MTL (which roughly imposes upper bounds on Until modalities) is decidable
for the pointwise semantics when interpreted over infinite timed words, while model-
checking full MTL is undecidable in this case [23].

Our Contributions. In this paper, we consider the control problem for properties given
as MTL or Safety-MTL formulas. We prove the following results:

– The control problem for MTL is undecidable for the pointwise semantics, even
when considering finite timed words. In addition, if restricting to Safety-MTL, the
control problem is also undecidable when interpreted over infinite timed words.
These undecidability results rely on an elegant construction which (roughly) uses
(un)controllable actions to check that every p action is preceded one time unit ear-
lier by a q action: this property cannot be expressed in MTL, but is somehow suffi-
cient to lead to undecidability [14].

– When bounding resources of the controller (its set of clocks, and constants it can
use in its constraints), the control problem becomes decidable for MTL specifica-
tions interpreted over finite timed words, and for Safety-MTL specifications inter-
preted over infinite timed words. Note that such a restriction to bounded resources
is quite common in the framework of synthesis of timed systems [19,13,11]. How-
ever, the construction proposed here is much more involved than those done in pre-
vious papers, and requires well (and better) quasi-ordering arguments for proving
correctness and termination of the construction.

All proofs can be found in the research report [9].

2 Preliminaries

Time, Granularity, and Symbolic Alphabet. Let R≥0 be the set of non-negative reals
and Q≥0 be the set of non-negative rational numbers. Let Σ be an alphabet. A timed
word over Σ is a word σ = (a1, τ1)(a2, τ2) . . . over Σ × R≥0 such that τ1 = 0 and
τi ≤ τi+1 for every 1 ≤ i < |σ| (where |σ| denotes the (possibly infinite) length of σ).1

If σ is infinite, it is non-Zeno if the sequence {τi}i∈N is unbounded. Let TΣ∗ (resp.
TΣω) be the set of finite (resp. infinite non-Zeno) timed words overΣ.

Let X be a finite set of variables (called clocks in our context). The set G(X) of
clock constraints g over X is defined by the grammar: g ::= g ∧ g | x �* c, where

1 We force timed words to satisfy τ1 = 0 in order to have a natural way to define initial satisfia-
bility in the semantics of MTL.
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�*∈ {<,≤,=,≥, >}, x ∈ X , and c ∈ Q≥0. A valuation over X is a mapping ν :
X → R≥0. Whether a valuation ν satisfies a constraint g (written ν |= g) is defined
naturally, and we set �g� = {ν | ν |= g}. For t ∈ R≥0, the valuation ν + t is defined as
(ν + t)(x) = ν(x) + t for all x ∈ X . For Y ⊆ X , the valuation ν[Y ← 0] is defined
as ν[Y ← 0](x) = 0 if x ∈ Y and ν[Y ← 0](x) = ν(x) otherwise. Also, we use

−→
0 to

denote the valuation which maps every x ∈ X to 0.
We define a measure of the clocks and constants used in a set of constraints, called

its granularity. A granularity is specified by a triple μ = (X,m,K) whereX is a finite
set of clocks, m ∈ N>0, and K ∈ N. A constraint g is μ-granular if the clocks it
uses belong to X and each constant occurring in g is α

m with α ≤ K and α ∈ N. A
granularity μ is finer than μ′ if all μ′-granular constraints are also μ-granular. Also, we
say that μ = (X,m,K) is the granularity of a finite set of constraints if X (resp. m,
resp. K

m ) is the exact set of clocks (resp. the lcm of all denominators of constants, resp.
the largest constant) mentioned in the constraints. A μ-granular constraint g is μ-atomic
if for every μ-granular constraint g′, either �g� ⊆ �g′�, or �g� ∩ �g′� = ∅.

For an alphabet Σ and a set of clocksX , a symbolic alphabet Γ based on (Σ,X) is
a finite subset of Σ × G(X)× 2X . A (symbolic) word γ = (a1, g1, Y1)(a2, g2, Y2) . . .
over Γ gives rise to a set of timed words over Σ, denoted tw(γ). We interpret the
symbolic action (a, g, Y ) to mean that action a can happen if the constraint g is satisfied,
with the clocks in Y being reset after the action. Formally, σ ∈ tw(γ) iff |σ| = |γ|,
σ = (a1, τ1)(a2, τ2) . . ., and there is a sequence of valuations ν0, ν1, ν2, . . . over X
such that ν0 =

−→
0 and for all 0 ≤ i < |γ|, νi + τi+1 − τi ∈ �gi+1� and νi+1 =

(νi + τi+1 − τi)[Yi+1 ← 0] (assuming τ0 = 0).

Symbolic Transition Systems and Timed Automata. A symbolic transition system
(STS) over a symbolic alphabet Γ based on (Σ,X) is a tuple T = 〈S, s0,→, F 〉 where
S is a (possibly infinite) set of states, s0 ∈ S is the initial state, → ⊆S × Γ × S is the
transition relation, and F ⊆ S is a set of accepting states.2 A timed automaton (TA, for
short) [5] is an STS with finitely many states. In the sequel, if A is a TA, then we will
write T (A) for the STS corresponding to A where all states are considered accepting.

For a finite or infinite path π = s1
b1−→ s2

b2−→ . . . of T , the trace of π is the word
over Γ given by b1b2 . . .. Such a finite (resp. infinite) path is accepting if it ends in
(resp. visits infinitely often) an accepting state. We denote byL∗

symb(T ) (resp.Lωsymb(T ))
the set of finite (resp. infinite) symbolic words over Γ that are traces of finite (resp.
infinite) accepting paths starting from the initial state s0. We setLsymb(T ) = L∗

symb(T )∪
Lωsymb(T ). The STS T is symb-deterministic whenever s

b−→ s1 and s
b−→ s2 implies

s1 = s2. For each state s ∈ S, we denote by enabledT (s) the set of symbolic actions

b ∈ Γ such that s
b−→ s′ for some s′ ∈ S. If T is symb-deterministic, then for each word

γ ∈ Lsymb(T ), there is at most one path starting from s0 whose trace is γ. In this case
and assuming that γ is finite, we denote by stateT (γ), the last state of such a path. Let
T = 〈S, s0,→〉 be an STS. The deterministic version of T is the symb-deterministic

STS Det(T ) = 〈2S , {s0},→D〉, where S1
b−→D S2 iff S2 = {s2 ∈ S | ∃s1 ∈ S1. s1

b−→
s2} and S2 �= ∅. Note that L∗

symb(Det(T )) = L∗
symb(T ).

2 We may omit F in the tuple if all states are accepting.
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Let T be an STS. It also recognizes timed words.The timed language over finite
words accepted by T , denoted L∗(T ), is defined by L∗(T ) = tw(L∗

symb(T )), while
the timed language over infinite words accepted by T , denoted Lω(T ), is defined by
Lω(T ) = tw(Lωsymb(T ))∩TΣω . The STS T is said deterministic if there are no distinct

transitions q
a,g1,Y1−−−−→ q1 and q

a,g2,Y2−−−−→ q2 with �g1�∩ �g2� �= ∅. This notion is stronger
than symb-determinism.

Let T1 = 〈Q1, q
1
0 ,→1, F1〉 and T2 = 〈Q2, q

2
0 ,→2〉 be two STS over an alphabet Γ

based on (Σ,X). The parallel composition of T1 and T2, denoted T1 ‖ T2, is the STS

〈Q, q0,→, F 〉 where Q = Q1 ×Q2, q0 = (q10 , q
2
0), F = F1 ×Q2, and (p1, p2)

a,g,Y−−−→
(q1, q2) iff p1

a,g1,Y1−−−−→1 q1 and p2
a,g2,Y2−−−−→2 q2 with g = g1 ∧ g2 and Y = Y1 ∪ Y2.

2.1 Metric Temporal Logic (MTL)

The logic MTL [18] is a linear-time timed temporal logic which extends LTL with time
constraints on Until modalities. The set of MTL formulae over a setΣ of atomic actions
is defined inductively as follows:

ϕ ::= ; | a | ¬ϕ | ϕ ∧ ϕ | ϕ UI ϕ

where; denotes “true”, a ∈ Σ, and I ⊆ R≥0 is an interval with bounds in Q≥0∪{∞}.
We will use some classical shortcuts: ♦Iϕ stands for;UI ϕ (the constrained eventually
operator), �Iϕ stands for ¬♦I¬ϕ (the constrained always operator), and ϕ1 ŨI ϕ2
stands for ¬((¬ϕ1) UI (¬ϕ2)) (the dual-until operator). We also use pseudo-arithmetic
expressions (like ‘≥ 1’ or ‘= 1’) to denote intervals. We may omit the subscript I when
it is equal to R≥0.

In this paper we consider the so-called pointwise semantics, and thus interpret MTL
over timed words [22]. Given a (finite or infinite) timed word σ = (a1, τ1)(a2, τ2) . . .
and an MTL formula ϕ, for each 1 ≤ i ≤ |σ|, the satisfaction relation (σ, i) |= ϕ
(which reads as “σ satisfies ϕ at position i”) is defined by induction. The rules for
atoms, negation, and conjunction are standard. For the until modality, following [22],
we give a strict-future interpretation as follows:

(σ, i) |= ϕ1 UI ϕ2 iff there is j > i such that (σ, j) |= ϕ2, τj − τi ∈ I, and

(σ, k) |= ϕ1 for all k with i < k < j

We say that σ satisfies ϕ, denoted σ |= ϕ, if (σ, 1) |= ϕ. The set of finite models of
ϕ is given by L∗(ϕ) = {σ ∈ TΣ∗ | σ |= ϕ}. The set of infinite models of ϕ is given
by Lω(ϕ) = {σ ∈ TΣω | σ |= ϕ}.

Using the dual-until operator and the disjunction we can rewrite every MTL formula
into an equivalent formula in positive normal form, i.e. where negation is only applied
to actions a ∈ Σ. We then define the fragment of MTL, called Safety-MTL [22],
consisting of those MTL formulas in positive normal form that only include instances
of the constrained until operator UI in which interval I has bounded length. Note that
no restriction is placed on the dual-until operator.

Example 1. Let Σ = {a, b} and ϕ1 := �(a → ♦=1b) be the MTL formula requir-
ing that every a-event is followed one time unit later by a b-event. Also, let L be the
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language consisting of finite timed words σ such that the untimed of σ is in a∗b∗ and
two different events do not happen at the same time. It is clear that L can be specified by
some MTL formula ϕ2. Now, we note that Untimed(L∗(ϕ1 ∧ ϕ2)) = {anbm | m ≥ n}
(where Untimed(·) is the projection overΣ), which is a non-regular language [7].

2.2 Control Problem for MTL Specifications

Let Σ = ΣC ∪ ΣE be an alphabet partitioned into a set of controllable actions ΣC

and a set of environment actions ΣE . A plant P over Σ is a deterministic TA. Let the
clocks used in P be XP , and μ = (XP ∪XC ,m,K) be a granularity finer than that of
the plant. Then, a μ-controller for P is a deterministic STS C over a symbolic alphabet
based on (Σ,XP ∪XC) having granularity μ and satisfying:

(C1) C does not reset the clocks of the plant: qC
a,g,Y−−−→ q′C in C implies Y ⊆ XC .

(C2) C does not restrict environment actions (non-restricting): if σ ∈ L∗(T (P‖C))
and σ · (e, t) ∈ L∗(T (P)) with e ∈ ΣE , then σ · (e, t) ∈ L∗(T (P‖C)).

(C3) C is non-blocking: if σ ∈ L∗(T (P‖C)) and σ·(a, t) ∈ L∗(T (P)), then σ·(b, t′) ∈
L∗(T (P‖C)) for some b ∈ Σ and t′ ∈ R≥0.

(C4) all states of C are accepting (fairness).

For a timed language L ⊆ TΣ∗, we say that a μ-controller C controls P against
the specification of desired (resp. undesired) behaviours L iff L∗(P‖C) ⊆ L (resp.
L∗(P‖C)∩L = ∅). A similar notion is defined for timed languages over infinite words.

Problem 1. The control problem with fixed resources against desired (resp. unde-
sired) behaviours is to decide, given a plant P , a specification L, and a granularity μ
finer than that of P , whether there exists a μ-controller C which controls P against the
specification of desired (resp. undesired) behaviours L.

Problem 2. The control problem with non-fixed resources is analogous to the pre-
vious one with the important difference that the granularity of the controller is not
specified a priori.

In this paper we study the decidability of these problems for specifications given as
MTL formulas (i.e. L = Lω(ϕ) or L = L∗(ϕ) for a given MTL formula ϕ). However,
for MTL specifications over infinite words, it is easy to show that the control problem is
undecidable (also for fixed resources) by a trivial reduction from the MTL satisfiability
problem over infinite words that is known to be undecidable [23]. Thus, in the following
we consider the cases in which either L is the set of finite models of an MTL formula
or the set of infinite models of a Safety-MTL formula.

3 Undecidability Results

In this section we show that for non-fixed resources, the control problems for both MTL
over finite words and Safety-MTL over infinite words against desired behaviours are
undecidable. We obtain these undecidability results by a reduction from the reachability
problem of channel machines, which is known to be undecidable [12].
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A deterministic channel machine (DCM, for short) S = 〈S, s0, shalt,M,Δ〉 is a
finite-state automaton acting on an unbounded fifo channel, where S is a finite set of
(control) states, s0 ∈ S is the initial state, shalt ∈ S is the halting state, M is a finite set
of messages, andΔ ⊆ S × {m!,m? | m ∈M} × S is the transition relation satisfying
the following determinism hypothesis: (1) (s, a, s1) ∈ Δ and (s, a, s2) ∈ Δ implies
s1 = s2; and (2) (s,m!, s1) ∈ Δ and (s, a, s2) ∈ Δ implies a = m! and s1 = s2.

The semantics is described by a labelled graph G(S), whose set of vertices (global
states) is the set of pairs (s, x) with s ∈ S and x ∈ M∗ (representing the channel
content), and whose edge relation is defined as follows: (s, x) a−→ (s′, y) iff (s, a, s′) ∈
Δ and either a = m! and y = x · m, or a = m? and x = m · y. We say that shalt is
reachable in S iff there is path in G(S) from (s0, ε) to (shalt, x) for some x ∈M∗. The
reachability problem for DCMs then asks whether, given a DCM S, shalt is reachable
in S.

Proposition 1 ([12]). The reachability problem for DCMs is undecidable.

Theorem 1. The control problem with non-fixed resources for MTL specifications over
finite words representing desired or undesired behaviours is undecidable.

Proof. We reduce the halting problem for DCMs to the control problem for MTL spec-
ifications against desired behaviours (note that since MTL is closed under negation, the
undecidability result holds also for specifications of undesired behaviours). We first en-
sure that the DCM has additional properties which will be useful in our construction,
and then we describe the reduction and give a sketch of proof.

Adding properties to channel machines. Given a DCM S′ = (S′, s′0, s
′
halt,M

′, Δ′), we
can construct w.l.o.g. (for details see [9]) an equivalent one S = (S, s0, shalt,M,Δ)
(w.r.t. reachability of the halting state) such that:

– shalt is the single state with no outgoing transition,
– there is no cycle in (S,Δ) in which every edge is labelled by a write action,
– if the unique (maximal) path in G(S) from (s0, ε) is infinite, then the size of the

channel content is unbounded (unbounded channel property).

Encoding computations with timed words. We encode the executions of S (i.e. the paths
of G(S) from (s0, ε)) [22] by the set Lcorrect of timed words (a1, t1)(a2, t2) · · · over
{m?,m! | m ∈M} such that:

(R1) there exist s1, s2, · · · such that s1 = s0 and (si, ai, si+1) ∈ Δ for each i ≥ 1,
(R2) there is no two actions at the same time: ∀i, j, i �= j ⇒ ti �= tj ,
(R3) everym! action is matched by anm? action one time unit later:

∀i, (ai = m! and ∃j tj ≥ ti + 1)⇒ ∃k (ak = m? and tk = ti + 1),
(R4) everym? action is matched by an m! action one time unit earlier:

∀i, (ai = m?) ⇒ ∃k (ak = m! and tk = ti − 1),

Reduction to the control problem. Let S = (S, s0, shalt,M,Δ) be a DCM satisfying the
above-mentioned properties. The idea of the reduction is the following: the plant will
roughly be the channel machine S with all actions m! and m? being controllable. We
add two new uncontrollable actions Nil and Check. A play will consist of an alternance
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of controllable and uncontrollable actions. When it is his turn the environment can
either play a Nil action to continue the simulation or a Check action to stop the game
(the use of the Check action is explained below). The goal of the controller will be to
simulate a correct execution of the channel machine reaching state shalt (of course this
is possible iff shalt is reachable in S). If shalt is reached at some point, the controller can
stop performing actions and wins the game (if the execution played so far is correct).

We now have to ensure that the timed words σ played by the controller simulate a
valid execution of the channel machine (that is σ ∈ Lcorrect):

– (R1) is satisfied because the plant we consider has the same structure as S,
– (R2) and (R3) can be encoded by an MTL formula in the specification,
– (R4) will be checked by the environment. We add a new sink state qEnd to the plant;

at any time the environment can decide to stop the game by playing a Check action
and going to this new state. In this case, if the Check action is played at the same
time as an m? action and there is no matching m! action one time unit before,
the controller will be declared losing (in the MTL formula). Otherwise, (that is
when there is no m? action or if there is a matching m! one time unit before), the
controller will be declared winning.
Thus the controller will be forced to simulate a correct execution of S because
if it tries to insert an m? which is not matched by a m!, then it may lose if the
environment plays Check immediately after.

Here is the formal definition of the plant PS and the MTL specification φ. PS =
〈Q, q0,→, F 〉 is defined over a symbolic alphabet based on (ΣC ∪ΣE , X), where

– ΣC = {m!,m? | m ∈M}, ΣE = {Nil,Check}, andX = {x};
– Q = S ∪ {qδ | δ ∈ Δ} ∪ {qEnd}, q0 = s0, and F = Q;

– q
true,a,{x}−−−−−−→ qδ iff δ = (q, a, q′) ∈ Δ,

– qδ
x=0,Nil−−−−→ q′ iff δ = (q, a, q′) for some q and a.

– qδ
x=0,Check−−−−−−→ qEnd

The MTL formula φ is given by φ = φSim ∧φMatch ∧φCheck, where φC-action stands for∨
a∈ΣC

a, and:

– φSim = �¬(φC-action ∧ ♦=0 φC-action) 3 [expresses (R2)]
– φMatch = �

(
(m! ∧ ♦≥1φC-action)⇒ ♦=1m?

)
[expresses (R3)]

– φCheck =
∧

m∈M

((
♦(m? ∧ ♦=0Check)

)
⇒ ♦(m! ∧ ♦=1Check)

)
[ensures that if Check is played at the same time than (but right after) anm? action,
then thism? action must be matched by anm! one time unit earlier]

Sketch of proof. In our control game, the controller can only win if it simulates the
maximal execution of S. Now, we show that shalt is reachable in S if and only if there
exists a controller for the plant PS against the specification φ of desired behaviours.

If shalt is reachable in S, we consider a controller with one clock (reset after every
transition) which simply plays a correct encoding (with timestamps in Q≥0) of the
execution of S, reaching shalt and staying idle from here.

3 We use the non-strict version of ♦ and �: ♦Iϕ stands for ϕ∨♦Iϕ and �Iϕ stands for¬♦I¬ϕ.
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Assume now that shalt is not reachable in S. Two cases may occur: either (1) S may
be blocking at some point; a controller playing a valid execution will then be stuck in a
state different from shalt, however as it is non-blocking, it will have to play an incorrect
action and so violate φ; or (2) there is an infinite computation in S not reaching shalt. In
this case, since S has the unbounded channel property, the channel will be unbounded
on this execution, and a controller will not be able to simulate such a computation (it
would intuitively need an infinite number of clocks). ��

The proof for finite words can be adapted to Safety-MTL over finite or infinite words
specifying desired behaviours (φSim and φMatch can be rewritten in Safety-MTL by
just expanding implications; For φCheck we need to consider a more involved formula,
see [9]). Safety-MTL is not closed under negation and the technique cannot be applied
to undesired behaviours, thus the problem remains open in this case.

Theorem 2. The control problem with non-fixed resources for Safety-MTL specifica-
tions over infinite words representing desired behaviours is undecidable.

4 Decidability Results

In this section, we show that for fixed resources, the control problems for both MTL
over finite words and Safety-MTL over infinite words (with respect to both desired and
undesired behaviours) are decidable.

In order to solve these problems, we first recall a notion of “timed game” introduced
in [13]. Given an alphabetΣ, a validity function overΣ is a function val : 2Σ → 2(2Σ)

such that every set of actions U ∈ 2Σ is mapped to a nonempty family of subsets
of U . Let T = 〈S, s0,→〉 be a symb-deterministic STS over a symbolic alphabet Γ
and val be a validity function over Γ . A strategy in T respecting val is a mapping
f : D ⊆ L∗

symb(T ) → 2Γ such that ε ∈ D and for all γ ∈ D and b ∈ f(γ), f(γ) ∈
val(enabledT (stateT (γ))) and γ · b ∈ D.

The set of plays of f , denoted by plays(f), is the set of words in Lsymb(T ) that are
consistent with the strategy f . Formally, γ ∈ plays(f) iff for every prefix γ′ · b of γ,
b ∈ f(γ′). We say that f is a finite-state strategy if there is a symb-deterministic finite-
state STS Tfin such that Lsymb(Tfin) = plays(f) and for every finite play γ of f , f(γ) is
given by the set of symbolic actions enabled at stateTfin(γ).

A timed game over finite (resp. infinite) words is a pair G = (A,L) where A is a
symb-deterministic TA over a symbolic alphabet Γ based on (Σ,X), and L ⊆ TΣ∗

(resp. L ⊆ TΣω) is a timed language over finite (resp. infinite) words. Moreover, we
require thatA is atomic (each clock constraint ofA is atomic w.r.t. the granularity ofA)
and is consistent (tw(Lωsymb(A)) ⊆ TΣω and for every γ ∈ Lsymb(T (A)), tw(γ) �= ∅).

Let val be a validity function over Γ . A strategy respecting val in the timed game
G = (A,L) is a strategy in T (A) respecting val. A strategy f is winning with respect
to desired behaviours (resp. winning with respect to undesired behaviours) iff for every
accepting play γ ∈ plays(f) ∩ Lsymb(A) (γ is finite if L ⊆ TΣ∗ and γ is infinite
otherwise), the condition tw(γ) ⊆ L holds (resp. condition tw(γ) ∩ L = ∅ holds).

An MTL timed game (resp. a Safety-MTL timed game) is a timed game G = (A,L)
in which L is the set of finite or infinite models of an MTL (resp. Safety-MTL) formula.
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Let us return to the control problem. Slightly extending a result in [13], we easily
obtain the following result.

Proposition 2. Given a plant P over a symbolic alphabet Γ , a granularity μ finer than
that of the plant, and a timed languageL over finite or infinite words, one can construct
a timed game G = (A,L) and a validity function val over Γ s.t. A has granularity
μ and there is a (finite-state) μ-controller C which controls P for the specification of
desired (resp. undesired) behaviours L iff there is a (finite-state) winning strategy re-
specting val in G with respect to desired (resp. undesired) behaviours.

By Proposition 2, it follows that for fixed resources, the control problem for MTL over
finite words (resp. Safety-MTL over infinite words) can be reduced to deciding the exis-
tence of a winning strategy in an MTL timed game over finite words (resp. Safety-MTL
timed game over infinite words). In the remainder of this section we prove that these
problems are decidable. The correctness of our approach relies on a well (and even bet-
ter) quasi-ordering defined over a suitable symb-deterministic countable infinite-state
STS. Therefore, we start by recalling some basic results from the theories of well quasi-
orderings and better quasi-orderings.

In the following, we assume w.l.o.g. that constants occurring in constraints of TA are
integers. For granularity μ = (X, 1,K), we simply write μ = (X,K).

4.1 Well Quasi-Orderings and Better Quasi-Orderings

A quasi-ordering (qo, for short) is a pair (S,*) where * is a reflexive and transitive
(binary) relation on a set S. A well quasi-ordering (wqo, for short) is a qo (S,*) such
that for every infinite sequence x0, x1, x2, . . . of elements of S there exist indices i < j
such that xi * xj .

Given a qo (S,*), we are interested in the following qo induced by (S,*):

– the monotone domination order is the qo (S∗,*∗), where S∗ is the set of finite
words over S and x1, . . . , xm *∗ y1, . . . , yn iff there is a strictly monotone injec-
tion h : {1, . . . ,m} → {1, . . . , n} such that xi * yh(i) for all 1 ≤ i ≤ m;

– the powerset order is the qo (2S ,+), where for all S1, S2 ⊆ S, S1 + S2 if and
only if ∀x2 ∈ S2. ∃x1 ∈ S1. x1 * x2.

A better quasi-ordering (bqo, for short) is a stronger relation than wqo. We do not
recall the (rather technical) definition of bqo (e.g. see [2]). Instead we recall some prop-
erties of bqo (see [2,3]), which will be used in the following.

Proposition 3. 1. Each bqo is a wqo.
2. If S is finite, (2S ,⊆) is a bqo.

3. If (S,*) is bqo, (S∗,*∗) is a bqo.
4. If (S,*) is bqo, (2S ,+) is a bqo.

4.2 Alternating Timed Automata

In this subsection we recall the framework of alternating timed automata with a single
clock (ATA, for short) [22,20]. We use x to denote this single clock. For a finite set Q,
Φ(Q) denotes the set of formulas: ψ ::= ψ ∧ ψ | ψ ∨ ψ | q | x �* k | x.ψ, where
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q ∈ Q, k ∈ N, and �*∈ {<,≤,=,≥, >}. The expression x.ψ is a binding construct
corresponding to the operation of resetting the clock x to 0.

An ATA over an alphabet Σ is a tuple A = 〈Q, q0, δ, F 〉 where Q, q0, and F are
defined as for TA, and δ : Q×Σ → Φ(Q) is the transition function.

A configuration ofA is a finite set of pairs (q, u) where q ∈ Q is a state and u ∈ R≥0
is a clock value. The initial configuration is {(q0, 0)}. A configurationC is accepting if
for all (q, u) ∈ C, q ∈ F (note that the empty configuration is accepting).

Given a clock value u, we define a satisfaction relation |=u between configurations
and formulas in Φ(Q) according to the intuition that when the automaton is in state q
with clock value u, then it can make an instantaneous a-transition to configurationC if4

C |=u δ(q, a). Formally, |=u is defined inductively as follows: C |=u q if (q, u) ∈ C,
C |=u x �* k if u �* k, C |=u x.ψ if C |=0 ψ, and the boolean connectives are handled
in the obvious way. We say that A is complete if for all q ∈ Q, a ∈ Σ, and u ∈ R≥0,
there is a configuration C such that C |=u δ(q, a).

We say that a configuration M is a minimal model of ψ ∈ Φ(Q) with respect to
u ∈ R≥0 ifM |=u ψ and there is no proper subset C ⊂M with C |=u ψ.

A single-step run is a triple of the form C
a,t−−→ C′ where a ∈ Σ, t ∈ R≥0, C =

{(qi, ui)}i∈I and C′ are configurations, and C′ =
⋃

i∈I{Mi | Mi is a minimal model
of δ(qi, a) with respect to ui + t}. A run over a (finite or infinite) timed word σ =

(a0, τ0)(a1, τ1) . . . is a sequence of the formC0
a0,d0−−−→ C1

a1,d1−−−→ C2 . . . such that each

triple Ci
ai,di−−−→ Ci+1 is a single-step run and di = τi − τi−1 (assuming τ−1 = 0).

We say that a finite timed word σ is accepted by A iff there is a finite run of A over
σ starting from the initial configuration and leading to an accepting configuration. We
denote by L∗(A) the set of finite timed words accepted by A.

4.3 Preliminary Results

In this subsection we recall some results from [22] and state some properties useful in
our approach to solve MTL and Safety-MTL timed games. We fix a symb-deterministic,
atomic TA A = 〈Q, q0,→, FA〉 over a symbolic alphabet Γ based on (Σ,X) and with
granularity (X,K), and a complete ATAB = 〈P, p0, δ, FB〉 overΣ whose unique clock
is x. We assume that K is greater than all constants appearing in the clock constraints
of B.

An A/B-configuration is a pair ((q, ν), G), where (q, ν) is configuration of A (i.e.
q ∈ Q and ν is a valuation over the set of clocks X) and G is configuration of B. For
an A/B-configuration ((q, ν), G), t ∈ R≥0, and (a, g, Y ) ∈ Γ , we define⎧⎨⎩SuccA((q, ν), t, (a, g, Y )) = {(q′, ν′) | (q, ν) a,g,Y−−−→

t
(q′, ν′) is a single-step of A}5

SuccB(G, t, a) = {G′ | G a,t−−→ G′ is a single-step of B}

The synchronous product of A and B is an uncountable infinite-state STS over Γ ,
denoted by TA/B , representing intuitively A and B executing in parallel. Formally,

4 I.e. a simultaneous transition to multiple-copies of A described by configuration C.
5 I.e. q

a,g,Y−−−→ q′ is a transition of A, ν + t ∈ �g	, and ν′ = (ν + t)[Y ← 0].
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TA/B = 〈S, s0,�〉, where S is the set of A/B-configurations, s0 = ((q0,
−→
0 ), {p0, 0})

corresponds to the initial A/B-configuration, and

((q1, ν1), G1)
a,g,Y
−−−� ((q2, ν2), G2) iff ∃t ∈ R≥0 s.t. G2 ∈ SuccB(G1, t, a) and

(q2, ν2) ∈ SuccA((q1, ν1), t, (a, g, Y ))

Now, we recall the extended region construction presented in [21] to abstract away
precise clock values in A/B-configurations, recording only their values to the nearest
integer and the relative order of their fractional part.

Let REGK be the finite set of one-dimensional regions {r0, r1, . . . , r2K+1} defined
as follows: for 0 ≤ i ≤ K , r2i = {i} and r2i+1 = (i, i+1), and r2K+1 = (K,∞). For
u ∈ R≥0, reg(u) denotes the region in REGK containing u.

Define the finite alphabet Λ = 2(Q×X×REGK)∪(P×REGK): its letters are finite sets of
pairs (p, r) and triples (q, y, r), where q and p are states ofA and B respectively, y ∈ X
is a clock of A, and r is a one-dimensional region in REGK . Moreover, we denote by
(Λ∗,*) the monotone domination order induced by the bqo (Λ,⊆), and by (2Λ

∗
,+)

the powerset order induced by (Λ∗,*). Applying Proposition 3, (Λ∗,*) and (2Λ
∗
,+)

are bqo (hence, also wqo).
Now, we associate to every A/B-configuration s = ((q, ν), G) a canonical word

H(s) ∈ Λ∗ as follows. First note that s can be equivalently represented as the set
G′ given by G ∪ {(q, y, ν(y)) | y ∈ X}. We partition G′ into a sequence of subsets
G1, . . . , Gn, such that for all 1 ≤ i ≤ j ≤ n, for every pair (p, u) or triple (q, y, u) in
Gi, and for every pair (p′, v) or triple (q′, y′, v) in Gj , the following holds: i ≤ j iff
fract(u) ≤ fract(v).6 Define H(s) as the word in Λ∗ given by Abs(G1) . . .Abs(Gn),
where for any 1 ≤ i ≤ n, Abs(Gi) = {(p, reg(u)) | (p, u) ∈ Gi} ∪ {(q, y, reg(u)) |
(q, y, u) ∈ Gi}. We say that two A/B-configurations s and s′ are equivalent, written
s ∼ s′, if H(s) = H(s′).

Proposition 4 ([22]). The relation ∼ is a bisimulation over TA/B , i.e. s1 ∼ s′1 and

s1
a,g,Y
−−−� s2 implies s′1

a,g,Y
−−−� s′2 and s2 ∼ s′2 for some s′2.

The discrete quotient induced by the bisimulation ∼ over TA/B is the STS T∼ =
〈W,w0, ↪→〉, defined as follows:

– W = {H(s) | s is an A/B-configuration};
– w0 = H(s0) (i.e. the image underH of the initial A/B-configuration).

– w1
a,g,Y
↪−−−→ w2 iff there exists s1 ∈ H−1(w1) and s2 ∈ H−1(w2) s.t. s1

a,g,Y
−−−� s2.

Proposition 5 ([22]). The following properties hold:

1. The set of successors of any word w in T∼ is finite and effectively computable.
2. The transition relation ↪→ of T∼ is downward-compatible with respect to *, i.e.

w′
1 * w1 and w1

a,g,Y
↪−−−→ w2 implies w′

1
a,g,Y
↪−−−→ w′

2 for some w′
2 * w2.

6 fract(u) denotes the fractional part of u.
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We conclude this subsection by stating some simple results on the deterministic version
of T∼. For w ∈ W , we note regA(w) the maximal subword u * w s.t. u does not
contain occurrences of states of B. Since B is complete and A is atomic and symb-
deterministic, by classical properties of regions in timed automata, it easily follows that

for allw1, w2 ∈W with regA(w1) = regA(w2),w1
a,g,Y
↪−−−→ w′

1 andw2
a,g,Y
↪−−−→ w′

2 imply
that regA(w′

1) = regA(w′
2). Moreover, enabledT∼(w1) = enabledT∼(w2). Motivated

by these observations, we denote by SW the set of nonempty finite sets C ⊆ W such
that for all words w,w′ ∈ C, regA(w) = regA(w′). Moreover, we denote by DT ∼ =
〈SW , {w0}, ↪−→D〉 the restriction of Det(T∼) to the set of states SW . Note that by the
observations above, L∗

symb(DT ∼) = L∗
symb(Det(T∼)).

Proposition 6. 1. If C1 + C2, then enabledDT ∼(C1) = enabledDT ∼(C2).
2. The transition relation ↪−→D of DT ∼ is downward-compatible with respect to +,

i.e. C′
1 + C1 and C1

a,g,Y
↪−−−→D C2 implies C′

1
a,g,Y
↪−−−→D C′

2 for some C′
2 + C2.

4.4 Decidability of MTL Timed Games over Finite Timed Words

The logic MTL is closed under negation, thus we only consider MTL timed games
against specifications of undesired behaviours. We fix an MTL timed game over finite
words G = (A,L∗(ϕ)) and a validity function val over the symbolic alphabet Γ as-
sociated with A. Assume A = 〈Q, q0,→, FA〉 has granularity (X,K). Applying [22],
one can construct a complete ATA Bϕ = 〈P, p0, δ, Fϕ〉 s.t. L∗(Bϕ) = L∗(ϕ).

Let TA/ϕ be the synchronous product of A and Bϕ, T∼ = 〈W,w0, ↪−→〉 and DT ∼ =
〈SW , {w0}, ↪−→D〉 be the STS induced by TA/ϕ defined in Subsection 4.3.

An A/Bϕ configuration ((q, ν), G) is bad if both q is accepting (i.e. q ∈ FA) and
G is accepting (i.e. for all (p, u) ∈ G, p ∈ Fϕ). A word w ∈ W is said bad if there
is s ∈ H−1(w) such that s is bad. Moreover, a word set C ∈ SW is bad if C contains
some bad word. Finally, a strategy f in DT ∼

7 is safe iff for every finite play γ of f ,
stateDT ∼(γ) is not bad.

Lemma 1. There is a (finite-state) winning strategy in the timed game G with respect
to undesired behaviours iff there is a (finite-state) safe strategy in DT ∼.

Proof. Since Bϕ is complete andA is consistent, we easily obtain that L∗
symb(T (A)) =

L∗
symb(TA/ϕ) (= L∗

symb(Det(TA/ϕ) = L∗
symb(DT ∼)). This means that for every f : D ⊆

Γ ∗ → 2Γ , f is a strategy in G iff f is a strategy in DT ∼. If f is a winning strategy
in G w.r.t. undesired behaviours, then we claim that f is safe for DT ∼. Indeed if for
some finite play γ, stateDT ∼(γ) was bad, then by definition of DT ∼ and Proposition 4
there would be a path in TA/ϕ from the initial A/Bϕ configuration to a bad A/Bϕ
configuration whose trace is γ. By construction, this implies γ ∈ L∗

symb(A) and tw(γ)∩
L∗(ϕ) �= ∅, which is a contradiction. Thus, the claim holds. In a similar way, if f is
safe for DT ∼, then f is a winning strategy in G w.r.t. undesired behaviours. ��

By Lemma 1, deciding the existence of a winning strategy in the timed game G w.r.t.
undesired behaviours can be reduced to checking the existence of a safe strategy f in

7 In the following we omit the reference to val.
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DT ∼. Now, we show that this last problem is decidable, by extending the approach
proposed in [1] for A-downward closed games. The correctness and termination of our
procedure relies on the well quasi-ordering of (SW ,+).

We build a finite portion T of the tree given by the unfolding ofDT ∼ from the initial
state {w0} as follows. We start from the root, labelled with {w0}, and at each step, we
pick a leaf x with label C ∈ SW and perform one of the following operations:

– if C is not bad and there is an ancestor of x in the portion of the tree built so far
with label C′ where C′ + C, then we declare the node successful and close the node
(i.e. we will not expand the tree further from the node);

– if C is bad, then we declare the node unsuccessful and close the node;

– otherwise, for any transition inDT ∼ of the form C
a,g,Y
↪−−−→D C′ we add a new node

y with label C′ and an edge from the current node x to y labelled by (a, g, Y ). If C

has no successor, then we declare the current node x as dead.

Note that the procedure is effective. Moreover, termination is guaranteed by König’s
Lemma and by well quasi-ordering of (SW ,+). The resulting finite tree T is re-labelled
in a bottom-up way by elements in {;,⊥} as follows:

– successful and dead leaves are labelled ; and unsuccessful leaves are labelled ⊥;
– for any internal node x labelled by C, the {;,⊥}-labelling is defined as follows:

if there is a set of symbolic actions U ∈ val(enabledDT ∼(C)) such that for each
(a, g, Y ) ∈ U , the edge in T from x and with label (a, g, Y ) leads to a node labelled
by ;, then we label x by ;; otherwise, we label x by ⊥.

The algorithm answers “yes” if the root is labelled by ;. Otherwise, it answers “no”.
Correctness of the algorithm is stated by Lemma 2. The first point is simple, and the

second point follows from Proposition 6 (a detailed proof is given in [9]).

Lemma 2. If the algorithm answers “no”, then there is no safe strategy in DT ∼.
If the algorithm answers “yes”, then there is a finite-state safe strategy in DT ∼ and we
can build it effectively.

Finally, by Lemmata 1 and 2, the fact that MTL is closed under negation, and Proposi-
tion 2, we obtain the main result of this subsection.

Theorem 3. The control problem for fixed resources against MTL specifications over
finite words representing desired or undesired behaviours is decidable. Moreover, if
there exists a controller, then one can effectively construct a finite-state one.

Remark 1. As the satisfiability problem for MTL can be reduced to an MTL control
problem, the control problem for fixed resources against MTL specifications over finite
words has non-primitive recursive complexity [22].

Remark 2. Since our algorithm is based on the translation of MTL over finite words
to ATA, the result above can be extended to specifications given as languages of finite
timed words recognized by ATA (note that ATA are closed under complementation [22]).



Controller Synthesis for MTL Specifications 463

4.5 Decidability of Safety-MTL Timed Games over Infinite Timed Words

First note that Safety-MTL is not closed under negation. Thus, we need to distinguish
between specifications representing desired and undesired behaviours. For desired be-
haviours, the construction is not that far from the one for finite timed words, even though
it requires some refinement. On the other hand, for undesired behaviours, the algorithm
is much more involved and require techniques inspired by [24]. The whole construction
is reported in [9]. The main result can be summarized as follows.

Theorem 4. The control problem for fixed resources against Safety-MTL specifica-
tions over infinite words representing desired or undesired behaviours is decidable.
Moreover, for desired behaviours, if there exists a controller, then one can effectively
construct a finite-state one.

5 Conclusion

In this paper, we have studied the control problem for MTL and Safety-MTL specifica-
tions. Our results are summarized in the following table.

fixed resources non-fixed resources
MTL over finite words

(desired or undesired behaviours)
decidable undecidable

Safety-MTL over infinite words
(desired behaviours)

decidable undecidable

Safety-MTL over infinite words
(undesired behaviours)

decidable ?

There are still open problems, for instance the precise complexity of the control problem
for Safety-MTL specifications with fixed resources, and also the decidability of the
control problem for Safety-MTL specifications representing undesired behaviours with
non-fixed resources. Finally, for Safety-MTL representing undesired behaviours with
fixed resources, actually we do not know if the existence of a strategy in a timed game
implies the existence of a finite-state one. This means that the question to construct a
finite-state controller in this case remains open.
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Abstract. We propose a remedy to that part of the state-explosion problem for
timed automata which is due to interleaving of actions. We prove the following
quite surprising result: the union of all zones reached by different interleavings of
the same set of transitions is convex. Consequently we can improve the standard
reachability computation for timed automata by merging such zones whenever
they are encountered. Since passage of time distributes over union, we can con-
tinue the successor computation from the new zone and eliminate completely the
explosion due to interleaving.

1 Introduction

Exploring the state space of timed automata [AD94] is a fundamental activity with
numerous potential applications in circuit timing analysis, scheduling, verification of
real-time software, performance analysis, etc. It is, however, a very difficult problem
still waiting for a performance breakthrough despite efforts invested during the last 15
years. We hope that the results of this paper will advance us in this respect.

Partial-order methods have been widely reported in the discrete verification litera-
ture. They focus on that part of the state-explosion problem posed by the interleaving
semantics, as illustrated by the example of Figure 1 where we see two automata and
their asynchronous composition. Actions a and b are mutually independent and hence,
in the product automaton, state 11 can be reached via two paths1 that commute in a
“diamond”. For certain simple reachability properties that do not mention paths and
intermediate states, it is sufficient to explore only one of those paths. However, if ad-
ditional non-commuting transitions are possible from the intermediate states, or if the
properties are more sequential and less invariant under path permutations, the situation
is more involved and has been a subject of numerous publications. This is not the topic
of the present paper.

In the analysis of timed automata, diamonds pose additional problems. Due to the
clock variables, paths that seem to commute on the transition diagram do not necessar-
ily converge to the same extended state which includes also the clock values. Consider
the timed automata appearing in Figure 2 together with their composition. In each au-
tomaton the transition from 0 to 1 resets the respective clock. The standard reachabil-
ity computation algorithm for timed automata computes a discrete directed graph, the
nodes of which are “symbolic states” of the form (q, Z) where q is a discrete state andZ
is a zone, a convex set of clock valuations satisfying some conjunction of inequalities.

1 In general, n! paths when there are n transitions.
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Fig. 1. Two automata with independent action a and b, and their composition

Apply this algorithm to the automaton we obtain two zones associated with state 11,
one in which x ≤ y (because in all runs along this path x is reset after y) and the other
with y ≤ x. So here, in a situation where untimed reachability will converge to single
state, timed reachability will generate several symbolic states from which the computa-
tion can be continued, leading very quickly to explosion. Roughly speaking, while the
ordinary explosion associated with a product of n automata, each with m states will
lead in the worst case to O(mn) states, the additional splitting due to interleaving may
result in O(nmn) states, a fact that prevents verification of systems of modest size.2

In this paper we propose a solution to this problem, which is based on a new sur-
prising3 result which shows that the set of all points in the clock space reached by runs
consisting of interleaving of the same set of actions is convex. Since evolution distrib-
utes over union, zones that have been reached through different paths in the transition
graph can be merged during reachability computation, thus eliminating the interleaving
explosion. The rest of the paper is organized as follows. In Section 2 we give the def-
inition of timed automata and their interaction. In Section 3 we prove our main result
which is used in Section 4 to define a modified reachability algorithm whose superior-
ity is experimentally confirmed. In Section 5 we discuss the applicability of the results
to various forms of interaction, and conclude in Section 6 with a discussion of related
work, in particular the idea of local time scales.

2 Timed Automata

We consider a compositionA1||A2|| · · · ||An of timed automata. Interaction can be de-
fined using two types of mechanisms, the first one is by synchronized transitions and the
other one, which is more expressive and useful, is by shared variables. To simplify the
presentation we will use the former to present our result and discuss later its extension
to state-based synchronization. For the same pedagogical reasons, we make additional
simplifying assumptions concerning the form of invariants and guards, but the results

2 Note that if we can push the size limit of timed verification toward non-trivial systems, the rest
of the battle against explosion can continue from there using abstraction-based methods like
the ones we have recently proposed [BBM03, BBM06].

3 What is surprising is the fact that it has not been discovered before by all those working in the
domain, the authors included.
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Fig. 2. Two timed automata, their composition and an example of reachability computation

extend naturally to any conjunction of timed inequalities. As for non-convex (disjunc-
tive) conditions allowed by the original definition of timed automata, we have found no
use of them in more than 10 years experience in the domain.4 We also do not pay much
attention to the distinction between strict and non strict inequalities which are irrelevant
to convexity.

Definition 1 (Timed Automaton). A timed automaton is A = (Σ,Q,C, I,Δ) where
Σ is a finite set of transition labels, Q is a finite set of states, C is a finite set of clocks,
I is the staying condition (invariant), assigning to every q ∈ Q a conjunction Iq of
inequalities of the form c ≤ u, for some clock c and integer u, and Δ is a transition
relation consisting of elements of the form (q, g, a, r, q′) where q and q′ are states,
a ∈ Σ is a transition label, g (the transition guard) is a conjunction of formulae of the
form (c ≥ l) for some clock c and integer l and r ⊆ C is a set of clocks to be reset by
the transition.

We assume one transition labelled a for every a ∈ Σ. A clock valuation is a function
v : C → R≥0 and a configuration of the automaton is a pair (q, v) consisting of a
discrete state (location) and a clock valuation. We use r also to denote the reset function
on clock valuation that sets the clock in r to zero and leaves the other intact. We use
v + d to denote the clock valuation obtained from v by adding d to all clock values. A
step of the automaton is one of the following:

– A discrete step: (q, v) a−→ (q′, v′), for some transition (q, g, a, r, q′) ∈ Δ such that
v satisfies g and v′ = r(v).

– A time step: (q, v) d−→ (q, v + d) for some d ∈ R≥0 such that v + d satisfies Iq .

A compound step is a time step (possibly of a zero duration) followed by a discrete step:

(q, v)
d,a−→ (q′, v′) ≡ (q, v) d−→ (q, v + d) a−→ (q′, v′).

4 The tendency to look for results proved for the “most general” definition, inherited uncritically
from mathematics, can be sometimes very counter-productive in domains which are still evolv-
ing. Perhaps this could be one of the reasons for the sterility of certain branches of theoretical
computer science.
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A run of the automaton starting from a configuration (q0, v0) is a finite sequence of
compound steps ending in a time step.

ξ : (q0, v0)
d1,a1−→ (q1, v1)

d2,a2−→ · · · dk,ak−→ (qk, vk)
d∗−→ (qk, vk + d∗).

We use also the notation (q, v)
ξ−→ (q′, v′) for runs.

We will define the interaction between the automata via a “distributed alphabet” Σ
in the sense of the theory of traces [DR95]. For each automaton Ai, let Σi be its local
alphabet, that is the set of transition labels it uses. Our composition semantics requires
that all Ai such that a ∈ Σi should participate in an a-labelled global transition. Hence
in any run of the global automaton an a-transition will be taken the same number of
times in all Ai such that a ∈ Σi.

Definition 2 (Composition of Timed Automata). A composition of timed automata is
A = A1||A2|| · · · ||An where each automaton is of the formAi = (Σi, Qi, Ci, Ii, Δi).
The sets of states and clocks of the automata are mutually disjoint.

The global automaton obtained from the composition is A = (Σ,Q,C, I,Δ) where
Q = Πn

i=1Q
i, C =

⋃n
i=1 C

i and Σ =
⋃n

i=1Σ
i. We write global states as q =

(q1, . . . , qn) ∈ Q and global clock valuations over C as v = (v1, . . . , vn). The seman-
tics of the composition is given in terms of global steps as follows:

– A discrete step: (q,v) a−→ (q′,v′), such that for every i either a ∈ Σi and
(qi, vi) a−→ (q′i, v′i) is a step of Ai, or a �∈ Σi and (q′i, v′i) = (qi, vi).

– A time step: (q,v) d−→ (q,v + d) for some d ∈ R+ such that v + d satisfies∧n
i=1 Iqi .

Global compound steps and runs are defined similarly to their local counterparts. It is
sometimes (and this time in particular) useful to speak of the projection of a global
run on each automaton. The projection ξi of a global run ξ is obtained from ξ in two
stages. First we “hide” transitions in which Ai does not participate and collapse the
time passages, that is apply successively the following transformation:

(q,v)
d,a−→ (q′,v′)

d′,a′

−→ (q′′,v′′) �−→ (q,v)
a,d+d′

−→ (q′′,v′′)

whenever a′ �∈ Σi. After all such external transitions have been eliminated we project
the run on the states and clocks of Ai.

Finally let us define two additional notions. Two runs ξ, ξ′ of A are qualitatively
equivalent if they go through the same sequence of discrete transitions and differ only
in timing. We denote this fact by ξ ≈ ξ′ and write equivalence classes of ≈ by [ξ]. We
say that ξ and ξ′ are locally equivalent, denoted by ξ ∼ ξ′, if all their local projections
are equivalent, that is, ξi ≈ ξ′i for every i. We denote equivalence classes of ∼ as
〈ξ〉. Clearly, ≈ is stronger than ∼, and perhaps too strong. When ξ ∼ ξ′, both runs
agree on the order of local transitions while ξ ≈ ξ′ means that they agree also on their
interleaving.
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3 Main Result

We can now formulate our main result.

Theorem 1 (Convexity). Let Z be a convex timed polyhedron and let q and q′ be two
global states of A. Let ξ be a run starting at q and ending in q′. Then the set

RZ,〈ξ〉 ≡
⋃

ξ′∈〈ξ〉
{v′ : ∃v ∈ Z (q,v)

ξ′

−→ (q′,v′)}

is convex.

The proof is given via a characterization of the reachable clock valuations by a quanti-
fied formula consisting of conjunctions of inequalities over clock values and auxiliary
variables. Since convex sets are closed under projection the result follows. For economy
of notation we assume that ξ is such that each automatonAi makes exactly k steps. The
restriction of Ai to the states and transitions involved in the run is of the form depicted
in Figure 3.

· · ·
gi
1, ai

1, ri
1 gi

k, ai
k, ri

k

Ii
0 Ii

1 Ii
k−1 Ii

k

qi
0 qi

1 qi
k−1 qi

k

Fig. 3. The part of Ai which participates in ξi

As a first step we extend the description of local runs to include the time stamps of
the transitions:

ξi : (qi0, v
i
0, t

i
0) → (qi1, v

i
1, t

i
1)→ · · · → (qik, v

i
k, t

i
k)→ (qik, v

i
k+1, t

i
k+1).

Each tij variable denotes the absolute time in which the corresponding transition has
been taken. Every global run in 〈ξ〉 is completely characterized by the values tij and
vij for i = 1..n and j = 0..k + 1. All those runs satisfy the natural local ordering
among time stamps, i.e. tij ≤ tij+1, while those that are also ≈-equivalent agree also
on the ordering of time stamps of different automata, which characterize the particular
interleaving (shuffle) of the local runs.

We can now proceed to the logical characterization. We will use the following auxil-
iary notations and abbreviations: qj = (q1j , . . . q

n
j ) for global states, vj = (v1j , . . . v

n
j ),

for global clock valuations, vi = {vi0, . . . , vik}, for the set of valuations appearing in a
local run ξi and ti = {ti0, . . . , tik} for the set of local time stamps. The set of all values
that characterize a run are v =

⋃
i vi, and t =

⋃
i t

i. The predicates {Φij} characterize
the clock values and time stamps in a valid step j of Ai.

Φij(v
i
j−1, t

i
j−1, v

i
j , t

i
j) ≡

⎧⎪⎪⎨⎪⎪⎩
∃d d = tij − tij−1 ∧
Iij−1(v

i
j−1 + d) ∧

gij(v
i
j−1 + d) ∧

vij = rij(v
i
j−1 + d)
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This is nothing but a recapitulation of the definition of a compound step, namely that
time passage does not violate the staying condition, the transition guard is satisfied and
that a reset takes place. Note that this definition is invariant under a shift of global
time, that is, Φij(v, t, v

′, t′) is equivalent to Φij(v, t + d, v
′, t′ + d) for every d. We can

now define what constitutes a valid run of Ai in isolation, without taking into account
synchronization constraints. We keep this definition shift-invariant as well and do not
yet insist on the initial zone which is defined globally.

Φi(ti,vi) =
k∧

j=1

Φij(v
i
j−1, t

i
j−1, v

i
j , t

i
j)

The predicate which defines what constitutes a valid global run is a conjunction of the
conditions for local runs with additional conditions that take care of all the synchro-
nization aspects, including the fact that all runs start and terminate simultaneously. For
every a ∈ Σ let Sa = {(i, j) : aij = a} be the set of steps that synchronize on a. To
force all a-transitions to take place at the same time we define the predicate

Ψa(t) ≡
∧

(i,j),(i′,j′)∈Sa

tij = ti
′

j′ .

The conditions for a valid global run starting at Z0 are then:

Φ(t,v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t10 = t20 = · · · = tn0 ∧
v0 ∈ Z0 ∧∧n

i=1 Φ
i(vi, ti) ∧∧

a∈Σ Ψa(t) ∧
t1k+1 = t2k+1 = · · · = tnk+1

Note that the first and last conditions can be viewed as synchronization conditions for
two additional fictitious transitions “start” and “end” in which all automata participate.
This set is a convex subset of the space consisting of all valuations and time stamps in
the run, and so is its projection on the last n dimensions which is the reachable set:

RZ,〈ξ〉(vk+1) ≡ ∃t∃v1, . . . ,vk Φ(t,v1, . . .vk,vk+1). ��

Let us mention that the result extends naturally to arbitrary “linear” hybrid automata
with convex guards and invariants.

4 Application to Reachability Computation

4.1 A Modified Algorithm

We will now modify the standard reachability computation algorithm for timed au-
tomata to take advantage of this result. The idea is to generate symbolic states in a
breadth-first manner and at each level merge those reached by the same set of compound
steps. To identify those we need to decorate symbolic states with (partially ordered) path
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information. A shuffle expression over Σ is α = α1|| . . . ||αn with αi ∈ (Σi)∗. Con-
catenation of a shuffle expression and a symbol a is defined as (α1|| . . . ||αn) · a =
(β1|| . . . ||βn) where βi = αi if a �∈ Σi and βi = αi · a otherwise.

Reachability computation for timed automata [HNSY94] is based on zones (timed
polyhedra) which are expressed as conjunctions of rectangular inequalities of the form
c ≤ d or c ≥ d and diagonal inequalities of the form c − c′ ≤ d for clocks c, c′ and
integer d. A symbolic state is a pair (q, Z) where Z is a zone. The a-successor of a
symbolic state (q, Z) such that q admits an a transition is defined as

Suca(q, Z) = {(q′, v′) : ∃v ∈ Z ∃d ≥ 0 (q, v)
d,a−→ (q′, v′).

The computation (q′, Z ′) = Suca(q, Z) is done by first applying “time passage” to
Z , intersecting the result with Iq and with the transition guard and then applying the
corresponding reset. This computation costs O(n3) time for n clocks.

Algorithm 1 performs this computation. At each iteration Waiting is a list of extended
zones to be explored, all reached by the same number of transitions. We compute the
successors of all those symbolic states and put them in a list New. The Merge procedure
scans New and replaces every subset of symbolic states of the form

{(q, Z1, α), . . . , (q, Zm, α)}

by a single state (q, Z, α) where Z is the convex hull of all these zones. From our
result it follows that Z is exactly the union of the zones. Note that the path labels of
a zone need not be kept after its successors have been computed. This also guarantees
termination due to the finite number of zones.

Algorithm 1 (New Reachability Algorithm)

Explored:= New:=∅
Waiting:={(q0, Z0, ε||..||ε)}
while Waiting �= ∅ do

for each (q, Z, α) ∈Waiting such that (q, Z) �∈ Explored do
for each a ∈ Σ do

New :=New∪{(Suca(q, Z), α · a)}
Explored := Explored ∪{(q, Z)}

Waiting := Merge(New)
return(Explored)

4.2 Experimental Results

To confirm the complexity reduction empirically we have first tested a preliminary im-
plementation of Algorithm 1 restricted to products of chain-like automata. Such au-
tomata are notorious for generating state explosion due to interleaving. We have consid-
ered two simple families of synthetic benchmarks shown in Figure 4. The first consists
of parallel compositions of n independent reset sequences of lengthm each. The second
class consists of parallel compositions of k independent synchronization chains, each
being a parallel composition of n synchronized sequences of lengthm. A synchronized
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Fig. 4. The structure of the synthetic benchmarks

Table 1. Experimental results on the synthetic acyclic benchmarks

n=2 n=4 n=6 n=8 n=10

Independent reset sequences
m=1 5 / 4 65 / 16 1957 / 64 109601 / 256 ⊥ / 1024
m=2 13 / 9 633 / 81 75973 / 729 ⊥ / 6561 ⊥ / 59049
m=3 25 / 16 2713 / 256 732529 / 4096 ⊥ / 65536 ⊥ / ⊥

Synchronization chains k = 1
m=1 4 / 4 6 / 6 8 / 8 10 / 10 12 / 12
m=2 8 / 8 37 / 17 236 / 30 1600 / 47 10949 / 68
m=3 12 / 12 86 / 32 1441 / 72 30841 / 140 660615 / 244

Synchronization chains k = 3
m=1 2012 / 64 812375 / 216 ⊥ / 512 ⊥ / 1000 ⊥ / 1728
m=2 97142 / 512 ⊥ / 4913 ⊥ / 27000 ⊥ / 103823 ⊥ / 314432
m=3 745197 / 1728 ⊥ / 32768 ⊥ / 373248 ⊥ / ⊥ ⊥ / ⊥

sequence (Aij) alternates between actions that synchronize with the left (ai,j) and the
right (ai+1,j) neighbor while separating them by at least 4 time units.

The experimental results obtained for the two benchmarks for different values of n,
m and k are summarized in Table 1. Each entry in the table is of the form B/C where B
is the number of symbolic states encountered in an ordinary breadth-first exploration,
while C is the number of states explored by Algorithm 1. We limit ourselves to instances
with less than 106 symbolic states, and use the ⊥ symbol to denote the fact that this
limit has been reached. Let us note that we achieve an exponential reduction both for
the interleaving of independent actions (reset sequences) and for strongly-synchronized
actions (a single synchronization chain with k = 1). The reduction is clearly much
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Table 2. Results on the Fisher protocol benchmark. The Uppaal-A column corresponds to results
obtained using the convex-hull approximation, while the IF-U column represents our new algo-
rithm. Table entries represent the number of symbolic states and computation time. The symbol
“-” means “ not reported” (or “irrelevant” for the case of computation time on older computers)
and ⊥ means “too big”.

Size Kronos Uppaal Uppaal-A IF IF-U

2 -/- -/0.01s -/0.00s 29/0.003s 18/0.002s
3 -/- -/0.03s -/0.01s 165/0.01s 53/0.01s
4 752/- -/0.23s -/0.06s 1099/0.07s 164/0.03s
5 3552/- -/5.09s -/0.29s 8453/1.07s 527/0.04s
6 16320/- -/310.97s -/1.34s 74939/21.06s 1726/0.20s
7 73620/- -/51598.17s -/5.89s 762429/595.75s 5693/1.75s
8 ⊥/⊥ ⊥/⊥ -/25.83s ⊥/⊥ 18792/5.73s
9 ⊥/⊥ ⊥/⊥ -/113.53s ⊥/⊥ 61883/28.42s

10 ⊥/⊥ ⊥/⊥ -/498.88s ⊥/⊥ 202994/367.76s
11 ⊥/⊥ ⊥/⊥ -/2525.31s ⊥/⊥ 662873/4489.23s

more impressive in the synchronized case, where reductions based on partial order or
symmetry [HBL+03] are not directly applicable.

We have then implemented Algorithm 1 into the IF toolset [BGM02] and tested its
performance on several publicly-available benchmarks. Table 2 compares the perfor-
mance of the new algorithm on the Fisher mutual-exclusion protocol benchmark with
other reported results. We compare with old Kronos results reported in [T98], Uppaal
results reported in [U] and results obtained with IF without using the new algorithm.
It is interesting to note that although our new algorithm performs much better than
the standard Uppaal machinery, their performances are similar when the convex-hull
approximation option of the latter is employed. Our result shows that this “approxima-
tion” can be easily made exact.

5 Generalizations and Limitations

Let us discuss briefly the applicability of our result to more general modes of interaction
between timed automata. A crucial condition for expressing synchronization constraints
in a conjunctive form is that in every abstract run, every transition admits a unique set
of transitions with which it is has to synchronize. This condition is fulfilled by requiring
that whenever an a-transition takes place, all automata having a in their alphabet must
participate. If a transition could choose some subset of the other transitions to synchro-
nize with, Φmay contain disjunctions that cannot be eliminated and the result no longer
holds.

State-based synchronization in which the state of one or more automata may appear
in the invariants and transition guards of other automata is more general and has a more
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Fig. 5. Automata A1||A2 do not satisfy Theorem 1 while A′1||A2 do

asymmetric flavor as one automaton may enable a transition in the other without being
obliged to take a transition by itself. Suppose A1 can take a transition when A2 is in
state q and consider an abstract run in which A1 takes this transition and A2 passes
through q twice (see Figure 5). Let t be the time stamp of the A1 transition, and let
[t1, t2] and [t3, t4] be the time intervals in which A2 stays in q. The synchronization
condition in this case will be disjunctive: t ∈ [t1, t2] ∨ t ∈ [t3, t4]. If, however, the
disabling of the A1 transition is always accompanied by an explicit transition in A1

the run that synchronizes with the first sojourn in q and the one synchronizing with the
second one, are not qualitatively equivalent and the result is preserved. This property
holds, for example, in the automata we use to model bi-bounded inertial delays [MP95]
as well as in models derived from free-choice Petri nets.

Another illuminating example which is particularly important for our motivating ap-
plication domain (circuits) is the following: let Ax, Ay and Az be three Boolean au-
tomata modeling an AND gate z = x ∧ y and consider runs in which both x and y rise
from 0 to 1 and consequently z rises as well. Denoting the respective time stamps by
tx, ty and tz , the synchronization condition is of the form

(tx ≤ ty = tz) ∨ (ty ≤ tx = tz)

or equivalently tz = max{tx, ty}, which does not define a convex set. In order to apply
Algorithm 1 correctly to systems admitting this type of synchronization we need to split
every such transition to several copies, each with a unique synchronization context.

Let us remark that when the local automata are acyclic and reverse-deterministic (no
state is entered via two different sequences of transitions), all global symbolic states
that agree on the discrete state are reached via the same set of transitions. Hence our
result can be exploited without decorating the states with path information.

6 Related Work and Discussion

The application of partial-order techniques to timed systems has been subject to several
publications [R94, YS97, DGKK98, BJJY98, M99, LNZ05, ZYN03] but nothing that
resembles our simple and easily-usable result has been explicitly stated. Neither has any
solution that works in practice been reported so far.

The closest work, at least in spirit, to ours is that of Niebert et al. [ZYN03, LNZ05]
who are more ambitious with respect to full-fledged partial-order reductions and use
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“event zones” rather than the standard “clock zones” used in the present paper. Event
zones contain sufficient additional dimensions to represent dependency such that all
representatives of a trace lead to the same event zone. It might be the case that the union
that we compute here could be extracted (and proved to be convex) using their results.
It would be interesting to compare the reductions provided by the two approaches in
terms of scope and performance.

An interesting idea which was first proposed in [BJJY98], inspired by distributed
simulation, is to use local time scales, that is to compute successors for each automa-
ton separately on its own clock subspace, and somehow combine these local zones
upon synchronization. Although the idea is aesthetically pleasing, it suffers from several
problems including the implicit global synchronization that takes place at time zero, and
the fact that you need to augment each automaton with an additional clock that measures
its corresponding total elapsed time. This idea, however, inspired our proof of convexity.

We prove, nevertheless, a small result which indicates the circumstances under which
local time scales can be effectively exploited. We present the result informally. Consider
two automataA1 andA2 and a prefix of a global run that reaches a global state (q1, q2),
and in which each of the two has passed through a local state in which all its clocks
were inactive.5 If no synchronized action has taken place since then, one can see that if
q1 → q′1 and q2 → q′2 via synchronization-free local runs, then (q1, q2) → (q′1, q′2)
in the product automaton. The reason is that because of the clock inactivity, each of
the local runs can be “delayed” and every local state that can be reached at time t can
be reached as well at any t′ ≥ t and hence any pair of local states can be made to
be reached simultaneously. This implies that after such a “desynchronization” point,
reachable sets can be computed separately for each automaton and be merged via in-
tersection before the next synchronization. This observation can be useful for verifying
products of automata that repeatedly go through such inactive states.

As a final remark, let us note that reducing the number of zones by taking their con-
vex hull has been considered in the past [DT98] but always as an over-approximation.
We speculate that the reason for not discovering the result of the present paper is due
to the fact that the systems studied were cyclic, in which the same discrete state could
be reached by different paths, not all of which being permutations of the same set of
transitions. That is why the possibility of exact convex hull escaped the attention. In
general we think that looking at the structure of individual runs can give insights that
are sometimes masked by focusing exclusively on the reachability graph representation.

Acknowledgment. This paper has benefitted from discussions with P. Niebert.
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Abstract. Orc is a new language for task orchestration, a form of con-
current programming with applications in workflow, business process
management, and web service orchestration. Orc provides constructs to
orchestrate the concurrent invocation of services – while managing time-
outs, priorities, and failure of services or communication. In this paper,
we show a trace-based semantic model for Orc, which induces a congru-
ence on Orc programs and facilitates reasoning about them. Despite the
simplicity of the language and its semantic model, Orc is able to express
a variety of useful orchestration tasks.

1 Introduction

We describe the semantic properties of Orc, a new language for task orchestra-
tion. Task orchestration is a form of concurrent programming in which multiple
services are invoked to achieve a goal – while managing time-outs, priorities, and
failures of services and communication. Unlike traditional concurrency models,
orchestration introduces an asymmetric relationship between a program and the
services that constitute its environment. An orchestration invokes and receives
responses from the external services, which do not initiate communication.

Many practical problems can be understood as orchestrations – for example,
business workflows are naturally expressed as orchestrations [1]. We illustrate the
use of Orc in implementing some traditional concurrent computation patterns;
larger examples have also been developed [2,3]. Orc has also been used to study
service-level agreements for composite web services [4].

The goal of this work is to develop a language based on a simple trace se-
mantics that can still express, and support reasoning about, useful task orches-
trations. The key metric for a trace semantics is whether trace equivalence cor-
responds to observational equivalence of programs. Depending on the language,
traces must be extended to include failures, refusals, ready states, etc., in order
to adequately model observational equivalence. The trace semantics of Orc is a
simple set of traces; the traces include communication events and substitution
events, which model synchronization. We prove that the equality of trace sets
defines a congruence on programs, in that programs with equivalent trace sets
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are interchangeable. We show a number of laws about Orc programs, similar to
those in Kleene algebra [5]; the laws are based on strong bisimulation. We then
introduce a more general congruence based on trace set equivalence which can
establish laws not provable by strong bisimulation.

2 Overview of Orc

An Orc program consists of a set of definitions and a goal expression which is to
be evaluated. Orc assumes that basic services, like sequential computation and
data manipulation, are implemented by primitive sites. Orc provides constructs
to orchestrate the concurrent invocation of sites.

The syntax of Orc is given in Figure 1. A site call M(p̄) invokes a site named
M with a list of actual parameters p̄. If there are no parameters, the site call
is written as just ’M ’. An actual parameter p may be a variable x or a value
v. Calls to defined expressions E(p̄) are similar, given a definition with name E
and formal parameters p̄. There are only three combinators: >x> for sequential
composition, | for parallel composition, and where for asymmetric parallel
composition. The combinators are listed in decreasing order of precedence, so
f >x> g | h means (f >x> g) | h, and f where x :∈ g | h means f where x :∈
(g | h). In the remainder of this section, we give an informal overview of the Orc
programming model with examples. The formal semantics is given in Section 3.

2.1 Site Calls

The simplest Orc expression is a site call M(p̄), where M is a site name and
p̄ is a list of actual parameters. A site is a separately defined procedure, like a
web service. The site may be implemented on the client’s machine or a remote
machine. A site call elicits at most one response; it is possible that a site never
responds to a call. For example, a site call CNN (d), where CNN is a news service
and d is a date, might download the newspage for the specified date. Site calls
are strict, i.e., a site is called only if all its parameters have values.

Table 1 defines a few sites that are fundamental to effective programming in
Orc (a signal is a value which has no additional information). Additionally, 0
represents a site which never responds.

2.2 Combinators

There are three combinators in Orc to compose expressions. Symmetric composi-
tion of f and g, written as f | g, evaluates f and g independently. The sites called

f, g, h ∈ Expression ::= M(p̄) E(p̄) f | g f >x> g f where x :∈ g

p ∈ Actual ::= x v
Definition ::= E(x̄) Δ f

Fig. 1. Syntax of Orc
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Table 1. Fundamental Sites

let(x, y, · · · ) Returns argument values as a tuple.
if (b) Returns a signal if b is true, and does not respond if b is

false.
Rtimer(t) Returns a signal after exactly t time units.

by f and g are the ones called by f | g and any value published by either f or g
is published by f | g. There is no direct communication or interaction between
these two computations. For example, evaluation of CNN (d) | BBC (d) initiates
two independent computations; up to two values will be published depending on
the number of sites that respond.

In f >x> g, expression f is evaluated, each value published by it initiates a
fresh instance of g as a separate computation, and the value published by f is
called x in g’s computation. Evaluation of f continues while (possibly several)
instances of g are run. This is the only mechanism in Orc similar to spawning
threads. If f publishes no value, g is never instantiated. The values published by
the executions of different instances of g are the values published by f >x> g.
As an example, the following expression calls sites CNN and BBC in parallel to
get the news for date d. Responses from either of these calls are bound to x and
then site email is called to send the information to address a. Thus, email may
be called 0, 1 or 2 times.

(CNN (d) | BBC (d)) >x> email(a, x)

Expression f � g is a short-hand for f >x> g when x is not used in g.
To evaluate (f where x :∈ g), start by evaluating both f and g in par-

allel. Evaluation of parts of f which do not depend on x can proceed, but
site calls in which x is a parameter are suspended until x has a value. In
((M | N(x)) where x :∈ R), for example, M can be called even before x has
a value. If g publishes a value, then x is assigned this value, g’s evaluation is
terminated and the suspended parts of f can proceed. This is the only mecha-
nism in Orc to block or terminate parts of a computation. Unlike in the previous
example, the following expression calls email at most once.

email(a, x) where x :∈ (CNN (d) | BBC (d))

2.3 Definitions

Declaration E(x̄) Δ f defines expression E whose formal parameter list is
x̄ and body is expression f . A call E(p̄) is evaluated by replacing the formal
parameters x̄ by the actual parameters p̄ in the body of the definition f . Sites
are called by value, while definitions are called by name.
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2.4 Examples

Time-Out. Expression let(z) where z :∈ (f | Rtimer(t) � let(3)) either pub-
lishes the first publication of f , or times out after t units and publishes 3. A
typical programming paradigm is to call site M and publish a pair (x, b) as the
value, where b is true if M publishes x before the time-out, and false if there is
a time-out. In the latter case, x is irrelevant. Below, z is the pair (x, b).

let(z) where z :∈ ( M >x> let(x, true) | Rtimer(t) >x> let(x, false) )

Fork-Join Parallelism. In concurrent programming, one often needs to spawn
two independent threads at a point in the computation, and resume the com-
putation after both threads complete. Such an execution style is called fork-join
parallelism. There is no special construct for fork-join in Orc, but it is easy to
code such computations. The following code fragment calls sites M and N in
parallel and publishes their values as a tuple after they both complete their
executions.

(let(u, v) where u :∈M) where v :∈ N

Synchronization. There is no special machinery for synchronization in Orc;
a where expression provides the necessary ingredients for programming syn-
chronizations. Consider M � f and N � g; we wish to execute them indepen-
dently, but synchronize f and g by starting them only after both M and N have
completed.

((let(u, v) where u :∈M) where v :∈ N) � (f | g)

Priority. Call the sites M and N , but give priority to M by publishing its
response if it arrives within the first time unit, even if N ’s response precedes it.

let(x) where x :∈ (M | ((Rtimer(1) � let(u)) where u :∈ N))

Arbitration. A fundamental problem in concurrent computing is arbitration:
to choose between two computations and let only one proceed. Arbitration is the
essence of mutual exclusion. Consider a process which behaves as process P if
event Alpha happens and as Q if Beta happens. In Orc, events Alpha and Beta
are represented as sites, and P and Q are expressions. Below, flag records which
of Alpha and Beta responds first.

if (flag) � P | if (¬flag) �Q
where flag :∈ (Alpha� let(true) | Beta � let(false))

The Orc model permits more complex arbitration protocols, such as: execute
one of P , Q and R, depending how many sites out of Alpha, Beta and Gamma
respond within 10 time units.

Recursive Definitions of Expressions. The recursive expression Metronome,
defined below, publishes a signal every time unit, starting immediately. It is
used in the subsequent expression to call site Poll each time unit and publish
its values.
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Metronome Δ Signal | Rtimer(1) � Metronome
Metronome � Poll

Non-strict Evaluation; Parallel-or. Parallel-or is a classic problem in non-
strict evaluation: computation of x ∨ y over booleans x and y publishes true if
either variable value is true; therefore, the evaluation may terminate even when
one of the variable values is unknown. Here, we state the problem in Orc terms,
and give a simple solution.

Suppose sites M and N publish booleans. Compute the parallel-or of the
two booleans, i.e., (in a non-strict fashion) publish true as soon as either site
returns true and false only if both sites return false. In the following solution,
site or (x, y) returns x∨y. Site ift(b) returns true if b is true; it does not respond
otherwise: ift(b) = if (b) � let(true).

( ( let(z) where z :∈ ift(x) | ift(y) | or(x, y) )
where x :∈M )

where y :∈ N

3 Asynchronous Semantics

We develop a formal semantics of Orc in this section. The semantics is opera-
tional, asynchronous, and based on labeled transition systems. A synchronous
semantics has also been defined [2], while a complete temporal semantics is future
work.

As is common in small-step operational semantics, the syntax of Orc must be
extended to represent intermediate states. We introduce ?k to denote an instance
of a site call that has not yet returned a value, where k is a unique handle that
identifies the call instance. We also restrict the language to sites and definitions
with a single argument; multiple arguments are easily handled by adding tuples
to the language.

The transition relation f a→ f ′, defined in Figure 2, states that expression
f may transition with event a to expression f ′. There are four kinds of events,
which we call base events :

a, b ∈ BaseEvent ::= !v
∣∣ τ ∣∣Mk(v)

∣∣ k?v
A publication event, !v, publishes a value v from an expression. As is tradi-

tional, τ denotes an internal event. The remaining two events, the site call event
Mk(v) and the response event k?v, are discussed below.

3.1 Site Calls

A site call involves three steps: invocation of the site, response from the site, and
publication of the result. These steps can be arbitrarily interleaved with other
site calls, or delayed indefinitely.
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k fresh

M(v)
Mk(v)→ ?k

(SiteCall)

?k k?v→ let(v) (SiteRet)

let(v) !v→ 0 (Let)

f
a→ f ′

f | g a→ f ′ | g
(Sym1)

g
a→ g′

f | g a→ f | g′
(Sym2)

(E(x) Δ f) ∈ D
E(p) τ→ [p/x].f

(Def)

f
a→ f ′ a �= !v

f >x> g
a→ f ′ >x> g

(Seq1N)

f
!v→ f ′

f >x> g
τ→ (f ′ >x> g) | [v/x].g

(Seq1V)

f
a→ f ′

f where x :∈ g a→ f ′ where x :∈ g
(Asym1N)

g
!v→ g′

f where x :∈ g τ→ [v/x].f
(Asym1V)

g
a→ g′ a �= !v

f where x :∈ g a→ f where x :∈ g′
(Asym2)

Fig. 2. Asynchronous Operational Semantics of Orc

Rule SiteCall specifies that a site call M(v), where v is a value, transitions
to ?k with event Mk(v). The handle k connects a site call to a site return – a
fresh handle is created for each call to identify that call instance. The resulting
expression, ?k, represents a process that is blocked waiting for the response from
the call. A site call occurs only when its parameters are values; in M(x), where
x is a variable, the call is blocked until x is defined.

In SiteRet a pending site call ?k receives a result v from the environment
and transitions to the expression let(v). There is no assumption that all site calls
eventually respond. If there is no response, then the call blocks indefinitely.

The Let rule generates a publication event !v from its argument value v.

3.2 Composition Rules

The composition rules are straightforward, except in some cases where subex-
pressions publish values. When f publishes a value (f !v→ f ′), rule Seq1V
creates a new instance of the right side, [v/x].g, the expression in which all free
occurrences of x in g are replaced by v. The publication !v is hidden, and the
entire expression performs a τ action. Note that f and all instances of g are
executed in parallel. Because the semantics is asynchronous, there is no guar-
antee that the values published by the first instance will precede the values of
later instances. Instead, the values produced by all instances of g are interleaved
arbitrarily.

Asymmetric parallel composition is similar to parallel composition, except
when g publishes a value v. In this case, rule Asym1V terminates g and x is
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bound to v in f . One subtlety of these rules is that f may contain both active
and blocked subprocesses – any site call that uses x is blocked until g publishes.

Expressions are evaluated using call-by-name in the Def rule. We assume a
single global set of definitions D.

4 Executions and Traces

Define the relation ⇒ as the transitive closure of the transition relation → ,
together with the empty transition ε. If f s⇒ f ′, we say that s is an execution
of f .

f
ε⇒ f

f
a→ f ′′, f ′′

s⇒ f ′

f
as⇒ f ′

We write as to denote the concatenation of event a onto execution s. Similarly,
st is the concatenation of two executions s and t. We have included f ε⇒ f to
guarantee that the set of executions of an expression is prefix-closed.

A trace is obtained by removing all internal events, τ , from an execution. Note
that every execution (and trace) is finite in length. However, we can represent
an infinite sequence of transitions by the set of all of its finite prefixes.

Example. An execution of ((M(x) | let(x)) >y> R(y)) where x :∈ (N | S) is
shown below. In the following, N returns value 5 and R(5) returns 7.

Sk Nl l?5 Mm(5) τ Rn(5) n?7 !7

The response from S, if any, is ignored after N responds. The event τ is due to
let(5) !5→ 0. This event causes the event Rn(5). Site call Mm(5) has not yet
responded in this execution. The final expression is (?m >y> R(y)).

4.1 Laws Proved Using Strong Bisimulation

A closed expression is one which has no free variables; an open expression has
free variables. In this section, we list certain identities over closed expressions,
some of them similar to the laws of Kleene algebra [5]. We write f ∼ g to
denote that f and g are strongly bisimilar [6]. In a later section, we develop a
notion of congruence over both closed and open expressions. That notion can be
used to show, for example, that f >x> let(x) is congruent to f .

Below, “f is x-free” means that x is not a free variable of f .

1. f | 0 ∼ f
2. f | g ∼ g | f
3. f | (g | h) ∼ (f | g) | h
4. f >x> (g >y> h) ∼ (f >x> g) >y> h, if h is x-free.
5. 0 >x> f ∼ 0
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6. (f | g) >x> h ∼ f >x> h | g >x> h
7. (f | g) where x :∈ h ∼ (f where x :∈ h) | g, if g is x-free.
8. (f >y> g) where x :∈ h ∼ (f where x :∈ h) >y> g, if g is x-free.
9. (f where x :∈ g) where y :∈ h ∼ (f where y :∈ h) where x :∈ g,

if g is y-free and h is x-free.
10. 0 where x :∈ ?k ∼ ?k� 0
11. 0 where x :∈M ∼ M � 0, for any site M .

4.2 Substitution Events

Strong bisimulation is applicable only if each side of an identity is a closed
expression. If we relax this restriction, we can use bisimulation to prove, for
example, that 0 = let(x), because neither has a non-trivial transition. Yet, these
two expressions display different behaviors in the same context. For example,
let(1) >x> 0 never publishes whereas let(1) >x> let(x) always publishes.

To obtain a more general theory we introduce a new kind of event, a substi-
tution event of the form [v/x], and the transition rule:

f
[v/x]→ [v/x].f (SUBST)

A substitution event differs from the base events described in Section 3 in a
crucial way: the rules in Figure 2 are defined only over base events. Therefore,

given that f
[v/x]→ [v/x].f , (SYM1) can not be applied to deduce

f | g [v/x]→ [v/x].f | g,

Allowing substitution events expands the set of executions (and traces) of
expressions. For example, the traces of let(x) are of the form [v/x] !v, for all
possible v, and their prefixes. Introducing substitution events allows us to dis-
tinguish between 0 and let(x), for instance, because a possible trace of let(x) is
[1/x] !1.

We observe that proofs by strong bisimulation of the laws of Section 4.1
remain valid after allowing for substitution events. This is because both sides
of an identity f ∼ g are closed. Hence, given f a→ f ′, either a is not a
substitution event, or it is of the form [v/x] where x is not free in f . In the latter
case, f ′ = f , and this transition corresponds in g to g a→ g.

Furthermore, we can now show that all the laws of Section 4.1 hold for
arbitrary expressions f , g, and h, open or closed. So, we can prove, for instance,
that let(x) | let(y) ∼ let(y) | let(x). Each side of an identity has the same set
of free variables (except 0 >x> f ∼ 0, which is easily handled). Therefore, a
proof by strong bisimulation applies to each identity.

Variable Naming. Free and bound variables of an expression have differ-
ent names. Hence, in (f >x> g), f does not have a free variable x, and in
(f where x :∈ g), x is not free in g.
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5 Characterizations of Traces

Notation. We write 〈f〉 for the set of traces of f .
In this section, we show that the traces of an expression can be determined

from the traces of its constituent subexpressions. In particular, we overload the
Orc combinators to apply over trace sets and prove that

〈f | g〉 = 〈f〉 | 〈g〉
〈f >x> g〉 = 〈f〉 >x> 〈g〉
〈f where x :∈ g〉 = 〈f〉 where x :∈ 〈g〉

5.1 Trace Characterization of Base Expressions

Notation. We use the following notation for quantified expressions: (∪r : r ∈
R : e) denotes ∪r∈R(e), where variable r can be free in e. Range R of r may be
omitted if it is clear from context, e.g., (∪i :: Si).

We show the trace sets of base expressions, i.e, those without constituent
subexpressions. We only list the compact versions of traces in which there are
no substitutions to irrelevant variables (which have no effect on the rest of the
trace). Also, we only list the maximal traces below, whose prefixes constitute
the entire trace set. Below, Values denotes the set of all possible responses from
sites.

〈let(v)〉 = { !v}
〈M(v)〉 = (∪w : w ∈ Values : {Mk(v) k?w !w})
〈M(x)〉 = (∪v : v ∈ Values : (∪t : t ∈ 〈M(v)〉 : {[v/x]t}))

The trace set for let(v) is easy to see. For M(v), any maximal trace is of
the form Mk(v) k?w !w, where w is a response from M . Note that k is a
bound parameter of the trace (with Mk(v) as its binder) and it can be renamed
consistently. The trace set of M(x) starts with a substitution [v/x], for any v,
followed by any trace of M(v).

5.2 Trace Characterization for (f | g)

Separation and Merge. Let s, t and p be sequences of events. We call p a
merge of s and t if (1) s and t are both subsequences of p and every event of p
belongs to at least one of s and t, (2) every common event of p (i.e., an event
that belongs to both s and t) is a substitution, and (3) for any variable which
has a substitution in both s and t, its first substitution in both s and t is a
common event of p. We call the pair (s, t) a separation of p.

Example. Let

s = a b [3/x] [4/x] [5/x]
t = c [2/y] [3/x] [5/x] [4/x]
u = [3/x] [2/y]
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Below, we use subscripts on events to identify the sequences to which they belong,
when there is ambiguity.

a c b [2/y] [3/x]s,t [4/x]s [5/x]s,t [4/x]t ∈ (s | t)
a b [3/x]s,u [4/x] [5/x] [2/y] ∈ (s | u)

There is no merge for t and u because the orders of first substitutions to x
and y are different. Also, if two sequences have [v/x] and [w/x] as their first
substitutions for x, and v �= w, then they have no merge, from condition (3). Note
that in the merge of s and t, [5/x] appears once, whereas [4/x] appears twice.
Condition (3) imposes a constraint only on the first substitution to a variable;
subsequent substitutions may or may not be common events in a merge.

Definition. For traces s and t, define s | t to be the set of their merges.

s | t = {p | p is a merge of s and t}

We lift the definition to trace sets S | T :

S | T = {p | p ∈ s | t, s ∈ S, t ∈ T }
Note that s | ε = {s}, S | {ε} = S, and | over traces is commutative.

Theorem 1. 〈f | g〉 = 〈f〉 | 〈g〉
Proof Sketch: The complete proof is in [7]. The proof is in two parts showing that
one side is a subset of the other. For 〈f | g〉 ⊆ 〈f〉 | 〈g〉, we show a separation
(s, t) of any trace p of 〈f | g〉 such that s ∈ 〈f〉 and t ∈ 〈g〉. The proof is by
induction on the length of p. In the other direction, to show 〈f〉 | 〈g〉 ⊆ 〈f | g〉,
let p be a trace with separation (s, t) where s ∈ 〈f〉 and t ∈ 〈g〉. We prove that
p ∈ 〈f | g〉 by induction on the length of p.

5.3 Trace Characterization for (f >x> g)

Define operator \ as follows: T \[v/x] = {t | [v/x]t ∈ T }. That is, T \[v/x]
discards all traces in T that do not begin with [v/x], and removes the leading
[v/x] event from the remaining traces.

We extend this notation to sequences of substitutions:

T \ε = T
T \(cD) = (T \c)\D,

where c is a substitution and D a sequence of substitutions.

Definition. For trace s and trace set T define a set of traces (s >x> T ) by⎧⎪⎪⎨⎪⎪⎩
{s} if s has no publication,
r(t >x> T ′ | (T ′\[v/x])) if s = r !v t and r has no publication,

where D is the sequence of substitutions in r,
and T ′ = T \D
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We lift the definition to S >x> T , where S and T are sets of traces.

S >x> T = {p | p ∈ s >x> T, s ∈ S}

Theorem 2. 〈f >x> g〉 = 〈f〉 >x> 〈g〉
Proof Sketch: The complete proof is in [7]. The proof is in two parts showing
that one side is a subset of the other. To prove that 〈f〉 >x> 〈g〉 ⊆ 〈f >x> g〉,
take any p which is in 〈f〉 >x> 〈g〉, i.e., p ∈ (s >x> 〈g〉), where s ∈ 〈f〉. Then
show, by induction on the number of publications in s, that p ∈ 〈f >x> g〉. In
the other direction, to show 〈f >x> g〉 ⊆ 〈f〉 >x> 〈g〉, we take a trace p of
〈f >x> g〉, and construct a sequence s which corresponds to the subsequence of
events from f in p. We prove, by induction on the number of publications in s,
that p ∈ (s >x> 〈g〉).
Note: Any substitution event [v/x] in s is unrelated to x in (s >x> T ).

5.4 Trace Characterization for (f where x :∈ g)

Definition. For traces s and t define a set of traces (s where x :∈ t) by⎧⎪⎪⎨⎪⎪⎩
(s | t) if t has no publication,
(s′ | t′)s′′ if s = s′ [v/x] s′′, t = t′ !v t′′,

t′ has no publication and s′ has no substitution for x
{} otherwise .

We lift the definition to (S where x :∈ T ), where S and T are sets of traces.

(S where x :∈ T ) = {p | p ∈ (s where x :∈ t), s ∈ S, t ∈ T }

Theorem 3. 〈f where x :∈ g〉 = 〈f〉 where x :∈ 〈g〉
Proof Sketch: The complete proof is in [7]. The proof is in two parts showing that
one side is a subset of the other. If g never publishes, rule (ASYM1V) is never
used; therefore, the operational behavior of (f where x :∈ g) is analogous that
of f | g because (ASYM1N) and (ASYM2) are the counterparts of (SYM1) and
(SYM2), respectively. Then, any trace of (f wherex :∈ g) is from (s | t), where
s and t are traces of f and g. If g has a trace t′ !v t′′ and f a trace s′ [v/x] s′′,
then (s′ | t′)s′′ is a trace of (f wherex :∈ g), using the above argument and the
meaning of substitution.
Note: Any substitution event [v/x] in t is unrelated to x in (s where x :∈ t).

6 Monotonicity and Continuity of Combinators

The results of the last section show that the set of traces of any expression can
be obtained from the traces of its constituent subexpressions. This motivates
the following definition of congruence among expressions: two expressions are
congruent, ∼= , if their trace sets are equal. Similarly, define a partial order, +,
over expressions.

f ∼= g if 〈f〉 = 〈g〉, and f + g if 〈f〉 ⊆ 〈g〉
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Each combinator preserves substitution of congruent subexpressions. That is,
given f ∼= g, we claim

1. f | h ∼= g | h, and h | f ∼= h | g
2. f >x> h ∼= g >x> h, and h >x> f ∼= h >x> g
3. f where x :∈ h ∼= g where x :∈ h, and
h where x :∈ f ∼= h where x :∈ g

We prove the results by showing that each combinator is monotonic in both its
arguments. That is, given f + g, we prove the claims (1, 2, 3) with + replacing
∼= . Then switching the roles of f and g, we get the congruences. We also prove
continuity of the combinators. Underlying most of the proofs is the following
lemma.

Lemma 4. Let each of S0, S1, · · · and T be a set of traces. Then,

1. (∪i :: Si ∗ T ) = (∪i :: Si) ∗ T , where ∗ is any Orc combinator.
2. (∪i :: T ∗ Si) = T ∗ (∪i :: Si), where ∗ is any combinator other than >x> .

Proof: From the definition of ∗ over trace sets, for arbitrary R and T ,

R ∗ T = (∪r : r ∈ R : r ∗ T ), where ∗ is any Orc combinator
R ∗ T = (∪t : t ∈ T : R ∗ t), where ∗ is any combinator other than >x> .

These follow from the lifting in the definition of the combinators over sets.

6.1 Monotonicity of Orc Combinators

Each Orc combinator is monotonic in its left argument, e.g. f + g implies
f | h + g | h. This follows from Lemma 4, part(1); see [7] for details.

Monotonicity in the right argument for combinators other than >x> , (e.g.
f + g implies (h where x :∈ f) + (h where x :∈ g)), follows from Lemma 4,
part(2). We give a proof that f + g implies (h >x> f) + (h >x> g) in [7].

6.2 Continuity of Orc Combinators

Characterization of Least Upper Bound. Let f denote a sequence of ex-
pressions f0, f1, · · · , where fi + fi+1, for all i. Expression F is an upper bound
of f if for all i, fi + F , and F is the least upper bound of f if for any upper
bound G of f , F + G. Henceforth, we write (�f) for the least upper bound of
f . The proof of the following theorem is standard, and is given in [7].

Theorem 5. 〈�f〉 = (∪i :: 〈fi〉).

Continuity over Left Argument. Let f be a sequence of expressions, and
hi = fi ∗ g, for all i, where ∗ is any Orc combinator. Then

�h ∼= (�f) ∗ g, i.e., 〈�h〉 = 〈(�f) ∗ g〉.
The proof follows directly from Lemma 4, part(1).

Continuity over Right Argument. Given a sequence g, and hi = f ∗ gi, for
all i, where ∗ is any Orc combinator, we show �h ∼= f ∗ (�g). The proof follows
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directly from Lemma 4, part(2), where ∗ is any combinator other than >x> .
For >x> , we prove the result in [7].

6.3 Least Fixed Point for Recursive Definitions

We have shown that + is a complete partial order over expressions. Next, we
show that 0 is the bottom element. Any substitution [v/x] is applicable to any

expression because f
[v/x]→ [v/x].f . Hence, any sequence of substitutions D is a

trace of any f (by applying induction on the length of D). Since 0 has no other
transition,

〈0〉 = {D| D is a finite sequence of substitutions}

Therefore, for any f , 〈0〉 ⊆ 〈f〉, i.e., 0 + f .
Monotonicity and continuity of Orc combinators allow us to treat a recursively

defined expression as the least upper bound of a chain of approximations. As an
example, consider Metronome (described in Section 2.4) which we repeat below
in an abbreviated form.

M Δ S | R�M

Then M is the least upper bound of the chain M0 +M1 + · · · , where

M0 = 0
Mi+1 = S | R�Mi, for all i, where i ≥ 0

6.4 A Proof Using Congruence

Theorem 6. f >x> let(x) ∼= f

Proof Sketch: The complete proof is in [7]. The proof is by structural induc-
tion on f . For the base cases (i.e. when f is any of let(p), ?k, M(p), or M(x)),
the result is proved by enumerating the traces (all maximal traces of f are of
the form r !v, where r has no publications). For the inductive case, we con-
sider three possible forms of f which are: g | h, g >y> h and g where y :∈ h.
We apply certain laws from Section 4.1. From law (6), (g | h) >x> let(x) is
g >x> let(x) | h >x> let(x), and inductively, this is g | h. From law (4),
(g >y> h) >x> let(x) is g >y> (h >x> let(x)), which is g >y> h, using
induction on h >x> let(x). From law (8), (g where y :∈ h) >x> let(x) is
(g >x> let(x)) where y :∈ h, which is g where y :∈ h, using induction on
g >x> let(x).

7 Related Work

There are two primary bodies of work on developing models for task orchestra-
tion. On the one hand, commercial workflow and orchestration languages have
been the subject of formal study. On the other hand, traditional process algebra
theory is being adapted to fit orchestration problems.
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Petri nets have been proposed as a semantic model for workflow [8]. To com-
pare commercial systems, Van der Aalst has proposed a set of workflow patterns
[1]. These workflow patterns have been also been implemented in Orc [3] and the
π-calculus [9]. Others have identified difficult patterns, like time-out [10], which
have solutions in Orc.

A new Petri net language, YAWL, has been defined to express the pat-
terns more directly [11]. YAWL’s mechanism for multiple instantiation is analo-
gous to Orc’s sequential composition, but provides built-in synchronization. The
node grouping and cancellation constructs are similar to Orc’s where operator.
Rather than build specific workflow patterns into the language, Orc provides
just a few fundamental primitives with a mechanism to define new operators for
user-defined composition patterns.

Process calculi, including CSP [12], CCS [6] and π-calculus [13], provide fun-
damental models of concurrency, with a focus on symmetric communication
between threads. Orc has a structured approach to concurrency, and has an
asymmetric relationship with its environment. Orc also supports a general se-
quential composition of expressions, f � g, and an explicit construct for process
termination, which is synchronized with communication. Some variants of the
π-calculus include a termination construct [14].

Simon Peyton-Jones suggested a relationship between Orc and the List monad
as used in functional programming languages, including Haskell . The sequential
composition operator, >x> , is analogous to the list bind >>=. The where
operator resembles taking the first item from a lazy list. The standard list monad
always produces values in a specific order, whereas the publication order in Orc
is non-deterministic.

8 Conclusion

Task orchestration is a form of concurrent programming in which an agent in-
vokes and coordinates the execution of passive, but potentially unreliable, ser-
vices. Orchestration is well-suited to solving a range of concurrency problems,
most notably workflow. Our practical experience in using Orc for orchestration
has been very encouraging; we are able to code most concurrent programming
paradigms succinctly. This paper shows that Orc has a simple trace seman-
tics, and Orc combinators have many desirable properties such as monotonicity
and continuity. The simplicity of the semantics may be a factor in simplicity of
programming. We have addressed only the asynchronous aspects of Orc in this
paper. We are now developing the full semantics which will combine asynchrony
with time-based computations.
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Abstract. In the automata-theoretic approach to formal verification, the satisfi-
ability and the model-checking problems for linear temporal logics are reduced
to the nonemptiness problem of automata on infinite words. Modifying the non-
emptiness algorithm to return a shortest witness to the nonemptiness (that is,
a word of the form uvω that is accepted by the automaton and for which |uv|
is minimal) has applications in synthesis and counterexample analysis. Unlike
shortest accepting runs, which have been studied in the literature, the definition
of shortest witnesses is semantic and is independent on the specification formal-
ism of the property or the system. In particular, its robustness makes it appropriate
for analyzing counterexamples of concurrent systems.

We study the problem of finding shortest witnesses in automata with vari-
ous types of concurrency. We show that while finding shortest witnesses is more
complex than just checking nonemptiness in the nondeterministic and in the con-
current models of computation, it is not more complex in the alternating model.
It follows that when the system is the composition of concurrent components,
finding a shortest counterexample to its correctness is not harder than finding
some counterexample. Our results give a computational motivation to translating
temporal logic formulas to alternating automata, rather than going all the way to
nondeterministic automata.

1 Introduction

The automata-theoretic approach to formal verification uses the theory of automata as
a unifying paradigm for system specification, verification, and synthesis. Two funda-
mental problems in formal verification are reduced to the nonemptiness problem of
automata on infinite words: the satisfiability problem for a linear temporal logic (LTL)
formula ψ is reduced to the nonemptiness problem of an automaton Aψ that accepts
exactly all the computations that satisfy ψ [5,35], and the model-checking problem of
a system S with respect to ψ is reduced to checking the emptiness of the product of S
with an automaton A¬ψ that accepts exactly all the computations that violate ψ [35].
Verification methods based on these reductions have been implemented in both acad-
emic and industrial automated-verification tools.

Modifying the nonemptiness algorithm to return a witness to the nonemptiness of
the automaton does not involve an additional computational price and is beneficial in
both applications: in the case of satisfiability, the witness is a computation that satisfies
the formula. In particular, when the formula describes the desired behavior of a closed
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Fig. 1. While the shortest accepting run in A is q0, q1, (q2, q3, q4)ω , the shortest witness to its
nonemptiness is c(ba)ω

system, finding a witness amounts to synthesis [6]. In the case of model checking, a
witness points to a computation of the system that violates the specification, and it
helps the user to detect errors in the system. Further applications of witnesses exist in
abstraction, where refinement is directed by an analysis of counterexamples [7], and
vacuity, where a positive answer from the model checker is accompanied by a trace in
which the specification is satisfied non-vacuously [24].

A witness to the nonemptiness of an automaton on infinite words is a word of the
form uvω, for finite words u and v. The length of the witness is |u| + |v|. Modifying
the emptiness algorithm further to return a shortest witness (that is, one with a minimal
length) has useful applications. One of the weaknesses of automated synthesis is that it
may produce systems that are needlessly complicated [2]. Returning a minimal witness
amounts to returning the most optimal system that satisfies the specification. In the
context of model checking, short witnesses enable the user to find errors in the system as
soon as they appear, and they give a compact explanation to the incorrectness of system.
Using counterexamples for refinement of an abstract system, shorter counterexamples
point better to elements that have to be refined. Finally, using witnesses in the context
of vacuity, short witnesses explain better how formulas have been satisfied in a non-
vacuous way.

Finding a shortest witness to the nonemptiness of an automaton has the flavor of
finding shortest paths in graphs. Indeed, previous work on short witnesses studies the
problem of finding minimal fair cycles in graphs [8,14,32]. Nevertheless, the fact that
an automaton corresponds to a labeled graph, makes things more complicated. To see
this, consider for example the deterministic Büchi automaton A in Figure 1. In the
Büchi acceptance condition, a run is accepting if it visits the set of accepting states
infinitely often. The shortest accepting run that witnesses the nonemptiness of A is
q0, q1, (q2, q3, q4)ω , which witnesses the membership of the word cb(abc)ω, of length
5, in the language of A. The automaton A, however, has an even shorter witness to its
nonemptiness. Indeed, while the accepting run q0, q1, (q2, q3, q4, q5)ω is of length 6, it
witnesses the membership of the word c(ba)ω, which is of length 3.

For the applications mentioned above, it is the shortest witness, rather than the short-
est accepting run, that we want to return to the user1. Indeed, in the case of synthesis,
the shortest witness points to the most optimal system that satisfies the specification,
and in the case of model checking, the shortest witness is the shortest computation that

1 One can consider an even shorter description, where, for example, a subword aaa n. . . a is
represented by an, with n encoded in binary. Then, the description of the word may be loga-
rithmically shorter. We will refer also to such compressed descriptions.
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violates the property. In particular, in the case of model checking, the automaton is the
product of the specification automaton with the system, and considering shortest accept-
ing runs rather than shortest witnesses is sensitive to the structure of the specification
automaton.

The length of a shortest witness is a robust measure, as it is independent of the spec-
ification formalism: every language L ⊆ Σω has a shortest member, and this member
is independent of whether L is specified by an LTL formula, or by a particular type of
an automaton. In [32], the authors point to the fact that a shortest witness may not co-
incide with a shortest accepting run, and studied automata for which the two measures
coincide (that is, the shortest witness is read along a shortest run). Here, we take a dif-
ferent approach, and refer to the length of the witness directly, for various specification
formalisms. Note that the shortest-witness measure is especially appropriate when we
consider the intersection of several automata, as in the case of model checking a sys-
tem that is given by means of its underlying components. There, the shortest accepting
run is defined with respect to the product of the components of the system. A shortest
witness, on the other hand, is independent of the presentation of the system, and can be
defined with respect to the underlying components.

Classical models of computations, such as Turing machines and automata, have been
enriched with features to capture concurrency. Nondeterminism, for example, amounts
to letting several processes run over the input word, each following different nondeter-
ministic choices. In the case of nondeterminism, no cooperation between the spawned
processes takes place, except when time comes to decide whether the input should be
accepted. Then, the input is accepted if some process accepts it. A dual type of coop-
eration is allowed in universal automata. There, the input word is accepted if all the
processes accept it. It turned out that such limited cooperation is sufficient to make
nondeterministic and universal automata exponentially more succinct than determin-
istic automata, and to make their combination, namely alternating automata, doubly
exponentially more succinct than deterministic automata [9]. As studied in [10], en-
riching automata with real concurrency, where the spawned processes can cooperate all
along the computation (technically, a concurrent automaton consists of several compo-
nents that run concurrently, and the transitions of a component depend on the states of
the other components), results in even more succinct automata.

The automata-theoretic approach to formal verification was originally developed
with nondeterministic automata, and is based on an exponential translation of LTL for-
mulas to nondeterministic Büchi automata [35]. In recent years, however, more and
more algorithms and tools are based on alternating automata. A significant advantage
of alternating automata is the straightforward (and linear) translation of LTL formulas to
alternating Büchi automata [26,34]. Solving the nonemptiness problem for alternating
Büchi automata is done by translating them to nondeterministic Büchi automata [27].
The translation involves an exponential blow-up. Thus, alternating automata do not lead
to an improved complexity, but they do suggest cleaner algorithms with practical ad-
vantages: an ability to minimize both the intermediate alternating automaton and the
nondeterministic one [12], an ability to use the structure of the alternating automaton in
order to generate minimal nondeterministic automata [15], and more.
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We study the problem of finding shortest witnesses to Büchi automata with various
types of concurrency. The input to the shortest-witness problem is an automaton and an
integer k, given in binary. The problem is to determine whether a witness uvω such that
|uv| ≤ k exists2. We start with nondeterministic automata, and show that the witness
problem for them is NP-complete — more complex than the NLOGSPACE-complete
nonemptiness problem3. We describe a heuristic that does better than checking all can-
didates, and is based on the observation it is possible to transfer letters from the prefix u
of the witness to its cycle v, and vice versa. A similar idea is used in [14] in the context
of shortest accepting runs, but is more significant in the context of shortest witnesses.
We then show that the increased complexity with respect to the nonemptiness problem
is carried over also to concurrent automata, where the witness problem is NEXPTIME-
complete — more complex than the PSPACE-complete nonemptiness problem for them
[10,21]. It follows that our heuristic can be applied to the nondeterministic automaton
obtained by removal of concurrency, but we cannot hope to do much better.

Our main result is that for alternating automata, one can do better, and the shortest-
witness problem is not more complex than the nonemptiness problem. The techni-
cal point is that while alternating automata are sufficiently strong to count to k with
O(log k) states [3], they are sufficiently weak to let us analyze the run on a word of
the form uvω by carefully analyzing the run of each of the processes in isolation. This
leads to a PSPACE algorithm to the shortest-witness problem for alternating automata.
From a practical point of view, our results give another good reason to translate LTL
formulas to alternating automata, rather than going all the way to nondeterministic ones.
Indeed, not only the algorithm for alternating automata is cleaner, but also it improves
the complexity from NEXPTIME to PSPACE. Also, in the context of model checking,
our algorithm shows that when the system is given by a set of components (that is, when
the language of the system is the intersection of the languages of its underlying com-
ponents, in which case it can be efficiently translated to an alternating automaton), it is
better to avoid the generation of the product system and reason about the components
in isolation. ¿From a theoretical point of view, our results extend previous study on the
computational price of different types of concurrency. We will go back to this point in
Section 6.

2 Preliminaries

Given an alphabetΣ, an infinite word overΣ is an infinite sequencew = σ0 ·σ1 ·σ2 · · ·
of letters in Σ. We denote by wl the suffix σl · σl+1 · σl+2 · · · of w. An automaton on
infinite words is A = 〈Σ,Q,Q0, ρ, α〉, where Σ is the input alphabet, Q is a finite set

2 We specify the shortest witness problem as a decision problem rather than an optimization
problem in order to analyze its complexity in terms of the classical complexity classes. By
bounding the length of the shortest witness and performing a binary search for it, our results
imply also tight bounds in complexity classes like FPNP[log], which refer to the problem of
computing the length of the shortest witness.

3 This result is different from the NP-completeness result in [8] for the shortest accepting run
problem for a nondeterministic generalized Büchi automaton. We refer to this point lengthily
in Section 3.
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of states, ρ : Q × Σ → 2Q is a transition function, Q0 ⊆ Q is a set of initial states,
and α is an acceptance condition (a condition that defines a subset of Qω). If |Q0| = 1
and ρ is such that for every q ∈ Q and σ ∈ Σ, we have that |ρ(q, σ)| ≤ 1, then A is
deterministic.

A run of A on w is a function r : IN → Q where r(0) ∈ Q0 and for every l ≥ 0,
we have r(l + 1) ∈ ρ(r(l), σl). Acceptance is defined according to the set Inf (r)
of states that r visits infinitely often, i.e., Inf (r) = {q ∈ Q : for infinitely many l ∈
IN,we have r(l) = q}. The way we refer to Inf (r) depends on the acceptance condition
ofA. Several acceptance conditions are studied in the literature. We consider here Büchi
automata, where α ⊆ Q, and r is accepting if it visits α infinitely often. Formally,
Inf (r) ∩ α �= ∅.

Since A is not deterministic, it may have many runs on w. In contrast, a determin-
istic automaton has a single run on w. There are two dual ways in which we can refer
to the many runs. When A is an existential automaton (or simply a nondeterministic
automaton, as we shall call it in the sequel), it accepts an input word w iff there exists
an accepting run ofA on w. WhenA is a universal automaton, it accepts an input word
w iff all the runs of A on w are accepting. Alternation was studied in [9] in the context
of Turing machines and in [4,9,27] for finite automata. In particular, [27] studied alter-
nating automata on infinite words. Alternation enables us to have both existential and
universal branching choices.

For a given set X , let B+(X) be the set of positive Boolean formulas over X (i.e.,
Boolean formulas built from elements inX using ∧ and ∨). For technical convenience,
we do not allow the formulas in B+(Q) to use the constant true. For Y ⊆ X , we say
that Y satisfies a formula θ ∈ B+(X) iff the truth assignment that assigns true to the
members of Y and assigns false to the members ofX \ Y satisfies θ. For example, the
sets {q1, q3} and {q2, q3} both satisfy the formula (q1 ∨ q2)∧ q3, while the set {q1, q2}
does not.

An alternating automaton on infinite words is a tuple A = 〈Σ,Q, q0, δ, α〉, where
Σ,Q, q0, and α are as in automata, and δ : Q × Σ → B+(Q) is a transition function.
When A runs on an input word, it generates (an unbounded number of) processes that
read the input word. The joint behavior of these processes can be described in a tree;
thus a run of an alternating automaton is a tree in which each node is labeled by a state
of A. A node in level l that is labeled q, corresponds to a process of A that visits the
state q and has to accept the suffix wl of w. As proven in [11], runs of alternating Büchi
automata are memoryless in the sense that ifA accepts a word w, then it also accepts w
in a memoryless run — one in which two processes that are in the same state and have
to accept the same suffix proceed in the same way4. Accordingly, we restrict attention
to memoryless runs and define a run of an alternating Büchi automaton to be a DAG

(directed acyclic graph).
Formally, a run-DAG of A on an input word w = σ0 · σ1 · · ·, is Gr = 〈V,E〉, where

V ⊆ Q× IN and E ⊆
⋃

l≥0(Q× {l})× (Q× {l+ 1}) are such that 〈q0, 0〉 ∈ V , and

4 [11] proves a stronger result, namely the existence of memoryless accepting runs for parity
alternating automata. Since the Büchi acceptance condition is a special case of the parity ac-
ceptance condition, the result cited above follows.
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for every vertex 〈q, l〉 ∈ V , there is a set S = {q1, . . . , qk} such that S satisfies δ(q, σl)
and for all 1 ≤ c ≤ k, we have 〈qc, l + 1〉 ∈ V and E(〈q, l〉, 〈qc, l + 1〉).

A run-DAG is accepting iff all its paths5, which are labeled by words in Qω, sat-
isfy the acceptance condition. A word w is accepted iff there exists an accepting run-
DAG on it. Note that while conjunctions in the transition function of A are reflected in
branches of Gr, disjunctions are reflected in the fact we can have many run-DAGs on
the same word.

Recall that when an alternating automaton runs on an input word, it spawns to several
processes. All these processes take part in the task of deciding whether the word belongs
to the language. No cooperation, however, between the processes takes place, except
when time comes to decide whether the input should be accepted. A different type
of concurrency is one in which the processes cooperate all along the run. This type
of concurrency exists in nondeterministic Büchi automata with bounded concurrency
(concurrent Büchi automata, for short), introduced in [10]6. A CBW is a tuple A =
〈Σ,A1, . . . ,An〉 consisting of an alphabetΣ and n componentsA1, . . . ,An, for some
n ≥ 1. Each componentAi is a tuple 〈Qi, Q

0
i , δi, αi〉, whereQi is a finite set of states,

and we require the state sets of the different components to be pairwise disjoint. Let
Q =

⋃n
j=1Qj . The set Q0

i ⊆ Qi is the set of initial states, δi : Qi × Σ × B(Q) →
2Qi is a transition relation, where B(Q) denotes the set of all Boolean propositional
formulas over Q, and α ∈ B(Q) is a Büchi acceptance condition. Note that while each
component ofQ has its own states and transitions, its transitions depend not only on the
component’s current state but also on the current states of the other components. Also,
the Büchi acceptance condition refers to the states of all components.

A configuration ofA is a tuple c = 〈q1, q2, . . . , qn〉 ∈ Q1×Q2×· · ·×Qn, describing
the current state of each of the components. A configuration is initial if for all 1 ≤
i ≤ n, we have qi ∈ Q0

i . We use C to denote the set of all configurations of A, and
C0 to denote the set of all its initial configurations. For a propositional formula θ in
B(Q) and a configuration c = 〈q1, q2, . . . , qn〉, we say that c satisfies θ if assigning
true to states in c and false to states not in c makes θ true. Given two configurations
c = 〈q1, q2, . . . , qn〉 and c′ = 〈q′1, q′2, . . . , q′n〉, and a letter σ ∈ Σ, we say that c′ is a
σ-successor of c, if for all 1 ≤ i ≤ n there is θi ∈ B(Q) such that c satisfies θi and q′i ∈
δi(qi, σ, θi). In other words, a σ-successor configuration is obtained by simultaneously
reading σ in all the components. A run of A on an input word w = σ0, σ1, . . . is a
function r : IN → C where r(0) ∈ C0 and for every l ≥ 0, we have r(l + 1) is a σl
successor of r(l). Acceptance is defined according to the set Inf (r) of configurations
that r visits infinitely often. A run is accepting if at least one configuration in this set
satisfies α.

We use NBW, ABW, and CBW to denote nondeterministic, alternating, and concur-
rent Büchi automata, respectively. For all types of automata, the language ofA, denoted
L(A), is the set of infinite words that A accepts. Thus, each word automaton defines a

5 Recall that we do not allow the formulas in B+(Q) to use the constant true, thus all the paths
of Gr are infinite.

6 The basic motivation for this model comes from the statecharts of [17], which can be viewed
as nondeterministic automata with both concurrency and hierarchy. Our goal here is to study
the role of concurrency, and we eliminate the hierarchy.
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subset of Σω. For all types, we refer also to automata on finite words (denoted NFW,
AFW, and CFW). There, acceptance is defined according to the last state visited by the
run (or a process of the run, in case of the alternating and concurrent models).

A witness to the nonemptiness of an automaton A is a word w ∈ L(A). For an au-
tomaton A on infinite words, we define a shortest witness for A to be a word uvω ∈
L(A) such that |uv| is minimal; that is, for all words u′(v′)ω ∈ L(A), we have |uv| ≤
|u′v′|. We refer to |uv| as the length of the witness. For example, as discussed in Sec-
tion 1, the shortest witness for the automaton of Figure 1 is c(ba)ω, which is of length 3.
The shortest-witness problem is to decide, given an automatonA and an integer k ≥ 0,
given in binary, whether A has a witness of length at most k.

It is easy to see that for an NBW with n states, the length of a shortest witness is
bounded by 2n. In the case of ABW and CBW, a shortest witness may be exponen-
tially longer than the size of the automaton. Intuitively, the above follows from the
fact that intersection of automata can be modeled with no blow-up by both alternating
and concurrent automata. For a concrete example, consider, given k ≥ 1, the inter-
section of k automata A1, . . . ,Ak defined as follows. For i ≥ 1, let pi be the i-th
prime number. Let Ai, for 1 ≤ i ≤ k, be an NBW that accepts exactly all words of
the form (adib)ω, for di = 0 mod pi. For example, A1 accepts ((aa)∗b)ω, A2 accepts
((aaa)∗b)ω, A3 accepts ((aaaaa)∗b)ω, and so on. It is easy to see that Ai needs O(pi)
states. Since pi = O(i log i) [20], the size of all components together is polynomial in
k. On the other hand, the shortest witness to the nonemptiness of their intersection is
(a2·3·5···pkb)ω. Since 2 · 3 · 5 · · · pk is exponential in k, we get that the shortest witness
is exponential in the size of the components.

Remark 1. Recall that the shortest-witness problem gets as input both an automaton
A and an integer k. Since k is given in binary, an algorithm that is based on checking
the membership in A of all words uvω with |uv| ≤ k, is exponential in the input. By
the above discussion, the length of a shortest witness is at most exponential in the size
of A. Thus, with k given in binary, A is always the dominant part of the input (other-
wise, we can reduce the shortest-witness problem to the nonemptiness problem, which
is independent of k). Consequently, the complexities we get to our decision problem
correspond to the complexities of the optimization problem in which only A is given,
and a shortest witness has to be found.

A naive approach for finding a shortest witness first checks the nonemptiness of the
automaton and then tries witnesses of increasing lengths. Our main results in this paper
are that for nondeterministic and concurrent automata, one can proceed with algorithms
that are likely to perform in average better than the naive algorithm, yet it is impossible
to go below the NP and NEXPTIME complexities of the naive approach. On the other
hand, for alternating automata, where the naive approach also yields an NEXPTIME
algorithm, we are able to suggest a PSPACE algorithm.

3 The Shortest-Witness Problem for Nondeterministic Automata

We start with NBW and prove that the shortest-witness problem for them is NP-
complete. The result is technically easy, but is of interest, as it highlights the difference
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between the shortest-accepting-run and the shortest-witness problems. The shortest-
accepting-run problem for NBW can be reduced to the problem of finding shortest
paths in a graph and can therefore be solved in polynomial time. On the other hand, it is
proven in [8] that the shortest-accepting-run problem for nondeterministic generalized
Büchi automata (NGBW) is NP-complete. In an NGBW, the acceptance condition is
a set of sets of states, and a run is accepting if it visits all sets infinitely often. By the
above, hardness of the shortest-accepting-run problem in NP crucially depends on the
use of the generalized Büchi condition. An NGBW A can be translated to an NBW
A′ with only a polynomial blow up. How come, then, that the problem is in PTIME
for NBW and is NP-hard for NGBW? Well, while A′ accepts the same language as
A, it has a different structure, and a shortest accepting run for it says nothing about
a shortest accepting run for A. This is a drawback of the shortest-accepting-run mea-
sure, which depends on the specification formalism. The shortest-witness measure, on
the other hand, is independent of the specification formalism, and the solution of the
shortest-witness problem can (and indeed does) involve translations between different
specification formalisms.

Theorem 2. The shortest-witness problem for NBW is NP-complete.

Proof: We first prove membership in NP. Consider an NBW A = 〈Σ,Q, δ, q0, α〉.
WhenA is not empty, a witness uvω is induced by a simple path (labeled u) fromQ0 to
a state in α that is reachable from itself (by a simple cycle labeled v). Thus, the length
|uv| of a shortest witness is bounded by 2|Q|. Since the membership-problem for NBW
can be solved in polynomial time, membership in NP follows.

For the lower bound, we do a reduction from the Hamiltonian-cycle problem. There,
we are given a graph G = 〈V,E〉 and we have to decide whether there exists a simple
cycle traversing all vertices in V . Given G, let V = {1, . . . , n}. We define an NBW
A = 〈E, V × V, {〈1, 1〉}, δ, {〈n, n〉}〉, where δ(〈i, j〉, (i, h)) is 〈h, (j mod n) + 1〉 if
i = j, and is 〈h, j〉 if i �= j. Intuitively, a state 〈i, j〉 indicates that A traverses a path
that now visits vertex i, and is waiting for a visit in vertex j. Accordingly, from state
〈i, j〉, the NBW A can read only edges with source i, and it updates the first element of
the successor state to be the target of the edge. In addition, if i = j, then the path visits
the vertex for which A waits, and it updates the second element of the successor state
to be the next vertex. Consequently, A visits the state 〈n, n〉 infinitely many times iff
the traversed path has visited all vertices infinitely often.

It is easy to see that A has a witness of length (at most) n iff G has a Hamiltonian
cycle. Indeed, if G has a Hamiltonian cycle C, then for a word w read along C from
vertex 1, we havewω ∈ L(A). For the other direction, assume thatA has a witness uvω

of length n. An accepting run r on uvω visits 〈n, n〉 infinitely often. By the definition of
δ, the run r also visits the states 〈i, i〉 infinitely often, for all 1 ≤ i ≤ n. The transitions
to each of these states are labeled by different letters. Therefore, v must include at least
n different letters, and can include only n letters only if G has a Hamiltonian cycle.

Remark 3. Membership in NP holds also for nondeterministic generalized Büchi au-
tomata. There, the length of a shortest witness can be bounded by 2k|Q|, where k is
the index of the automaton. Note that the automaton A used in the hardness proof is
deterministic. Moreover, with some more technicality (going to an accepting loop from
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the state 〈n, n〉), it is possible to modify A to be a Büchi automaton with α = Q
(also known as a looping automaton). Thus, NP-hardness holds already for determinis-
tic looping automata.

Remark 4. As mentioned in Section 1, a compressed description of a witness is such
that subwords consisting of a block of m repetitions of the same subword x are repre-
sented by xm, with m given in binary. For example, if the witness is aabaab(cccb)ω, a
compressed description for it is (a2b)2(c3b)ω. In the shortest compressed witness prob-
lem, we are given an automaton A and an integer k, given in binary, and we have to
decide whether a witness of compressed length k exists.

Since the length of a witness is bounded by 2|Q|, so is the length of a compressed
witness, which implies that the shortest compressed-witness problem is in NP. In addi-
tion, since our NP-hardness proof for the shortest-witness problem imposes a witness
with no repeated letters, NP-hardness holds also for the shortest compressed-witness
problem.

The NP-completeness of the shortest-witness problem for NBW implies that a polyno-
mial algorithm for finding a shortest witness is unlikely to exist. A naive algorithm for
finding a shortest witness for a given NBWA goes over all words of the form uvω such
that |uv| is bounded by 2|Q|, and returns the shortest such word that is accepted by A.
In the full version, we tighten the 2|Q| bound to |Q| and describe an exponential time
and polynomial space algorithm that has a better running time than the naive algorithm.
Essentially, the improved algorithm is based on the observation that the we can choose
the location where the loop starts in such a way that the paths traversed along u and
v are disjoint. This observation is also used in [14] in the context of shortest accept-
ing runs, but its applications are more significant in our setting. Formally, we have the
following.

Proposition 1. Consider an NBW A = 〈σ,Q, δ,Q0, α〉. For a state q ∈ Q, let uq be a
word labeling a shortest path from Q0 to q, and let vq be a shortest word such that vωq
is accepted by A with initial state q. Then, a shortest witness for A is uqvωq , for some
q ∈ Q.

4 The Shortest-Witness Problem for Concurrent Automata

We now turn to study the shortest-witness problem for concurrent automata. Note that
for concurrent automata, shortest accepting runs are not defined7. On the other hand, the
definition of shortest witnesses is semantic, and we can refer to the shortest witnesses
of concurrent automata.

Theorem 5. The shortest-witness problem for CBW is NEXPTIME-complete.

Proof: A CBW A can be translated to an NBW with an exponential blow up [10].
Thus, membership in NEXPTIME follows from Theorem 2. For the lower bound, we

7 One can define shortest accepting runs for CBW by referring to the product of the components,
but this gives up the exponential succinctness of the concurrent model.
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do a reduction from the succinct Hamiltonian cycle problem. A succinct representa-
tion of a graph with 2n nodes is a Boolean circuit C with 2n input gates. The graph
represented by C is GC = 〈{0, . . . , 2n − 1}, E〉, where E(i, j) iff C has value 1 on
the input (of length 2n) that has the n-bit binary encoding of the integers i and j.
The succinct Hamiltonian circle problem is to determine, given a circuit C, whether the
graphGC has a Hamiltonian cycle. Like many other problems on succinct graphs whose
“non-succinct version” (that is, over graphs given enumeratively) is NP-complete, the
succinct Hamiltonian cycle problem is NEXPTIME-complete [16].

Given C with 2n input gates, we construct a CBW A with |C| + n components,
each with two states, such that A has a witness of length at most n2n iff GC has a
Hamiltonian cycle. We partition the components ofA to 2n input components, |C|−2n
internal-gate components, and n counting components. Recall that each component has
two states, thus we refer to the value of a component, which is either 0 or 1, according
to the state it visits.

The alphabet of A is {0, 1}, and an input word w = w0, w1, . . . describes an at-
tempt to encode a path v0, v1, . . . in GC , where the vertex vi is encoded in the subword
win, . . . , w(i+1)n−1. The word w encodes a path if its partition to blocks of length n
indeed describes a path. Thus, there is an edge between vi and vi+1 for all i ≥ 0.
Equivalently, the value of C on win, . . . , w(i+2)n−1 is 1, for all i ≥ 0.

Accordingly, A proceeds as follows. The 2n input components maintain the last
edge that was taken, and the internal-gate components maintain the value of the inter-
nal gates of C with respect to this edge. The automatonA updates its guess for the next
edge whenever a block in the input word starts (that is, once every n letters). The update
consists of the following steps: a check that the component of the output gate (the one
that maintains the value of C) is 1, a transfer of the values of the input components
n+ 1, . . . 2n to the input components 1, . . . , n, a guess for the new values of the input
components n + 1, . . . , 2n, and a guess for the value of the internal-gate components.
Once the update has been performed, the input and internal-gate components do not
change their value until A finishes reading the current block. They may, however, get
stuck (and do so in case of a bad guess), during the reading of the current block. Tech-
nically, when the current block is read, the input components n+ 1, . . . , 2n check that
the guess for the next vertex is correct (that is, in the i-th letter of the block, the input
componentn+ i+1 expects to read the letter that agrees with its value. If this is not the
case, the component gets stuck, and the run is rejected. In addition, each internal-gate
components checks that its guessed value corresponds to the semantics of the gate with
which it is associated. For example, an internal-gate component associated with an and
gate, stays in its state if its value is the conjunction of the values of the components
associated with its operands. If this is not the case, the component gets stuck, and the
run is rejecting. For the initial configuration, A guesses values for all input compo-
nents. Note that the components of A make use of its concurrency: the transitions of
one component depends on the values of other components.

By the above,A accepts a word only if it encodes a path in CG. It is left to describe
how A takes care of the path being a Hamiltonian cycle. This is where the counter
components enter the picture. The job of these components is similar to the job of
the second element in the pair in the state space of the NBW described in the proof
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of Theorem 2. While there blowing up the state space of the NBW by the number of
vertices is not a problem, here we cannot blow-up the state space by a factor of 2n, and
instead we use the ability of concurrent automata to count to 2n with n components.
Formally, whenever a block is read and the vertex in this block agrees with the value
of the counter (that is, the value of the input components n+ 1, . . . , 2n agree with the
value of the counter components),A increases the value of the counter by 1.

Remark 6. Note that our reduction involves a generation of a CBW that accepts a word
iff it is a path in a graph represented succinctly. Thus, the technique we developed for
the shortest-witness problem is useful for proving NEXPTIME-hardness of a family of
problems for which the corresponding problem on NBW is NP-hard [30].

5 The Shortest-Witness Problem for Alternating Automata

In the concurrent case, our results indicate that one cannot do better than translating the
CBW to an NBW and solving the shortest-witness problem with respect to the NBW.
ABW can also be translated to NBW with an exponential blow up [27]. Solving the
shortest-witness problem by translating the ABW to an NBW would then result in an
NEXPTIME algorithm. In this section we show that the translation to NBW can be
avoided, and that a direct algorithm on the ABW requires only polynomial space.

Consider an ABW A = 〈Σ,Q, δ, q0, α〉. For two sets S, S′ ⊆ Q, let A[S, S′] =
〈Σ,Q, S, δ, S′〉 be the alternating automaton on finite words obtained fromA by defin-
ing S to be the set of conjunctively related initial states and S′ to be its set of fi-
nal states8. For simplicity, when S = {q} is a singleton, we denote the automaton
by A[q, S′]. Note that for every sets S, S′, and S′′, with S′ ⊆ S′′, we have that
L(A[S, S′]) ⊆ L(A[S, S′′]), and L(A[S′′, S]) ⊆ L(A[S′, S]).

Form ≥ 1, we say that a function f : Q→ 2Q \ {∅} ism-cyclic onA if there exists
a set Q′ ⊆ Q such that

1. q0 ∈ Q′,
2.
⋃

q∈Q′ f(q) ⊆ Q′, and
3. there exists a word w such that |w| = m and w ∈

⋂
q∈Q′ L(A[q, f(q)]).

We say thatQ′ is a core of f . Thus, f ism-cyclic onA if there is a set Q′ of states that
contains q0, the application of f on a state in Q′ results in states in Q′, and there is a
word w of length m such that for all states in Q′, the word w is accepted by the AFW
with initial states q and accepting set f(q). Intuitively, m-cyclic functions reduce the
existence of a witness to the nonemptiness of the alternating automaton to the existence
of the same witness to the nonemptiness of several automata.

In order to describe how we usem-cyclic cycles in order to solve the shortest-witness
problem for ABW, let us first consider a special case of the Büchi condition, where α =
Q. In such automata (also known as looping automata), every infinite run is accepting.
Also, let us first handle the case where the witness is of the form vω .

8 An alternating automaton with a set of conjunctively related initial states has to accept the
input word from all the initial states. Automata with a set of conjunctively related initial states
can be easily translated to an automaton with a single initial state: the transition from the new
initial state is a conjunction of the transitions from the states in the set of initial states.
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Lemma 1. Consider an alternating looping automaton A. For all m ≥ 1, there exists
a witness wω ∈ L(A) such that |w| = m iff there exists anm-cyclic function on A.

Proof: Let A = 〈Σ,Q, δ, q0, Q〉. For the first direction, let wω ∈ L(A) be such that
|w| = m. Consider an accepting memoryless run r of A on wω . Let Gr = 〈V,E〉 be
the run DAG of r. For each i ≥ 0, let Qi denote the set of states in the (im)-th level of
Gr; thus, Qi = {q : 〈q, im〉 ∈ V }. Since the run is accepting, Qi �= ∅ for all i ≥ 0.
Note that for all i ≥ 0, the set Qi is the set of states that r visits after reading the prefix
wi of wω . For a state q ∈ Qi, let Sq,i denote the subset of Qi+1 that contains all states
reachable from q. Formally, q′ ∈ Sq,i iff 〈q′, (i+1)m〉 is reachable from 〈q, im〉. Since
r is memoryless, then for all i, j ≥ 0 and q ∈ Qi ∩ Qj , we have that Sq,i = Sq,j .
Indeed, both sets contain the set of states that q “generates” when it reads the prefix w
of wω . For a state q for which q ∈ Qi for some i ≥ 0, let Sq = Sq,i. As argued, the
definition of Sq is independent of i.

We construct an m-cyclic function f as follows. Let Q′ =
⋃

i≥0Qi. Thus, the core
of f is the set of states that r visits in levels 0,m, 2m, 3m, . . .. For q ∈ Q′, we define
f(q) = Sq. For q /∈ Q′, we define f(q) arbitrarily. We claim that the three conditions
for f being m-cyclic hold. First, since Q0 = {q0}, we have that q0 ∈ Q′. Second, if
q′ ∈ f(q) then q′ ∈ Q′, and hence

⋃
q∈Q′ f(q) ⊆ Q′. Finally, for each q ∈ Qi, we

have thatw ∈ A[q, Sq], so, by the definition of f , we also have that w ∈ L(A[q, f(q)]).
Hence, as |w| = m, there exists a word of lengthm in

⋂
q∈Q′ L(A[q, f(q)]).

For the other direction, let f be an m-cyclic function on A, and let Q′ be a core
for f . Since f is m-cyclic, there exists a word w of length m in

⋂
q∈Q′ L(A[q, f(q)]).

We claim that A accepts wω . We define a run r of A on wω as follows. Let r0 be an
accepting run of A[q0, f(q0)] on w. Such a run exists, as by the definition of f , we
have that w ∈ L(A[q0, f(q0)]). Let S1 be the set of states that r0 visits after reading
w. Let r1 be an accepting run of A[S1,

⋃
q∈S1

f(q)] on w. Again, such a run exists, as
S1 ⊆ Q′, and hencew ∈ L(A[q, f(q)]) for all q ∈ S1. We continue in the same manner
to obtain, for each i ≥ 0, a set Si ⊆ Q′ and an accepting run ri of A[Si,

⋃
q∈Si

f(q)]
on w. Since there are 2n subsets of Q, it is guaranteed that there are j′ < j ≤ 2n such
that Sj = Sj′ . The run obtained by concatenating r0, r1, . . . , rj′−1 and then repeatedly
concatenating rj′ , . . . , rj−1 is an infinite accepting run of A on wω.

We can now extend m-cyclic function to ABW. In [29], Muller et al. introduce weak
alternating automata (AWW). In an AWW, the acceptance condition is α ⊆ Q, and
there exists a partition of Q into disjoint sets, Qi, such that for each set Qi, either
Qi ⊆ α, in which case Qi is an accepting set, or Qi ∩ α = ∅, in which case Qi is
a rejecting set. In addition, there exists a partial order ≤ on the collection of the Qi’s
such that for every q ∈ Qi and q′ ∈ Qj for which q′ occurs in δ(q, σ), for some σ ∈ Σ,
we have Qj ≤ Qi. Thus, transitions from a state in Qi lead to states in either the same
Qi or a lower one. It follows that every infinite path of a run of a AWW ultimately gets
“trapped” within some Qi. The path then satisfies the acceptance condition if and only
if Qi is an accepting set. Thus, we can view a AWW with an acceptance condition α as
both a Büchi automaton with an acceptance conditionα, and a co-Büchi automaton with
an acceptance conditionQ \α. Indeed, a run gets trapped in an accepting set iff it visits
infinitely many states in α, which is true iff it visits only finitely many states in Q \ α.
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The translation of LTL formulas to alternating automata results in weak automata
[26]. Also, ABW can be translated to an AWW with a quadratic blow up [23]. Ac-
cordingly, we are going to use m-cyclic functions of AWW in our algorithm for the
shortest-witness problem for ABW.

We say that an m-cyclic function f has a rejecting cycle if for every core Q′ for
it, there exists a sequence q1, q2, . . . , qk, with k ≤ |Q|, of states in Q′ \ α such that
q(i mod k)+1 ∈ f(qi) for all 1 ≤ i ≤ k. Note that a rejecting cycle refers only to
states in Q′ and requires some path in the run induced by f to visit Q \ α infinitely
often. As we argue in Lemma 2 below, the weakness of the automaton guarantees that
the fact a rejecting cycle refers only to states “sampled” by f does not prevent it from
characterizing acceptance.

Lemma 2. Consider an AWW A. For every m ≥ 1, there exists a word wω ∈ L(A)
such that |w| = m iff there exists an m-cyclic function f on A that does not have a
rejecting cycle.

Proof: Let A = 〈Σ,Q, δ, q0, α〉. For the first direction, let wω ∈ L(A) be such that
|w| = m. Let r be a memoryless accepting run of A on w and let Gr = 〈V,E〉 be its
run DAG. We claim that them-cyclic function f defined in the proof of Lemma 1 does
not have a rejecting cycle. Assume by way of contradiction that f has a rejecting cycle
q1, . . . , qk. Since for each 1 ≤ i < k we have that q(i mod k)+1 ∈ f(qi), then, by the
way we have defined f , there exists an index j ≥ 0 and a vertex 〈q1, j ·m〉, reachable
from 〈q0, 0〉, from which there is a path π1 to the vertex 〈q2, (j+ 1) ·m〉. Again, by the
definition of f , there exists a path π2 from 〈q2, (j + 1) ·m〉 to 〈q3, (j+ 2) ·m〉. We can
continue in a similar way and generates an infinite path inGr that visits infinitely many
states in Q \ α, contradicting the fact thatGr is accepting.

For the other direction, let f be an m-cyclic function on A that does not have a
rejecting cycle, and let Q′ be the core of f . We claim that the run r constructed in the
proof of Lemma 1 is accepting. Assume by way of contradiction that r is rejecting.
Then, the DAG Gr has a path π = 〈q0, 0〉, 〈q1, 1〉, . . . such that there is an index l ≥ 0
such that qj /∈ α for all j ≥ l. By the definition of r, we have that Qi ⊆ Q′ for all
i ≥ 0. Let j be such that j · m > l. The sequence qjm, q(j+1)m, q(j+2)m, . . . is such
that for all i ≥ 1, we have that q(j+i)m ∈ Q′ \ α, and q(j+i+1)m ∈ f(q(j+i)m). By the
pigeonhole principle, there exist i′ and i with i′ < i < n such that q(j+i′)m = q(j+i)m.
Therefore, the sequence q(j+i′)m, q(j+i′+1)m, . . . , q(j+i−1)m is a rejecting cycle in f ,
and we reach a contradiction.

Theorem 7. The shortest witness problem for ABW is PSPACE-complete.

Proof: An ABW with n states can be translated to an NBW with 3n states [27]. There-
fore, since by Proposition 1 length of a shortest witness for an NBW is bounded the
number of its states, an ABW with n states is empty iff it has no witness of length at
most 3n. Hence, hardness in PSPACE follows from the PSPACE hardness of the non-
emptiness problem for ABW. [27].

Let A be an ABW with n states, and let k be an integer given in binary. We describe
an algorithm in NPSPACE for deciding whether A has a witness of length at most k.
Since NPSPACE=PSPACE [31], we are done. First, the algorithm answers “no” if A
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is empty and answers “yes” if A is not empty and k > 3n. Since the nonemptiness
problem is in PSPACE, this can be done in PSPACE.

Otherwise, let A′ = 〈Σ,Q, q0, δ, α〉 be an AWW equivalent to A. By [23], such an
AWW with at most 2n2 states exists. The algorithm guesses an integer 0 < m ≤ k,
a function f : Q → 2Q \ {∅} and a set Q′ ∈ Q. The function f consists of |Q| sets
of elements in Q, each of size at most |Q|. Hence f can be encoded in space of size
O(n4 logn). The algorithm then checks that f ism-cyclic as follows. It first checks that
q0 ⊆ Q′, and that

⋃
q∈Q′ f(q) ⊆ Q′. These checks are both performed in polynomial

space. It then constructs an AFW Am of size O(logm) that accepts all words w ∈ Σm

[3]. The algorithm then constructs an AFW A[q, f(q)] for each q ∈ Q′, and checks
that the intersection L(

⋂
q∈Q′ A[q, f(q)]) ∩ L(Am) is not empty. Since alternation can

model intersection, the latter can be checked in PSPACE. Note that the intersection is
not empty iff anm-cyclic function onA exists. It is left to check that f has no rejecting
cycle. For that, the algorithm goes over each sequence q1, . . . , qk, with k ≤ |Q| and
checks that it is not a rejecting cycle. If all sequences pass the check successfully, the
algorithm returns “yes”. By Lemma 2, there exists a witness vω ∈ L(A) of length
m ≤ k iff there is an instance of the algorithm that answers “yes”.

We now expand the algorithm to account for cases where the witness is of the form
uvω. The algorithm first guesses the length of u by guessing an integer t < m. It
then guesses a sequence of t letters and a run of A on it. Let Q′

0 be the set of states
the algorithm visits after reading the t letters without getting stuck, and let A′′ be the
ABW obtained from A by defining Q′

0 to be its set of initial states. The algorithm now
proceeds as in the case of witnesses of the form vω, with respect to witnesses of length
m− t.

Recall that the definition of a shortest witness is semantic and depends on the language
of the automaton rather than its structure. Thus, the shortest-witness problem can be
defined with respect to any specification formalism that defines ω-regular languages.
LTL formulas can be linearly translated to AWW. Hence, together with the PSPACE
lower bound for LTL satisfiability, Theorem 7, implies the following.

Theorem 8. The shortest-witness problem for LTL is PSPACE-complete.

It follows that finding a shortest witness for the satisfiability of an LTL formula is not
harder than just checking its satisfiability.

6 Discussion

We studied the shortest-witness problem in three different models of concurrency. From
a theoretical point of view, our results show that the limited concurrency between the
processes of an alternating automaton makes reasoning about them simpler than con-
current automata: the shortest-witness problem for ABW is PSPACE-complete, like
the nonemptiness problem for it, whereas for concurrent automata, the problem is
NEXPTIME-complete. Note that while cooperation between the processes of an al-
ternating automaton is limited, this model does not bound the number of processes
that run on the input. Thus, alternation cannot be easily simulated by concurrency. In
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fact, the translations between the two models involve an exponential blow up in both
directions [10].

It is interesting to compare our results with previous results about the computational
price of the two models. In Figure 2, we describe such results. The table in the figure
refers to six problems that involve automata. Simulation and fair-simulation consider
labeled transition systems, which can be viewed as automata with labels at the states
rather than on the transitions. In fair simulation, we refer to the definition of [13]; in
the case of alternating systems, we refer to the alternating simulation of [1]; the com-
plexity of fair alternating simulation is still open. ELTL satisfiability is the problem of
deciding the satisfiability of an LTL formula in which automata are used as temporal
modalities.

nonemptiness universality simulation fair-simulation ELTL satisfiability shortest witness

NBW NLOGSPACE PSPACE PTIME PSPACE PSPACE NPTIME
[35] [33] [28] [22] [19] Th. 2

CBW PSPACE NEXPSPACE EXPTIME EXPSPACE EXPSPACE NEXPTIME
[10] [10] [18] [18] [19] Th. 5

ABW PSPACE PSPACE PTIME ? EXPSPACE PSPACE
[27] [27] [1] [19] Th. 7

Fig. 2. The computational price of different types of concurrency

As can be seen from the table, all problems become exponentially more complex in
the concurrent setting. On the other hand, for some problems, special algorithms for
the alternating setting are less complex than an algorithm that first removes alterna-
tion, which involves an exponential blow up. The shortest-witness problem falls in this
category.

From a practical point of view, our results indicate that alternation can be useful not
only thanks to the straightforward translation of temporal logic formulas to alternating
automata, but also because of computational considerations. In particular, in case the
system is given symbolically by a set of underlying components, and the specification
is given by an LTL formula, it is better to translate the formula to an ABW (rather
than an NBW) and search for a shortest witness in this setting. Indeed, the intersection
of the underlying components can be modeled by an alternating automaton, and the
complexity is PSPACE, like the PSPACE complexity for the model-checking problem
(note that in the symbolic setting described above, model checking is PSPACE in both
the LTL formula and the underlying components).

Another application of the shortest-witness problem is synthesis. In the last years, re-
searches have developed methods for coping with the implementation difficulties of the
synthesis problem: its high complexity, and the fact its solution involves determiniza-
tion of automata on infinite words [25]. With these problems being challenged, there is
now room for studying the size of the synthesized system, and developing automated-
synthesis algorithms for generating optimal systems. Our study in this paper handles the
case of a closed system. In future research, we plan to study the case of open systems,
where the problem is to find minimal transducers that generate correct systems.
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1 Introduction

Higher-order notations for trees have a venerable history from the 1970s and
1980s when schemes (that is, functional programs without interpretations) and
their relationship to formal language theory were first studied. Included are
higher-order recursion schemes and pushdown automata. Automata and lan-
guage theory study finitely presented mechanisms for generating languages. In-
stead of language generators, one can view them as process calculi, propagators
of possibly infinite labelled transition systems. Recently, model-checking tech-
niques have been successfully extended to these higher-order notations in the
deterministic case [18,9,8,21].

A long standing open question is: given two nth-order schemes do they gen-
erate the same tree? Courcelle [10] showed that for n = 1 the problem coin-
cides with the language equivalence problem for deterministic pushdown au-
tomata (DPDA) that was subsequently solved positively by Sénizergues [23].
For n > 1, equivalence of safe nth-order recursion schemes coincides with equiv-
alence between determinisitic nth-order pushdown automata [12,18]. It is not
known whether safety is a genuine restriction on expressive power: see [1].

Second-order pushdown automata involve finite-state control over a stack
of stacks. They have applications in language theory as they characterize the
indexed languages introduced by Aho [2]. Also, they generalize the “mildly”
context-sensitive languages used in computational linguistics [29]. Aho defined
these languages using indexed grammars and also characterized them in terms of
nested stack automata [3]. Their characterization in terms of second-order push-
down automata is due to Maslov, who also defined a hierarchy of higher-order
indexed languages characterized by higher-order pushdown automata, [20]. A
more detailed account is given by Damm and Goerdt [12].

There has been considerable research activity on decision procedures for bisim-
ulation equivalence between first-order systems, initiated with [4] for normed
context-free grammars and then extended to classes of pushdown automata [26].
Recent results show that bisimulation equivalence is undecidable [17].

Here, we present a decidability result for equivalence of second-order sys-
tems. A configuration of a second-order pushdown automaton is a state and a
stack of stacks. The operations pop stacks and push stacks onto it. We examine
deterministic second-order pushdown automata which generalize DPDA. A con-
figuration of a DPDA is a state and a stack. Simple grammars are an instance

C. Baier and H. Hermanns (Eds.): CONCUR 2006, LNCS 4137, pp. 509–523, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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of DPDA when there is a single state and no ε-transitions. So a configuration of
a simple grammar is justa stack. Korenjak and Hopcroft showed that language
equivalence is decidable between configurations of simple grammars [19]. Here,
we introduce second-order simple grammars as the subset of second-order deter-
ministic pushdown automata when there is a single state and no ε-transitions.
A configuration of such a grammar is, therefore, a stack of stacks. We show that
language equivalence is decidable for a subset of second-order simple grammars.
The proof technique is based on bisimulation equivalence and some combina-
torics about repetitions of stack extensions (loosely based on ideas from [28]).
We view this result as a first step towards understanding the general equivalence
problem for higher-order schemes.

In Section 2, we describe 2nd-order (deterministic) pushdown automata and
in Section 3 we introduce 2nd-order simple grammars and the subset that we
study. Some properties of the grammars are outlined in Section 4. In Sections 5
and 6 we present the equivalence decision procedure, using tableaux.

2 2nd-Order Pushdown Automata

The following four finite sets are ingredients of a 2nd-order pushdown automaton,
a 2PDA: states P, stack symbols S, alphabet A and basic transitions T. A basic
transition is pX a−→ qθ where p and q are states in P, X is a stack symbol in S,
a ∈ A ∪ {ε} and θ is an operation belonging to {swapα, push, pop : α ∈ S∗}.

A 2-stack is a sequence of non-empty stacks β1 : . . . : βn, so each βi ∈ S+.
We use ε for the empty stack and capital greek letters Γ , Δ, . . . to range over
sequences of stacks with Λ for the empty sequence. An operation θ is defined on
a 2-stack as follows:

swapα(Xβ : Γ ) = αβ : Γ
push(β : Γ ) = β : β : Γ
pop(β : Γ ) = Γ

A configuration of a 2PDA consists of a state p ∈ P and a 2-stack Γ . The
transitions of a configuration are defined by the following rule from the basic
transitions T.

PRE If pX a−→ qθ ∈ T then pXβ : Γ a−→ q θ(Xβ : Γ )

A traditional automaton interpretation is that on input a with basic transition
pX

a−→ qθ the configuration pXβ : Γ in state p with X at the top of the
first stack changes to state q and θ(Xβ : Γ ) replaces Xβ : Γ . Alternatively,
with respect to a generational or process calculus perspective the configuration
pXβ : Γ generates, or performs, a and becomes qθ(Xβ : Γ ). In both accounts
ε-transitions have a special status. If a = ε then the configuration may change
without reading an input or it may become qθ(Xβ : Γ ) silently without per-
forming an observable action. In the following we abbreviate a basic transition
pX

a−→ q swapα to pX a−→ qα.
The transition graph G(pΓ ) is generated by deriving all possible transitions

from pΓ and every configuration reachable from it using the rule PRE.
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Example 1. Consider the following basic transitions.

pZ
a−→ qZ qZ

a−→ qAZ qA
a−→ qAA qA

b−→ r push
rA

b−→ rε rZ
c−→ s pop sA

c−→ sε sZ
ε−→ s pop

Part of the transition graph G(pZ) is depicted in Figure 1. ��

pZ
a−→ qZ

a−→ qAZ
a−→ qAAZ

a−→ . . .
↓ b ↓ b
rAZ : AZ rAAZ : AAZ
↓ b ↓ b

sZ
c←− sAZ

c←− rZ : AZ rAZ : AAZ
↓ ε ↑ c ↓ b

sΛ . . .
...

Fig. 1. A 2PDA

A 2PDA is presentable in normal form, up to isomorphism of transition
graphs, where each transition of the form pX

a−→ qα ∈ T obeys the constraint
that the length of α, |α|, is at most 2. Enforcement of the normal form is easy
to achieve, by introducing extra stack symbols.

Definition 1. The language of a configuration pΔ, L(pΔ), is the set of words
w ∈ A∗ such that pΔ w−→ qΛ for some q.

When recognising any such word the 2-stack is thereby emptied. For instance,
L(pZ) in the case of Example 1 is {anbncn : n ≥ 2} which is a context-sensitive
language. This is called empty stack acceptance. A word w ∈ A∗ is in L(pΔ) if
there is a w-path from pΔ to a terminal state qΛ for some q in the graph G(pΔ).
The languages recognized coincide with those recognized if final states were also
included.

Our definition of a 2PDA is based on [18] except that it explicitly extends
a standard PDA (because of swap transitions). It is simpler than Maslov’s,
Damm and Goerdt’s definition [20,12]. In their case, a 2-stack is a sequence
of pairs (Xi, αi) where Xi ∈ S, with operations pop1, pop2, push1(α), push2(α)
which work as follows: pop1[(X,α1) : Γ ] = Γ , pop2[(X,Y α) : Γ ] = (X,α) : Γ ,
push1(Z1Z2)[(X,α) : Γ ] = (Z1, α) : (Z2, α) : Γ and push2(Z1Z2)[(X,α) : Γ ]
= (X,Z1Z2α) : Γ . There is no loss in expressive power (with respect to lan-
guage equivalence) as these operations can be simulated by families of 2PDA
operations.

The family of languages recognized by 2PDA is the indexed languages, intro-
duced by Aho in 1968 [2,3], which permit some context-dependency, as Exam-
ple 1 illustrates. Aho offers a grammatical method for generating them as well as
an automata theoretic method (using nested stack automata) which turns out



512 C. Stirling

to be equivalent to the 2PDA, as shown by Maslov [20]. An equivalent, schema-
like, formalism is the OI macro-grammars of Fischer [14]. Aho also shows that
the indexed languages are context-sensitive which is not obvious because re-
peated push transitions can increase the size of a configuration non-linearly.
They form an AFL and are a proper subset of the context-sensitive languages:
{(abn)n : n ≥ 0} is not an indexed language via a pumping lemma for them
[16,5]. The subset of linear indexed languages is the mildly context-sensitive
languages generated by tree adjoining grammars [29].

A 2PDA is deterministic if T obeys the following conditions.

– if pX a−→ qθ and pX a−→ rλ then q = r and θ = λ
– if pX ε−→ qθ and pX a−→ rλ then a = ε

Example 1 is a determinisitic 2PDA. The equivalence question, whether two
configurations of a determinisitic 2PDA recognise the same language, general-
izes the DPDA equivalence problem, that was solved positively by Sénizergues
[25,23,24,27,28]. A DPDA configuration pα can be coded as a deterministic
2PDA configuration pαZ where Z is a new end of stack marker with the ex-
tra transitions qZ ε−→ q pop for each state q.

Due to empty stack acceptance, the language recognized by a deterministic
2PDA has the prefix free property: if w ∈ L(pΔ) then no proper prefix v of w can
belong to L(pΔ). However, as with DPDA and empty stack acceptance, for any
deterministic indexed languageL, when defined in the Maslov style [22] with final
state acceptance, there is a deterministic 2PDA that accepts {w$ : w ∈ L}where
$ is a new alphabet symbol: deterministic 2PDA coincide with deterministic
Maslov pushdown automata with empty stack acceptance. The deterministic
indexed languages are closed under complement (and are therefore a proper
subset of the indexed languages) and include inherently ambiguous context-free
languages such as {aibjck : i, j, k > 0 and i = j or j = k} [22].

3 Second-Order Simple Grammars

In this section we consider second-order simple grammars, 2SGs. These are de-
terminisitic 2PDAs which have just one state and no ε-transitions. We can there-
fore drop the state from transitions and configurations: transitions now have the
form X

a−→ θ and a configuration has the form Δ. Reachability properties of
their nondeterministic version, at higher-orders, have been examined in [6]. We
conjecture that simple grammars defined from Maslov pushdown automata are
more expressive than 2SGs.

The DPDA correlate of 2SGs are simple grammars. A simple grammar con-
tains basic deterministic transitions X a−→ α, a ∈ A, and the language of a
configuration β, L(β), is the set {w : β w−→ ε}. Decidability of language equiv-
alence between two configurations of a simple grammar was shown by Korenjak
and Hopcroft [19]. However, language containment is undecidable [15].

It is unclear if there are alternative characterizations of 2SGs in terms of
subsets of schema or macro-grammars. The restriction to a single state suggests
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that we should examine their monadic versions. We leave this for further work.
The following example illustrates that there are interesting 2SGs.

Example 2. Consider the following 2SG

A
a−→ AA A

b−→ push A
c−→ ε Z

c−→ pop

Part of the graph G(AZ) is depicted in Figure 2. L(AZ)∩a∗b∗c∗ is the language

Λ
c←− Z

c←− AZ
b−→ . . .

↓ a ↑ c ↑ a

. . .
a←− AAZ

b−→ AAZ : AAZ
b−→ . . .

↑ c ↓ c

Z : AAZ
c←− AZ : AAZ

b−→ . . .
↓ a
. . .

Fig. 2. A 2SG

{anbkc(k+1)(n+2) : n, k ≥ 0} which is not context-free by the pumping lemma for
context-free languages. Therefore, L(AZ) is also not context-free. Consequently,
2SGs are strictly more expressive than simple grammars. Also, they are not
subsumed by pushdown automata. ��

Example 3. 2SGs even without push transitions can be complex.

X
a−→ Y X X

b−→ ε Y
b−→ X Y

c−→ Z Z
b−→ U U

b−→ pop
A

a−→ C A
b−→ ε C

b−→ AA C
c−→W W

b−→ pop

Here, L(XZ) = L(AW : W ). The graph G(XZ) involves infinite indegree be-
cause UXnZ

b−→ Λ for any n. ��

Definition 2. For each stack symbol X, let Λ(X) be the length of a shortest
word w, if it exists, such that X w−→ Λ, ε(X) be the length of a shortest word w,
if it exists, such that X w−→ ε and P (X) be the length of a shortest word wa, if
it exists, such that X w−→ Zα and Z a−→ push ∈ T.

It is easy to compute whether Λ(X), ε(X) or P (X) are defined, and what their
values are when defined. First we start by computing the cases of length 1: there
must be basic transitions X a−→ pop, X a−→ ε or X a−→ push. To check for
length n, we examine basic transitions X a−→ W and X a−→ Y Z: if ε(X) is not
yet defined, and ε(W ) = n− 1 or ε(Y ) + ε(Z) = n− 1 then ε(X) = n; if Λ(X) is
not yet defined and Λ(W ) = n− 1 or Λ(Y ) = n− 1 or ε(Y )+Λ(Z) = n− 1 then
Λ(X) = n; and, similarly, for P (X) when it is currently undefined. The iteration
stops at the first length 2k + 1 such that no Λ(X), ε(X) or P (X) has length
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more than k. At this point, any remaining Λ(X), ε(X) and P (X) are undefined.
Clearly, no Λ(X), ε(X), P (X) can exceed 2|S|. In the case of Example 2, Λ(A),
ε(Z) and P (Z) are not defined and Λ(Z), ε(A) and P (A) are all 1. In Example 3,
Λ(X) = 4, Λ(Y ) = 3 and Λ(A) = 3.

Definition 3. A 2SG is special if for each X, Λ(X) or P (X) is defined.

The 2SGs in Examples 2 and 3 are special. We now state the main result of the
paper.

Theorem 1. If Γ , Δ are configurations of a special 2SG then it is decidable
whether L(Γ ) = L(Δ).

The result strictly generalizes the equivalence problem for simple grammars.
Consider a simple grammar with basic transitions of the form X

a−→ α. We
transform it into a special 2SG. First, we extend the alphabet with two new
symbols $, # and add an end of stack marker Z with basic transition Z $−→ pop.
For each stack symbol X we also add the transition X

#−→ push. For any two
configurations α and β of the simple grammar, L(α) = L(β) iff L(αZ) = L(βZ)
in the transformed 2SG.

4 Some Properties of Special 2SGs

We quickly consider why language equivalence is decidable for simple grammars.
A stack symbol X is normed if ε(X) is defined. Clearly, L(α) = ∅ iff α contains
an unnormed stack symbol. So we can put a simple grammar into normal form
where all stack symbols are normed. With this assumption language equivalence
coincides with bisimulation equivalence because of determinism and normedness.
We write α ∼ β if L(α) = L(β).

Proposition 1. αδ ∼ βδ iff α ∼ β iff δα ∼ δβ.

Decidability of equivalence now follows reasonably straightforwardly via decom-
position and substitutivity: for instance, if Xα ∼ βδ and α ∼ β′δ then Xβ′ ∼ β.
Decomposition can be extended to unique prime decomposition, see [7] for de-
tails.

In the case of 2SGs there are two notions of stack composition: one between
stacks and the other within a stack. Again, we can easily check if a configuration
L(Γ ) = ∅ using the definitions of Λ(X) and ε(X) from the previous section.
Proposition 1 generalizes to composition between stacks for arbitrary 2SGs.

Proposition 2. Assume L(Γ ), L(Σ) and L(Δ) are all nonempty. It follows
that L(Γ : Δ) = L(Σ : Δ) iff L(Γ ) = L(Σ) iff L(Δ : Γ ) = L(Δ : Σ).

Proof. Assume L(Γ ), L(Σ), L(Δ) are nonempty and L(Γ : Δ) = L(Σ : Δ). If
w ∈ L(Γ : Δ) then w = w1w2 and w1 ∈ L(Γ ) and w2 ∈ L(Δ). Let v be a shortest
word in L(Δ). If w1 �∈ L(Σ) then there are two cases. First, a proper prefix w11
of w1 is in L(Σ). It follows that w11v ∈ L(Σ : Δ) and w11v �∈ L(Γ : Δ) which
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is a contradiction. Secondly, w1w21 ∈ L(Σ) where w2 = w21w22 and w21 �= ε.
Therefore, w1v ∈ L(Γ : Δ) and w1v �∈ L(Σ : Δ) which again is a contradiction.
Arguments for all the other cases are similar. ��

However, there are not the same properties for composition within a stack. It is
possible for L(α) = L(β) and L(αδ) �= L(βδ) and for L(αδ) = L(βδ) and L(α) �=
L(β). A simple case is X a−→ ε and X b−→ pop and Y b−→ pop. Although
L(X) = L(Y ), L(XY ) �= L(Y Y ) because of the disitinguishing word ab.

We introduce an extra configuration ∅ with L(∅) = ∅. In the following we
always assume that when we write a configuration Γ �= ∅ then L(Γ ) �= ∅. We
define the operation Γ · a as follows for a ∈ A.

Definition 4. If Γ a−→ Γ ′ and L(Γ ′) �= ∅ then Γ · a = Γ ′ otherwise Γ · a = ∅.

Proposition 3. If X a−→ push ∈ T then ((Xα : Γ ) · a) = Xα : Xα : Γ .

We extend Definition 4 to words.

Definition 5. Γ · ε = Γ and Γ · aw = (Γ · a) · w.

We now come to a key, perhaps surprizing, property of a special 2SG which is
essential to the decidability proof.

Proposition 4. Assume L(Xα : Γ ) = L(Y β : Δ) for configurations of a special
2SG. If X a−→ push ∈ T then Y a−→ push ∈ T and L(Xα) = L(Y β).

Proof. Suppose L(Xα : Γ ) = L(Y β : Δ) and X a−→ push ∈ T. By assumption
L(Xα : Γ ) �= ∅. If Y a−→ push �∈ T then Y a−→ θ and θ = pop or swapγ1 .
Consider the case θ = pop. Therefore, L(Xα : Xα : Γ ) = L(Δ). But then
by Proposition 2, L(Xα : Xα : Γ ) = L(Xα : Y β : Δ) = L(Δ) which is a
contradiction. Consequently, θ = swapγ1

and L(Xα : Xα : Γ ) = L(β1 : Δ)
where θ(Y β) = β1. Now we repeat the argument for Y1 which is the head stack
symbol of β1. We show that Y1

a−→ push �∈ T. Assume it is. By Proposition 2,
L(Xα : Xα : Xα : Γ ) = L(Xα : β1 : Δ) = L(β1 : β1 : Δ) and so L(Xα)
= L(β1). But L(Xα : Xα : Γ ) = L(β1 : Y β : Δ) = L(β1 : Δ) which is a
contradiction. Therefore, Y1

a−→ θ1 and θ1 = pop or swapγ2. The argument
above shows that θ1 �= pop. Therefore, L(Xα : Xα : Xα : Γ ) = L(β2 : Δ)
where β2 = θ1(β1). Now, we repeat the argument for Y2 which is the head of
β2. Again, X a−→ push ∈ T and by the arguments above Y2

a−→ swapγ2
. After

n steps, we have L((Xα)n+1 : Γ ) = L(βn : Δ). As Λ(Xα) > 0, it follows that
Λ(βn) = Λ(βn−1) + Λ(Xα): we now use this property to obtain a contradiction
when the 2SG is special. Let n > 2× 2|S|. Consider Yn the head variable of βn.
As the 2SG is special, Λ(Yn) or P (Yn) is defined. Assume the first, and let w be
a shortest word such that Yn

w−→ Λ. It follows that L(((Xα)n+1 : Γ ) ·w) = L(Λ)
which is a contradiction. Similarly, if w is a shortest word that Yn

w−→ push
then βn · w = βn+1 : βn+1. However, Λ(βn+1) > 2|S| which contradicts that
L(((Xα)n+1 : Γ ) · w) = L(βn+1 : βn+1 : Δ). ��
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We introduce non-standard bisimulation approximants.

Definition 6. We define ∼n, n ≥ 0, iteratively as follows.

1. Γ ∼0 Δ iff Γ = ∅ = Δ or Γ �= ∅ and Δ �= ∅.
2. Λ ∼n+1 Λ and ∅ ∼n+1 ∅
3. Xα : Γ ∼n+1 Y β : Δ just in case

(a) Λ(Xα : Γ ) = Λ(Y β : Δ)
(b) X a−→ push iff Y a−→ push, and
(c) for each a ∈ A, (Xα : Γ ) · a ∼n (Y β : Δ) · a.

Built into this definition is the idea that an immediate bisimulation error occurs
if configurations do not agree on length of their shortest words or if push ac-
tions are not matched. These non-standard approximants will be critical to the
decidability proof later. We write Γ ∼ Δ if for all n, Γ ∼n Δ.

Proposition 5. 1. L(Γ ) = L(Δ) iff Γ ∼ Δ.
2. If Γ ∼n Δ and Δ ∼n Σ then Γ ∼n Σ.
3. If Γ �∼n Δ and Δ ∼n+k Σ then Γ �∼n Σ.

5 Tableaux

The decision procedure for special 2SGs is a tableau proof system, consisting of
proof rules which allow goals to be reduced to subgoals. Goals and subgoals are
all of the form Γ

·= Δ, “is Γ ∼ Δ?”, where Γ and Δ are configurations of a
special 2SG. The tableau proof rules are contained in Figure 3.

The initial tableau proof rule is UNF (unfold). The goal, Γ ·= Δ reduces to
the subgoals (Γ · a) ·= (Δ · a) for each a ∈ A. The application of this simple rule
is both “complete” and “sound”. Completeness is the property that if the goal,
Γ

·= Δ, is true then so are all the subgoals, (Γ · ai) ·= (Δ · ai).

Proposition 6. If Γ ∼ Δ, then for all a ∈ A, (Γ · a) ∼ (Δ · a).

Soundness is the converse, that if all the subgoals are true then so is the goal
which is equivalent to, if the goal is false, Γ �∼ Δ, then so is at least one of the
subgoals. However, there is a finer account that uses approximants. We assume
that, at least, Γ ∼1 Δ (so push transitions have to be matched).

Proposition 7. If Γ ∼n+1 Δ and Γ �∼n+2 Δ, then (Γ ·a) �∼n+1 (Δ ·a) for some
a ∈ A.

The second rules are SIMP (simplification) that reduce goals. If ε(X) is not
defined then αXα′ can be reduced to αX . The following implies soundness and
completeness of SIMP.

Proposition 8. If ε(X) is undefined then for all n and Γ αXα′ : Γ ∼n αX : Γ .

The final rules are DEC for decomposition. We only decompose α : Γ = β : Δ
when Δ is non-empty. The following capture completeness and soundness.
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UNF

Γ
·= Δ

(Γ · a1)
·= (Δ · a1) . . . (Γ · ak) ·= (Δ · ak)

A = {a1, . . . , ak}

SIMP(L) and SIMP(R)

αXα′ : Γ
·= Δ

αX : Γ
·= Δ

ε(X) undefined
Δ

·= αXα′ : Γ

Δ
·= αX : Γ

ε(X) undefined

DEC(L) and DEC(R)

α : Γ
·= β : Δ

α : (β · w) ·= β Γ
·= (β · w) : Δ

C
β : Δ

·= α : Γ

β
·= α : (β · w) (β · w) : Δ

·= Γ
C

where C is the condition

1. Λ(α) ≤ Λ(β) and Δ �= Λ
2. w is a smallest word such that α

w−→ Λ
3. (β · w) �= ∅

Fig. 3. Tableau proof rules

Proposition 9. Assume Λ(α) ≤ Λ(β), w is a smallest word such that α w−→ Λ
and (β · w) �= ∅.

1. If α : Γ ∼ β : Δ, then α : (β · w) ∼ β and Γ ∼ (β · w) : Δ.
2. If α : Γ �∼n β : Δ then α : (β · w) �∼n β or n > |w| and Γ �∼n−|w| (β · w) : Δ.

Example 4. The following is an application of DEC(R) to a goal whose 2SG is
Example 3.

XXXZ : XZ ·= AAAW : AW : W

XXXZ
·= AAAW : UXXXZ UXXXZ : XZ ·= AW : W

Here, AAAW acb−→ Λ and UXXXZ = (XXXZ · acb). ��

6 Successful Tableaux

In the previous section we presented and justified tableau proof rules. We now
show that these rules lead to an effective decision procedure for checking equiv-
alence of configurations of special 2SGs. A missing ingredient in the tableau
description is when a current goal is final. The tableau procedure starts with an
initial goal, Γ ·= Δ, “is Γ ∼ Δ?”, and one then builds a proof tree by applying
the tableau rules. Goals are thereby reduced to subgoals. Rules are not applied
to final goals.

A 2SG is deterministic, and therefore we would prefer that there is just one
tableau proof tree for any starting goal. To achieve uniqueness of tableau, we
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assume a linear ordering on the alphabet A. This ordering is used in an applica-
tion of UNF, so the subgoals are ordered relative to this ordering. It is also used
in the DEC rules to define a unique smallest word such that α w−→ Λ: if there is
more than one word of the same length with this property, we choose amongst
them the word that is lexicographically least with repect to the ordering on A.
In the case of the SIMP rules we assume that ε(α) is defined: we always try to
find the first stack symbol X in the initial stack such that ε(X) is undefined.

Next, we assume that the tableau proof rules are applied in the following
order: DEC(L), DEC(R), SIMP(L), SIMP(R), UNF. Given a goal one tries first
to apply DEC(L), and if it is not applicable then one tries DEC(R), and so on.
A tableau proof tree is built breadth first starting with leftmost non-final goals.

Example 5. Here is part of the tableau proof tree for the goal XZ ·= AW : W
whose 2SG is Example 3.

XZ
·= AW : W

UNF
Y XZ

·= CW : W
UNF

XXZ
·= AAW : W

UNF
Y XXZ

·= CAW : W
UNF

. . .

. . .

ZXZ
·= WW : W

SIMP(L)
Z

·= WW : W
SIMP(R)

. . .

. . .

Here we have missed out subgoals of the form ∅ ·= ∅. There is an application of
SIMP(L) to ZXZ ·=WW : W because ε(Z) is not defined. ��

To show decidability we intend to show that associated with any starting goal
Γ

·= Δ is a unique boundedly finite proof tree. However, in Example 5 there
appears to be the following potentially infinite branch of goals.

XZ
·= AW : W

YXZ
·= CW : W

XXZ
·= AAW : W

YXXZ
·= CAW : W

XXXZ
·= AAAW : W

. . .

This will be dealt with by the definition of final goal.
Final goals are either unsuccessful or successful. There is just one kind of

unsuccessful goal: Γ ·= Δ where Γ �∼1 Δ. For successful final goals, first we
include the identity, Γ ·= Γ , which is clearly true. However, there is another
kind based on repeating patterns of stack extensions (inspired by the extension
theorem in [28] which was generalized to the subwords lemma in [25]).
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We are interested in goals α : Γ ·= β or β ·= α : Γ where one side consists of a
single stack only: application of the DEC proof rules yield such subgoals. Given
a goal αα1 : Γ ·= ββ1, where α and β are not ε, we say that αγ1α1 : Γ ·= βλ1β1
is an (γ1, λ1)-extension of it and (γ1, λ1) is the extension. We now come to the
key property that will limit the size of a proof tree.

Proposition 10. If α and β are not ε and

(1) αα1 : Γ ∼n ββ1 and (5) αα2 : Γ ∼n ββ2
(2) αγ1α1 : Γ ∼n βλ1β1 and (6) αγ1α2 : Γ ∼n βλ1β2
(3) αγ2γ1α1 : Γ ∼n βλ2λ1β1 and (7) αγ2γ1α2 : Γ ∼n βλ2λ1β2
(4) αγ1γ2γ1α1 : Γ ∼n βλ1λ2λ1β1

then (8) αγ1γ2γ1α2 : Γ ∼n βλ1λ2λ1β2.

Proof. Assume (1) − (7) but (8) is false. So, αγ1γ2γ1α2 : Γ �∼n βλ1λ2λ1β2.
Because of (1)− (7), the bisimulation error in (8) cannot be caused by the heads
α and β. Therefore, by repeated application of Proposition 7 there is a w such
that one of the following hold. (An easy argument shows that w cannot involve
a push transition.)

A) α · w = Λ, β · w is defined and Γ �∼n−|w| (β · w)λ1λ2λ1β2.
B) α · w = ε, β · w is defined and γ1γ2γ1α2 : Γ �∼n−|w| (β · w)λ1λ2λ1β2.
C) β · w = ε, α · w is defined and (α · w)γ1γ2γ1α2 : Γ �∼n−|w| λ1λ2λ1β2.

Consider B): the others are similar. Because of (1)− (7) we know that

(11) α1 : Γ ∼n−|w| (β · w)β1 (51) α2 : Γ ∼n−|w| (β · w)β2
(21) γ1α1 : Γ ∼n−|w| (β · w)λ1β1 (61) γ1α2 : Γ ∼n−|w| (β · w)λ1β2
(31) γ2γ1α1 : Γ ∼n−|w| (β · w)λ2λ1β1 (71) γ2γ1α2 : Γ ∼n−|w| (β · w)λ2λ1β2
(41) γ1γ2γ1α1 : Γ ∼n−|w| (β · w)λ1λ2λ1β1

We now consider α · w = ε, β · w is defined and γ1γ2γ1α2 : Γ �∼n−|w| (β ·
w)λ1λ2λ1β2 and (21), (41) and (61). There are two cases depending on whether
(β · w) = ε. Assume it is not. The bisimulation error cannot be caused by the
heads γ1 and (β ·w). Therefore there is a word w1 such that one of the following
hold.

BA) γ1 · w1 = Λ, β · ww1 is defined and Γ �∼n−|ww1| (β · ww1)λ1λ2λ1β2.
BB) γ1 · w1 = ε, β · ww1 is defined and γ2γ1α2 : Γ �∼n−|ww1| (β · ww1)λ1λ2λ1β2.
BC) β · ww1 = ε, γ1 · w1 is defined and (γ1 · w1)γ2γ1α2 : Γ �∼n−|ww1| λ1λ2λ1β2.

In the case of BA) we also know

(211) Γ ∼n−|ww1| (β · ww1)λ1β1
(411) Γ ∼n−|ww1| (β · ww1)λ1λ2λ1β1
(611) Γ ∼n−|ww1| (β · ww1)λ1β2

Thus, we now get a contradiction using these because from Proposition 5
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(β · ww1)λ1λ2λ1β1 �∼n−|ww1| (β · ww1)λ1λ2λ1β2
(β · ww1)λ1β1 ∼n−|ww1| (β · ww1)λ1β2

In the case of BB) we also know that

(212) α1 : Γ ∼n−|ww1| (β · ww1)λ1β1
(412) γ2γ1α1 : Γ ∼n−|ww1| (β · ww1)λ1λ2λ1β1
(612) α2 : Γ ∼n−|ww1| (β · ww1)λ1β2

Now via Proposition 5, we can use (71), (11), (31) and (51) and derive a contra-
diction from the following.

(β · w)λ2λ1β2 �∼n−|ww1| (β · ww1)λ1λ2λ1β2
(β · w)β1 ∼n−|ww1| (β · ww1)λ1β1
(β · w)λ2λ1β1 ∼n−|ww1| (β · ww1)λ1λ2λ1β1
(β · w)β2 ∼n−|ww1| (β · ww1)λ1β2

All remaining cases are similar. ��

We use Proposition 10 to identify when a goal is final via extensions.

Definition 7. Assume a family of not necessarily distinct goals

g(1) αα1 : Γ ·= ββ1 h(1) αα2 : Γ ·= ββ2

g(2) αγ1α1 : Γ ·= βλ1β1 h(2) αγ1α2 : Γ ·= βλ1β2

g(3) αγ2γ1α1 : Γ ·= βλ2λ1β1 h(3) αγ2γ1α2 : Γ ·= βλ2λ1β2

g(4) αγ1γ2γ1α1 : Γ ·= βλ1λ2λ1β1 h(4) αγ1γ2γ1α2 : Γ ·= βλ1λ2λ1β2

(or their symmetric versions) in a branch of a proof tree involving extensions
(γ1, λ1), (γ2, λ2). If h(4) is below all the g(i)’s and the other h(i)’s, is distinct
from g(4) and h(3) and there is an application of UNF between h(3) and h(4)
then h(4) is a successful final goal.

Example 6. Consider the following goals in the initial part of the potentially
infinite branch of Example 5.

g(1) XZ
·= AW : W

g(2) = h(1) XXZ
·= AAW : W

g(3) = h(2) XXXZ
·= AAAW : W

g(4) = h(3) XXXXZ
·= AAAAW : W

h(4) XXXXXZ
·= AAAAAW : W

Here β = X and α = Y and the extensions are (X,A). There is at least one
application of UNF between h(3) and h(4) in the proof tree. Consequently, the
branch stops at the final goal XXXXXZ ·= AAAAAW : W . ��
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Example 7. If there is a repeat goal in the proof tree

(g) α : Γ ·= β

...

(h) α : Γ ·= β

with an application of UNF inbetween, then h is final. Here g(1) − g(4) and
h(1)− h(3) is the goal g with extension (ε, ε) and α1 = α2 = β1 = ε. ��

Definition 8. A successful tableau for Γ ·= Δ is a finite proof tree with root
Γ

·= Δ and all of whose leaves are successful final goals. Otherwise a tableau is
unsuccessful: that is, if it is not a finite proof tree or if it contains an unsuc-
cesssful final goal.

We now come to the main results, which show decidability of language equiva-
lence for special 2SG. The decision procedure is to build the tableau with root
Γ

·= Δ breadth first starting with leftmost non-final goals. If an unsuccessful final
goal is met then the procedure terminates with a finite unsuccessful tableau.

Theorem 2. There is a unique finite tableau for goal Γ ·= Δ.

Proof. Uniqueness is clear because rules are applied in a particular order. The
important part of the proof is to show finiteness. Initially, we have Γ ·= Δ. The
DEC rules are applied first in the order DEC(L) then DEC(R). Clearly, in the
application of a DEC rule if w is the smallest word such that α w−→ Λ then there
is no push transition in this sequence of transitions. If (β · w) involves a push
transition then the tableau construction will terminate with an unsuccesful final
goal. Assume the rule is DEC(L), so α : (β · w) ·= β. Consequently, w = w1aw2

and α ·w1 = α1 and β ·w1 = β1 and β1 ·a = β1 : β1. The subgoal α1 : (β ·w) ·= β1
is, therefore, an unsuccessful final goal. There can not be an infinite sequence of
consecutive applications of DEC as each application decreases the the number
of stacks in both subgoals. Consequently, non-final subgoals to which DEC and
SIMP do not apply have the form Xα : Γ ·= β or β ·= Xα : Γ . First, consider
the case of an application of UNF where X a−→ push. If Γ �= Λ then the goal
(Xα : Γ ) ·a ·= (β ·a) is an unsuccessful final goal (and similarly for its symmetric
version). If Γ = Λ, then Xα · a ·= β · a is Xα : Xα ·= β : β and by DEC(L) this
reduces to the two occurrences of successful final goals Xα ·= β by Example 7.
Consequently, without loss of generality, assume there is an infinite subbranch
of goals of the form αi : Γ ·= βi, i ≥ 0 involving applications of UNF and SIMP
only. We show that there is a successful final goal. The size of the goals (that
is the sum, |αi| + |βi|) must be eventually increasing, otherwise a repeat goal
occurs ensuring a successful final goal. Now we examine the first “low point” with
respect to the left stack αi: αi = Xα is a low point if for all j ≥ i, αj = α′

jα.
With respect to the left side we will find infinitely many repeating patterns of
the form Zα′, Zα′

1α
′, Zα′

2α
′
1α

′ and Zα′
1α

′
2α

′
1α

′ where α′
1 or α′

2 can be ε. Now we
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consider the right hand stacks with respect to these repeating patterns. Clearly,
we will also eventually find repeating patterns too, and consequently a successful
final goal. ��

Theorem 3. The tableau for Γ ·= Δ is successful iff Γ ∼ Δ.

Proof. Suppose there is a successful tableau for Γ ·= Δ but Γ �∼ Δ. By Theorem 2
this tableau is finite. There is a least approximant n such that Γ �∼n Δ. We
construct an offending path of false goals through the tableau within which the
approximant indices decrease whenever UNF is applied (by Proposition 7). The
other rules preserve falsity indices. Because the tableau is finite and successful
this means that the path of false goals must conclude with a final goal. But this
is impossible. Clearly it is not possible to reach a final goal of the form Γ

·= Γ .
Moreover it is not possible to reach a final goal which is a result of extensions
because of Proposition 10.

For the other direction, one just builds the tableau for Γ ·= Δ. By Propo-
sitions 6, 8 and 9, the applications of rules preserve truth. Therefore it is not
possible to reach an unsuccessful final goal, and by Theorem 2 the tableau for
Γ

·= Δ is finite, and therefore successful. ��

More work needs to be done to ascertain the exact complexity bound of the
decision procedure.

Acknowledgements. Many thanks to Luke Ong for imparting his incisive un-
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